# INEQUALITIES BETWEEN THE SUM OF POWERS AND THE EXPONENTIAL OF SUM OF POSITIVE AND COMMUTING SELFADJOINT OPERATORS 

Berrabah Bendoukha and Hafida Bendahmane


#### Abstract

Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators acting in Hilbert space $\mathcal{H}$ and $\mathcal{B}^{+}(\mathcal{H})$ the set of all positive selfadjoint elements of $\mathcal{B}(\mathcal{H})$. The aim of this paper is to prove that for every finite sequence $\left(A_{i}\right)_{i=1}^{n}$ of selfadjoint, commuting elements of $\mathcal{B}^{+}(\mathcal{H})$ and every natural number $p \geq 1$, the inequality


$$
\frac{e^{p}}{p^{p}}\left(\sum_{i=1}^{n} A_{i}^{p}\right) \leq \exp \left(\sum_{i=1}^{n} A_{i}\right)
$$

holds.

## 1. Preliminaries and main results

Our starting result in this paper is the following theorem established in [3 for $p=2$ and extended to case $p \geq 1$ in [2].

Theorem 1.0.1. Let $\left(x_{i}\right)_{i=1}^{n}$ be a sequence of nonnegative real numbers. Then for every real $p \geq 1$, inequality

$$
\begin{equation*}
\frac{e^{p}}{p^{p}} \sum_{i=1}^{n} x_{i}^{p} \leq \exp \left(\sum_{i=1}^{n} x_{i}\right) \tag{1.0.1}
\end{equation*}
$$

holds. Equality in 1.0.1 holds if $x_{i}=p$ for a certain $1 \leq i \leq n$ and $x_{j}=0$ for $j \neq i$. So the constant $\frac{e^{p}}{p^{p}}$ is the best possible.

Our goal is to obtain a similar result for sequences of positive operators in Hilbert space.
Let $\mathcal{H}$ be a complex Hilbert space with inner scalar product $\langle\cdot, \cdot\rangle$ and $\mathcal{B}(\mathcal{H})$ the set of all bounded linear operators acting in Hilbert space $\mathcal{H}$. $I_{\mathcal{H}}$ will denote the unity in $\mathcal{B}(\mathcal{H})$. An element $A$ of $\mathcal{B}(\mathcal{H})$ is said to be positive if $\langle A x, x\rangle \geq 0$ for all elements $x \in \mathcal{H}$. Let $A$ and $B$ be two positive elements of $\mathcal{B}(\mathcal{H})$. Then $A \geq B$ means that $\langle A x, x\rangle-\langle B x, x\rangle \geq 0$ for every $x \in \mathcal{H}$. We need the following properties of positive operators [1, 4].

[^0]Theorem 1.0.2. Let $\mathcal{B}^{+}(\mathcal{H})$ be the set of all positive elements of $\mathcal{B}(\mathcal{H})$. Then,
a) $\mathcal{B}^{+}(\mathcal{H})$ is a closed cone,
b) $A, B \in \mathcal{B}^{+}(\mathcal{H})$ and commute $\Longrightarrow A B \in \mathcal{B}^{+}(\mathcal{H})$,
c) $A \in \mathcal{B}^{+}(\mathcal{H}) \Longleftrightarrow A=B^{2}$, ( $B$ is a positive selfadjoint operator).
d) $A \in \mathcal{B}^{+}(\mathcal{H})$ and selfadjoint if and only if, $A$ has a spectral representation of the form:

$$
\begin{equation*}
A=\int_{m}^{M+\epsilon} \lambda d E_{\lambda} \tag{1.0.2}
\end{equation*}
$$

where, $\epsilon$ is any positive real number,

$$
0 \leq m=\inf _{\|x\|=1}\langle A x, x\rangle \leq M=\sup _{\|x\|=1}\langle A x, x\rangle<+\infty
$$

e) If $A$ is selfadjoint with spectral representation (1.0.2), then for every real function $f$ continuous on $[m, M+\epsilon]$,

$$
\begin{equation*}
f(A)=\int_{m}^{M+\epsilon} f(\lambda) d E_{\lambda} \tag{1.0.3}
\end{equation*}
$$

and $f(A)=0$ (resp. $f(A) \geq 0$ ) if and only if, $f(\lambda)=0$ (resp. $f(\lambda) \geq 0$ ) on $[m, M+\epsilon]$.

Note that $m$ and $M$ in precedent theorem are respectively the smallest and biggest values of the spectrum of $A$.

Definition 1.0.3. Let $A \in \mathcal{B}^{+}(\mathcal{H}) . \exp (A)$ is the element of $\mathcal{B}(\mathcal{H})$ given by formula,

$$
\begin{equation*}
\exp (A)=\sum_{k=0}^{+\infty} \frac{A^{k}}{k!} \tag{1.0.4}
\end{equation*}
$$

It is easy to check that $\exp \left(z \cdot I_{\mathcal{H}}\right)=\exp (z) \cdot I_{\mathcal{H}}$ for any complex $z$. Moreover, if $A, B$ are two commuting elements of $\mathcal{B}(\mathcal{H})$ then,

$$
\exp (A+B)=\exp (A) \exp (B)=\exp (B) \exp (A)
$$

If $A$ is a selfadjoint element of $\mathcal{B}^{+}(\mathcal{H})$ with spectral representation 1.0.2 and $p$ a natural number, then according to Theorem 1.0 .2 we have representations

$$
\begin{equation*}
A^{p}=\int_{m}^{M+\epsilon} \lambda^{p} d E_{\lambda} \quad \text { and } \quad \exp (A)=\int_{m}^{M+\epsilon} \exp (\lambda) d E_{\lambda} \tag{1.0.5}
\end{equation*}
$$

which we will frequently use throughout this paper.
We have the following main results:
Theorem 1.0.4. Let $A \in \mathcal{B}^{+}(\mathcal{H})$. Then for every natural $p \geq 1$,

$$
\begin{equation*}
\frac{e^{p}}{p^{p}} A^{p} \leq \exp (A) \tag{1.0.6}
\end{equation*}
$$

Moreover, if $A=p \cdot I_{\mathcal{H}}$ then, we have equality in and the constant $\frac{e^{p}}{p^{p}}$ is the best possible.

Theorem 1.0.5. Let $\left(A_{i}\right)_{i=1}^{n}$ be a finite sequence of commuting, selfadjoint elements of $\mathcal{B}^{+}(\mathcal{H})$. Then for every natural $p \geq 1$,

$$
\begin{equation*}
\frac{e^{p}}{p^{p}} \sum_{i=1}^{n} A_{i}^{p} \leq \exp \left(\sum_{i=1}^{n} A_{i}\right) \tag{1.0.7}
\end{equation*}
$$

Moreover, if for a certain $1 \leq i \leq n, A_{i}=p \cdot I_{\mathcal{H}}$ and $A_{j}=0$ for $j \neq i$, then, we have equality in 1.0.7) and the constant $\frac{e^{p}}{p^{p}}$ is the best possible.

Remark 1.0.6. If $A_{i}$ are roots of polynomial $P_{n}(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} I_{\mathcal{H}}$ and all operators $A_{i}-A_{j}(i \neq j)$ are invertible then, for every natural $p \geq 1$,

$$
\begin{equation*}
\frac{e^{p}}{p^{p}} \sum_{i=1}^{n} A_{i}^{p} \leq \frac{e^{p}}{p^{p}}\left(-a_{n-1}\right)^{p} \cdot I_{\mathcal{H}} \leq e^{-a_{n-1}} \cdot I_{\mathcal{H}} \tag{1.0.8}
\end{equation*}
$$

Indeed, as in the scalar case, we have $A_{1}+A_{2}+\cdots+A_{n}=-a_{n-1} \cdot I_{\mathcal{H}}$.
Theorem 1.0.7. Let $p \geq 1$ be a natural number and $\left(A_{i}\right)_{i=1}^{n}$ a finite sequence of invertible, commuting and selfadjoint elements of $\mathcal{B}^{+}(\mathcal{H})$ such that $0<A_{i} \leq p \cdot I_{\mathcal{H}}$ for every $1 \leq i \leq n$. Then,

$$
\begin{equation*}
\exp \left(\sum_{i=1}^{n} A_{i}\right) \leq \frac{p^{p}}{n} e^{n p}\left(\sum_{i=1}^{n} A_{i}^{-p}\right) \tag{1.0.9}
\end{equation*}
$$

Moreover, if $1 \leq i \leq n, A_{i}=p \cdot I_{\mathcal{H}}$ for every $1 \leq i \leq n$ then, we have equality in 1.0.9) and the constant $\frac{p^{p}}{n} e^{n p}$ is the best possible.

From Theorems 1.0.5 and 1.0.7, follows,
Corollary 1.0.8. Let $p \geq 1$ be a natural number and $\left(A_{i}\right)_{i=1}^{n}$ a finite sequence of invertible, commuting and selfadjoint elements of $\mathcal{B}^{+}(\mathcal{H})$ such that $0<A_{i} \leq p \cdot I_{\mathcal{H}}$ for every $1 \leq i \leq n$. Then,

$$
\begin{equation*}
\frac{e^{p}}{p^{p}} \sum_{i=1}^{n} A_{i}^{p} \leq \exp \left(\sum_{i=1}^{n} A_{i}\right) \leq \frac{p^{p}}{n} e^{n p}\left(\sum_{i=1}^{n} A_{i}^{-p}\right) \tag{1.0.10}
\end{equation*}
$$

Constants $\frac{p^{p}}{n}$ and $\frac{p^{p}}{n} e^{n p}$, are the best possible.

## 2. Proofs of main results

### 2.1. Theorem 1.0.4,

Proof. Consider in the space $\mathcal{H}$ the selfadjoint operator $B=\exp (A)-e^{p} p^{-p} A^{p}$. We need to prove that $B$ is positive. Let

$$
A=\int_{m}^{M+\epsilon} \lambda d E_{\lambda}
$$

be the spectral representation of $A$. By Theorem 1.0 .2 .

$$
\begin{equation*}
B=\int_{m}^{M+\epsilon}\left(e^{\lambda}-e^{p} p^{-p} \lambda^{p}\right) d E_{\lambda} \tag{2.1.1}
\end{equation*}
$$

According to [2], we have

$$
\begin{equation*}
\lambda \geq 0 \Longrightarrow e^{\lambda}-e^{p} p^{-p} \lambda^{p} \geq 0 \tag{2.1.2}
\end{equation*}
$$

Hence, operator $B$ is positive. It is easy to check that if $A=p \cdot I_{\mathcal{H}}$ then, we have equality in 1.0.6. Let now $\alpha$ be a constant such that $\alpha A^{p} \leq \exp (A)$ for all $A \in \mathcal{B}^{+}(\mathcal{H})$. Setting $A=p \cdot I_{\mathcal{H}}$, we obtain that $\alpha \leq e^{p} p^{-p}$. This finishes the proof.
2.2. Theorem 1.0.5. To prove this theorem we need the following lemma.

Lemma 2.2.1. Let $p \geq 1$ be a natural number and $\left(A_{i}\right)_{i=1}^{n}$ a finite sequence of commuting, selfadjoint elements of $\mathcal{B}^{+}(\mathcal{H})$. Then,

$$
\begin{equation*}
\sum_{i=1}^{n} A_{i}^{p} \leq\left(\sum_{i=1}^{n} A_{i}\right)^{p} \tag{2.2.1}
\end{equation*}
$$

Proof. If $n=2$ then by Theorem 1.0.2 operator $A_{1}^{k} A_{2}^{p-k}$ is positive for every $0 \leq k \leq p$. By the binomial theorem, we have:

$$
\left(A_{1}+A_{2}\right)^{p}=\sum_{k=0}^{p} \frac{p!}{k!(p-k)!} A_{1}^{k} A_{2}^{p-k}=A_{1}^{p}+A_{2}^{p}+\sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} A_{1}^{k} A_{2}^{p-k}
$$

Since operator

$$
\sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} A_{1}^{k} A_{2}^{p-k}
$$

is positive (as a sum of positive operators), it follows from the last equality that

$$
A_{1}^{p}+A_{2}^{p} \leq\left(A_{1}+A_{2}\right)^{p}
$$

Suppose now that

$$
\sum_{i=1}^{n} A_{i}^{p} \leq\left(\sum_{i=1}^{n} A_{i}\right)^{p}
$$

Then,

$$
\begin{aligned}
\left(\sum_{i=1}^{n+1} A_{i}\right)^{p} & =\left(\sum_{i=1}^{n} A_{i}+A_{n+1}\right)^{p} \geq\left(\sum_{i=1}^{n} A_{i}\right)^{p}+A_{n+1}^{p} \\
& \geq \sum_{i=1}^{n} A_{i}^{p}+A_{n+1}^{p}=\sum_{i=1}^{n+1} A_{i}^{p}
\end{aligned}
$$

Let us now prove Theorem 1.0 .5
Proof. According to lemma and Theorem 1.0.4 we have:

$$
\begin{equation*}
e^{p} p^{-p} \sum_{i=1}^{n} A_{i}^{p} \leq e^{p} p^{-p}\left(\sum_{i=1}^{n} A_{i}\right)^{p} \leq \exp \left(\sum_{i=1}^{n} A_{i}\right) . \tag{2.2.2}
\end{equation*}
$$

On the other hands, it is easy to check that we have equalities in this last formula if we set $A_{i}=p \cdot I_{\mathcal{H}}$ for a certain $i$ and null operator for others indices. The same argumentation used in the precedent theorem shows that $e^{p} p^{-p}$ is the best possible constant.

### 2.3. Theorem 1.0.7,

Proof. Let us firstly remark that invertibility of operators $A_{i},(i=1,2, \ldots, n)$ implies that

$$
A_{i}=\int_{m_{i}}^{M_{i}+\epsilon} \lambda d E_{\lambda}, \quad m_{i}>0
$$

and

$$
A_{i}^{-1}=\int_{m_{i}}^{M_{i}+\epsilon} \lambda^{-1} d E_{\lambda}
$$

Since $A_{i} \leq p \cdot I_{\mathcal{H}}$, it follows from the spectral representation

$$
A_{i}-p \cdot I_{\mathcal{H}}=\int_{m_{i}}^{M_{i}+\epsilon}(\lambda-p) d E_{\lambda}
$$

that for all $1 \leq i \leq n$,

$$
\lambda \in\left[m_{i}, M_{i}+\epsilon\right] \Longrightarrow \lambda \leq p
$$

Consequently, for all $1 \leq i \leq n$,

$$
\begin{aligned}
A_{i}^{-1}-p^{-1} \cdot I_{\mathcal{H}}=\int_{m_{i}}^{M_{i}+\epsilon}\left(\lambda^{-1}-p^{-1}\right) d E_{\lambda} & \Longrightarrow p^{-1} \cdot I_{\mathcal{H}} \leq A_{i}^{-1} \\
& \Longrightarrow \frac{n}{p^{p}} \cdot I_{\mathcal{H}} \leq \sum_{i=1}^{n} A_{i}^{-p}
\end{aligned}
$$

Selfadjoint operators $A_{1}^{-1}, A_{2}^{-1}, \ldots, A_{n}^{-1}$ are bounded, commuting and positive. Using Theorem 1.0.5 we obtain

$$
\begin{equation*}
\frac{e^{p}}{p^{p}} \sum_{i=1}^{n} A_{i}^{-p}=\frac{e^{p}}{p^{p}} \sum_{i=1}^{n}\left(A_{i}^{-1}\right)^{p} \leq \exp \left(\sum_{i=1}^{n} A_{i}^{-1}\right) \tag{2.3.1}
\end{equation*}
$$

Since, $\exp (A) \leq \exp (B)$ for $A \leq B$ then, we have finally

$$
\exp \left(\sum_{i=1}^{n} A_{i}\right) \leq \exp \left(\sum_{i=1}^{n} p \cdot I_{\mathcal{H}}\right)=e^{n p} \frac{p^{p}}{n} \frac{n}{p^{p}} \cdot I_{\mathcal{H}} \leq e^{n p} \frac{p^{p}}{n} \sum_{i=1}^{n} A_{i}^{-p}
$$

It is clear that for equality holds for $A_{i}=p \cdot I_{\mathcal{H}}$ for every $1 \leq i \leq n$. This finishes the proof.

## References

[1] Akhiezer, N. I., Glasman, I. M., Theory of linear operators in Hilbert space, Tech. report, Vyshcha Shkola, Kharkov, 1977, English transl. Pitman (APP), 1981.
[2] Belaidi, B., Farissi, A. El, Latreuch, Z., Inequalities between sum of the powers and the exponential of sum of nonnegative sequence, RGMIA Research Collection, 11 (1), Article 6, 2008.
[3] Qi, F., Inequalities between sum of the squares and the exponential of sum of nonnegative sequence, J. Inequal. Pure Appl. Math. 8 (3) (2007), 1-5, Art. 78.
[4] Weidman, J., Linear operators in Hilbert spaces, New York, Springer, 1980.

Laboratoire de Mathématiques pures et appliquées, Abdelhmid Ibn Badis Mostaganem University,
B.O. 227, Mostaganem (27000), Algeria

E-mail: bbendoukha@gmail.com bendahmanehafida@yahoo.fr


[^0]:    2010 Mathematics Subject Classification: primary 47B60; secondary 47A30.
    Key words and phrases: commuting operators, positive selfadjoint operator, spectral representation.

    Received September 21, 2009, revised May 2011. Editor V. Müller.

