INEQUALITIES BETWEEN THE SUM OF POWERS AND THE EXPONENTIAL OF SUM OF POSITIVE AND COMMUTING SELFADJOINT OPERATORS

Berrabah Bendoukha and Hafida Bendahmane

ABSTRACT. Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators acting in Hilbert space \mathcal{H} and $\mathcal{B}^+(\mathcal{H})$ the set of all positive selfadjoint elements of $\mathcal{B}(\mathcal{H})$. The aim of this paper is to prove that for every finite sequence $(A_i)_{i=1}^n$ of selfadjoint, commuting elements of $\mathcal{B}^+(\mathcal{H})$ and every natural number $p \geq 1$, the inequality

$$\frac{e^p}{p^p} \left(\sum_{i=1}^n A_i^p \right) \le \exp\left(\sum_{i=1}^n A_i \right),$$

holds.

1. Preliminaries and main results

Our starting result in this paper is the following theorem established in [3] for p=2 and extended to case $p\geq 1$ in [2].

Theorem 1.0.1. Let $(x_i)_{i=1}^n$ be a sequence of nonnegative real numbers. Then for every real $p \ge 1$, inequality

(1.0.1)
$$\frac{e^p}{p^p} \sum_{i=1}^n x_i^p \le \exp(\sum_{i=1}^n x_i),$$

holds. Equality in (1.0.1) holds if $x_i = p$ for a certain $1 \le i \le n$ and $x_j = 0$ for $j \ne i$. So the constant $\frac{e^p}{p^p}$ is the best possible.

Our goal is to obtain a similar result for sequences of positive operators in Hilbert space.

Let \mathcal{H} be a complex Hilbert space with inner scalar product $\langle \cdot, \cdot \rangle$ and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators acting in Hilbert space \mathcal{H} . $I_{\mathcal{H}}$ will denote the unity in $\mathcal{B}(\mathcal{H})$. An element A of $\mathcal{B}(\mathcal{H})$ is said to be positive if $\langle Ax, x \rangle \geq 0$ for all elements $x \in \mathcal{H}$. Let A and B be two positive elements of $\mathcal{B}(\mathcal{H})$. Then $A \geq B$ means that $\langle Ax, x \rangle - \langle Bx, x \rangle \geq 0$ for every $x \in \mathcal{H}$. We need the following properties of positive operators [1, 4].

Received September 21, 2009, revised May 2011. Editor V. Müller.

²⁰¹⁰ Mathematics Subject Classification: primary 47B60; secondary 47A30.

 $[\]it Key\ words\ and\ phrases:$ commuting operators, positive selfadjoint operator, spectral representation.

Theorem 1.0.2. Let $\mathcal{B}^+(\mathcal{H})$ be the set of all positive elements of $\mathcal{B}(\mathcal{H})$. Then,

- a) $\mathcal{B}^+(\mathcal{H})$ is a closed cone,
- b) $A, B \in \mathcal{B}^+(\mathcal{H})$ and commute $\Longrightarrow AB \in \mathcal{B}^+(\mathcal{H})$,
- c) $A \in \mathcal{B}^+(\mathcal{H}) \iff A = B^2$, (B is a positive selfadjoint operator).
- d) $A \in \mathcal{B}^+(\mathcal{H})$ and selfadjoint if and only if, A has a spectral representation of the form:

(1.0.2)
$$A = \int_{m}^{M+\epsilon} \lambda dE_{\lambda} ,$$

where, ϵ is any positive real number,

$$0 \leq m = \inf_{\|x\|=1} \langle Ax, x \rangle \leq M = \sup_{\|x\|=1} \langle Ax, x \rangle < +\infty \,.$$

e) If A is selfadjoint with spectral representation (1.0.2), then for every real function f continuous on $[m, M + \epsilon]$,

(1.0.3)
$$f(A) = \int_{m}^{M+\epsilon} f(\lambda) dE_{\lambda},$$

and f(A) = 0 (resp. $f(A) \ge 0$) if and only if, $f(\lambda) = 0$ (resp. $f(\lambda) \ge 0$) on $[m, M + \epsilon]$.

Note that m and M in precedent theorem are respectively the smallest and biggest values of the spectrum of A.

Definition 1.0.3. Let $A \in \mathcal{B}^+(\mathcal{H})$. $\exp(A)$ is the element of $\mathcal{B}(\mathcal{H})$ given by formula,

(1.0.4)
$$\exp(A) = \sum_{k=0}^{+\infty} \frac{A^k}{k!}.$$

It is easy to check that $\exp(z.I_{\mathcal{H}}) = \exp(z) \cdot I_{\mathcal{H}}$ for any complex z. Moreover, if A, B are two commuting elements of $\mathcal{B}(\mathcal{H})$ then,

$$\exp(A + B) = \exp(A) \exp(B) = \exp(B) \exp(A).$$

If A is a selfadjoint element of $\mathcal{B}^+(\mathcal{H})$ with spectral representation (1.0.2) and p a natural number, then according to Theorem 1.0.2, we have representations

(1.0.5)
$$A^p = \int_m^{M+\epsilon} \lambda^p dE_\lambda \quad \text{and} \quad \exp(A) = \int_m^{M+\epsilon} \exp(\lambda) dE_\lambda \,,$$

which we will frequently use throughout this paper.

We have the following main results:

Theorem 1.0.4. Let $A \in \mathcal{B}^+(\mathcal{H})$. Then for every natural $p \ge 1$,

$$\frac{e^p}{n^p} A^p \le \exp(A) \,.$$

Moreover, if $A = p \cdot I_{\mathcal{H}}$ then, we have equality in (1.0.6) and the constant $\frac{e^p}{p^p}$ is the best possible.

Theorem 1.0.5. Let $(A_i)_{i=1}^n$ be a finite sequence of commuting, selfadjoint elements of $\mathcal{B}^+(\mathcal{H})$. Then for every natural $p \geq 1$,

$$\frac{e^p}{p^p} \sum_{i=1}^n A_i^p \le \exp\left(\sum_{i=1}^n A_i\right).$$

Moreover, if for a certain $1 \le i \le n$, $A_i = p \cdot I_{\mathcal{H}}$ and $A_j = 0$ for $j \ne i$, then, we have equality in (1.0.7) and the constant $\frac{e^p}{n^p}$ is the best possible.

Remark 1.0.6. If A_i are roots of polynomial $P_n(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0I_{\mathcal{H}}$ and all operators $A_i - A_j$ $(i \neq j)$ are invertible then, for every natural $p \geq 1$,

(1.0.8)
$$\frac{e^p}{p^p} \sum_{i=1}^n A_i^p \le \frac{e^p}{p^p} (-a_{n-1})^p \cdot I_{\mathcal{H}} \le e^{-a_{n-1}} \cdot I_{\mathcal{H}}$$

Indeed, as in the scalar case, we have $A_1 + A_2 + \cdots + A_n = -a_{n-1} \cdot I_{\mathcal{H}}$.

Theorem 1.0.7. Let $p \geq 1$ be a natural number and $(A_i)_{i=1}^n$ a finite sequence of invertible, commuting and selfadjoint elements of $\mathcal{B}^+(\mathcal{H})$ such that $0 < A_i \leq p \cdot I_{\mathcal{H}}$ for every $1 \leq i \leq n$. Then,

$$(1.0.9) \qquad \exp\left(\sum_{i=1}^{n} A_i\right) \le \frac{p^p}{n} e^{np} \left(\sum_{i=1}^{n} A_i^{-p}\right).$$

Moreover, if $1 \le i \le n$, $A_i = p \cdot I_{\mathcal{H}}$ for every $1 \le i \le n$ then, we have equality in (1.0.9) and the constant $\frac{p^p}{n}e^{np}$ is the best possible.

From Theorems 1.0.5 and 1.0.7, follows,

Corollary 1.0.8. Let $p \ge 1$ be a natural number and $(A_i)_{i=1}^n$ a finite sequence of invertible, commuting and selfadjoint elements of $\mathcal{B}^+(\mathcal{H})$ such that $0 < A_i \le p \cdot I_{\mathcal{H}}$ for every $1 \le i \le n$. Then,

(1.0.10)
$$\frac{e^p}{p^p} \sum_{i=1}^n A_i^p \le \exp\left(\sum_{i=1}^n A_i\right) \le \frac{p^p}{n} e^{np} \left(\sum_{i=1}^n A_i^{-p}\right).$$

Constants $\frac{p^p}{n}$ and $\frac{p^p}{n}e^{np}$, are the best possible.

2. Proofs of main results

2.1. **Theorem 1.0.4.**

Proof. Consider in the space \mathcal{H} the selfadjoint operator $B = \exp(A) - e^p p^{-p} A^p$. We need to prove that B is positive. Let

$$A = \int_{m}^{M+\epsilon} \lambda dE_{\lambda}$$

be the spectral representation of A. By Theorem 1.0.2,

(2.1.1)
$$B = \int_{m}^{M+\epsilon} (e^{\lambda} - e^{p} p^{-p} \lambda^{p}) dE_{\lambda}.$$

According to [2], we have

(2.1.2)
$$\lambda \ge 0 \Longrightarrow e^{\lambda} - e^{p} p^{-p} \lambda^{p} \ge 0.$$

Hence, operator B is positive. It is easy to check that if $A = p \cdot I_{\mathcal{H}}$ then, we have equality in (1.0.6). Let now α be a constant such that $\alpha A^p \leq \exp(A)$ for all $A \in \mathcal{B}^+(\mathcal{H})$. Setting $A = p \cdot I_{\mathcal{H}}$, we obtain that $\alpha \leq e^p p^{-p}$. This finishes the proof.

2.2. **Theorem 1.0.5.** To prove this theorem we need the following lemma.

Lemma 2.2.1. Let $p \geq 1$ be a natural number and $(A_i)_{i=1}^n$ a finite sequence of commuting, selfadjoint elements of $\mathcal{B}^+(\mathcal{H})$. Then,

(2.2.1)
$$\sum_{i=1}^{n} A_i^p \le \left(\sum_{i=1}^{n} A_i\right)^p.$$

Proof. If n = 2 then by Theorem 1.0.2, operator $A_1^k A_2^{p-k}$ is positive for every $0 \le k \le p$. By the binomial theorem, we have:

$$(A_1 + A_2)^p = \sum_{k=0}^p \frac{p!}{k!(p-k)!} A_1^k A_2^{p-k} = A_1^p + A_2^p + \sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} A_1^k A_2^{p-k}.$$

Since operator

$$\sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} A_1^k A_2^{p-k}$$

is positive (as a sum of positive operators), it follows from the last equality that

$$A_1^p + A_2^p \le (A_1 + A_2)^p$$
.

Suppose now that

$$\sum_{i=1}^{n} A_i^p \le \left(\sum_{i=1}^{n} A_i\right)^p.$$

Then,

$$\left(\sum_{i=1}^{n+1} A_i\right)^p = \left(\sum_{i=1}^n A_i + A_{n+1}\right)^p \ge \left(\sum_{i=1}^n A_i\right)^p + A_{n+1}^p$$

$$\ge \sum_{i=1}^n A_i^p + A_{n+1}^p = \sum_{i=1}^{n+1} A_i^p.$$

Let us now prove Theorem 1.0.5.

Proof. According to lemma and Theorem 1.0.4, we have:

(2.2.2)
$$e^{p} p^{-p} \sum_{i=1}^{n} A_{i}^{p} \le e^{p} p^{-p} \left(\sum_{i=1}^{n} A_{i} \right)^{p} \le \exp \left(\sum_{i=1}^{n} A_{i} \right).$$

On the other hands, it is easy to check that we have equalities in this last formula if we set $A_i = p \cdot I_{\mathcal{H}}$ for a certain i and null operator for others indices. The same argumentation used in the precedent theorem shows that $e^p p^{-p}$ is the best possible constant.

2.3. **Theorem 1.0.7.**

Proof. Let us firstly remark that invertibility of operators A_i , (i = 1, 2, ..., n) implies that

$$A_i = \int_{m_i}^{M_i + \epsilon} \lambda dE_{\lambda}, \quad m_i > 0$$

and

$$A_i^{-1} = \int_{m_i}^{M_i + \epsilon} \lambda^{-1} dE_{\lambda} .$$

Since $A_i \leq p \cdot I_{\mathcal{H}}$, it follows from the spectral representation

$$A_i - p \cdot I_{\mathcal{H}} = \int_{m_i}^{M_i + \epsilon} (\lambda - p) dE_{\lambda}$$

that for all $1 \leq i \leq n$,

$$\lambda \in [m_i, M_i + \epsilon] \Longrightarrow \lambda \le p$$
.

Consequently, for all $1 \le i \le n$,

$$A_i^{-1} - p^{-1} \cdot I_{\mathcal{H}} = \int_{m_i}^{M_i + \epsilon} (\lambda^{-1} - p^{-1}) dE_{\lambda} \Longrightarrow p^{-1} \cdot I_{\mathcal{H}} \le A_i^{-1}$$
$$\Longrightarrow \frac{n}{p^p} \cdot I_{\mathcal{H}} \le \sum_{i=1}^n A_i^{-p}.$$

Selfadjoint operators $A_1^{-1}, A_2^{-1}, \dots, A_n^{-1}$ are bounded, commuting and positive. Using Theorem 1.0.5, we obtain

(2.3.1)
$$\frac{e^p}{p^p} \sum_{i=1}^n A_i^{-p} = \frac{e^p}{p^p} \sum_{i=1}^n (A_i^{-1})^p \le \exp\left(\sum_{i=1}^n A_i^{-1}\right).$$

Since, $\exp(A) \leq \exp(B)$ for $A \leq B$ then, we have finally

$$\exp\left(\sum_{i=1}^n A_i\right) \le \exp\left(\sum_{i=1}^n p \cdot I_{\mathcal{H}}\right) = e^{np} \frac{p^p}{n} \frac{n}{p^p} \cdot I_{\mathcal{H}} \le e^{np} \frac{p^p}{n} \sum_{i=1}^n A_i^{-p}.$$

It is clear that for equality holds for $A_i = p \cdot I_{\mathcal{H}}$ for every $1 \leq i \leq n$. This finishes the proof.

References

- Akhiezer, N. I., Glasman, I. M., Theory of linear operators in Hilbert space, Tech. report, Vyshcha Shkola, Kharkov, 1977, English transl. Pitman (APP), 1981.
- [2] Belaidi, B., Farissi, A. El, Latreuch, Z., Inequalities between sum of the powers and the exponential of sum of nonnegative sequence, RGMIA Research Collection, 11 (1), Article 6, 2008.
- [3] Qi, F., Inequalities between sum of the squares and the exponential of sum of nonnegative sequence, J. Inequal. Pure Appl. Math. 8 (3) (2007), 1–5, Art. 78.
- [4] Weidman, J., Linear operators in Hilbert spaces, New York, Springer, 1980.

Laboratoire de Mathématiques pures et appliquées, Abdelhmid Ibn Badis Mostaganem University, B.O. 227, Mostaganem (27000), Algeria E-mail: bbendoukha@gmail.com bendahmanehafida@yahoo.fr