A CLASS OF METRICS ON TANGENT BUNDLES OF PSEUDO-RIEMANNIAN MANIFOLDS

H. M. Dida and A. Ikemakhen

Abstract

We provide the tangent bundle $T M$ of pseudo-Riemannian manifold (M, g) with the Sasaki metric g^{s} and the neutral metric g^{n}. First we show that the holonomy group H^{s} of $\left(T M, g^{s}\right)$ contains the one of (M, g). What allows us to show that if $\left(T M, g^{s}\right)$ is indecomposable reducible, then the basis manifold (M, g) is also indecomposable-reducible. We determine completely the holonomy group of $\left(T M, g^{n}\right)$ according to the one of (M, g). Secondly we found conditions on the base manifold under which ($T M, g^{s}$) (respectively $\left(T M, g^{n}\right)$) is Kählerian, locally symmetric or Einstein manifolds. $\left(T M, g^{n}\right)$ is always reducible. We show that it is indecomposable if (M, g) is irreducible.

1. Introduction

Let (M, g) be a Riemannian manifold. This gives rise to Sasaki metric g^{s} on the tangent bundle $T M . g^{s}$ is very rigid in the following sense. When we impose to $\left(T M, g^{s}\right)$ to be locally symmetric (respectively Kählerian or Einstein) manifold, the basis manifold (M, g) must be flat (see [22, 16]). In this paper we study the general case when (M, g) is a pseudo-Riemannian manifold. If (r, s) is the signature of g, the one of g^{s} is $(2 r, 2 s)$. We prove that g^{s} is not always rigid when (M, g) is not Riemanniann or Lorentzian manifold. But some very strong conditions are imposed on (M, g). For example if we impose to $\left(T M, g^{s}\right)$ to be locally symmetric, (M, g) must be reducible and its holonomy algebra hol verifies $h o l^{2}=\{0\}$. If we impose to $\left(T M, g^{s}\right)$ to be an Einstein manifold, (M, g) must be reducible, Ricci-flat and $\operatorname{tr}\left(A^{2}\right)=0, \forall A \in$ hol.
We can provide the tangent bundle with another natural metric g^{n} of neutral signature (see §4). We determine completely the holonomy algebra of ($T M, g^{n}$) according to the one of the basis manifold. the holonomy group of $\left(T M, g^{n}\right)$ leaves invariant the vertical direction witch is totaly isotrope. Hence it is always reducible. $\left(T M, g^{n}\right)$ is not rigid. We prove that it is locally symmetric if and only if (M, g) is locally symmetric and $h o l^{2}=0 .\left(T M, g^{n}\right)$ is an Einstein manifold, if and only if it is Ricci flat if and only if (M, g) is Ricci flat. Further if (M, g) is a Kählerian pseudo-Riemannian manifold then $\left(T M, g^{n}\right)$ is also a Kählerian pseudo-Riemannian manifold.

[^0]The classification of indecomposable reducible pseudo-Riemannian manifolds remain again an open problem, called holonomy problem. The study of $\left(T M, g^{s}\right)$ and $\left(T M, g^{n}\right)$ permits to construct examples of indecomposable reducible pseudo-Riemannian manifolds. Hence this paper is a contribution to the resolution of the holonomy problem. We recall that this problem is only solved in the Lorentzian case ($[5,20,8,9,17, ~ 19, ~ 24, ~ 25])$. The case of neutral signature has been studied (6,23 . Even the indecomposable reducible locally symmetric spaces are not yet classified, with the exception of the case of index ≤ 2 ([13, 14, 12]).

2. Preliminaries

2.1. Results on the Classification of pseudo-Riemannian manifolds. Let (M, g) be a connected simply connected pseudo-Riemannian manifold of signature $(r, s)(m=r+s)$. We denote by H its holonomy group at a point p.

Definition 1. (M, g) is called irreducible if its holonomy group $H \subset O\left(T_{p} M, g_{p}\right)$ do not leave any proper subspace of $T_{p} M .(M, g)$ is called indecomposable if H do not leave any non-degenerate proper subspace of $T_{p} M$.

De Rham-Wu's splitting theorem reduces the study of complete simply connected pseudo-Riemannian manifolds to indecomposables ones.

Theorem 1 ([26, 15]). Let (M, g) be a simply connected complete pseudo-Riemannian manifold of signature (r, s). Then (M, g) is isometric to a product eventually of flat pseudo-Riemannian manifold and of complete simply connected indecomposable pseudo-Riemannian manifolds.

The irreducible pseudo-Riemannian symmetric spaces were classified by M. Berger in [4]. The list of possible holonomy groups of irreducible non locally symmetric pseudo-Riemannian is given by M. Berger and R. L. Bryant in following theorem

Theorem 2 ([3, 11). Let (M, g) be a simply connected irreducible non locally symmetric pseudo-Riemannian manifold of signature (r, s). Then its holonomy group is (up to conjugacy in $O(r, s)$) one of the following groups:
$S O(r, s), U(r, s), S U(r, s), \operatorname{Sp}(r, s), \operatorname{Sp}(r, s) \cdot \operatorname{Sp}(1), S O(r, \mathbb{C}), \operatorname{Sp}(p) \cdot S L(2, R)$, $\operatorname{Sp}(p, \mathbb{C}) \cdot S L(2, \mathbb{C}), \operatorname{Spin}(7), \operatorname{Spin}(4,3), \operatorname{Spin}(7)^{\mathbb{C}}, G_{2}, G_{2(2)}^{*}, G_{2}^{\mathbb{C}}$.

The complete classification of the indecomposable reducible subalgebras \mathfrak{h} of so $(1,1+n)$ is given by the following theorem.
We consider on $\mathbb{R}^{m}(m=n+2)$ the following Lorentzian scalar product defined by

$$
\left\langle\left(x_{0}, x_{1}, \ldots, x_{n+1}\right),\left(y_{0}, y_{1}, \ldots, y_{n+1}\right)\right\rangle=x_{0} y_{n+1}+x_{0} y_{n+1}-\sum_{i=1}^{i=n} x_{i} y_{i}
$$

Theorem 3 ([5]). Let \mathfrak{h} be an indecomposable subalgebra of so $(\langle\rangle$,$) which leaves$ invariant the light-like direction $\mathbb{R} e_{0}$. Then
A) \mathfrak{h} is a subalgebra of the following algebra

$$
(\mathbb{R} \oplus s o(n)) \ltimes \mathbb{R}^{n}=\left\{\left.\left(\begin{array}{ccc}
a & X & 0 \\
0 & A & -{ }^{t} X \\
0 & 0 & -a
\end{array}\right) \right\rvert\, a \in \mathbb{R}, X \in \mathbb{R}^{n}, A \in s o(n)\right\}
$$

and

- either \mathfrak{h} contains $\mathcal{N} \cong \mathbb{R}^{n}$,
- or, there exist a a nontrivial decomposition $n=p+q$ and $\mathbb{R}^{n}=\mathbb{R}^{p} \oplus \mathbb{R}^{q}$, a nontrivial abelian subalgebra \mathcal{C} of $\operatorname{so}(p)$ (eventually 0), a semisimple subalgebra \mathcal{D} of so (p), commuting with \mathcal{C} and a surjective linear application $\varphi: \mathcal{C} \rightarrow \mathbb{R}^{q}$ such that, up to conjugacy in $(\mathbb{R} \oplus$ so $(n)) \ltimes \mathbb{R}^{n}$, \mathfrak{h} is the subalgebra of $(\mathbb{R} \oplus s o(n)) \ltimes \mathbb{R}^{n}$, of the following "block" matrixes

$$
\left\{\left.\left(\begin{array}{cccc}
0 & X & \varphi(A) & 0 \\
0 & A+B & 0 & -^{t} X \\
0 & 0 & 0 & -{ }^{t} \varphi(A) \\
0 & 0 & 0 & 0
\end{array}\right) \right\rvert\, A \in \mathcal{C}, B \in \mathcal{D}, X \in \mathbb{R}^{p}\right\}
$$

B) If we denote by \mathcal{G} the projection of \mathfrak{h} on so(n) with respect to $\mathbb{R} \oplus \mathcal{N}$, the representation of \mathfrak{h} in \mathbb{R}^{n} is the exterior direct some representation of a trivial representation(eventually) and r irreducible representation \mathcal{G}_{i}.

The algebras classified in Theorem 3 were all achieved like holonomy algebra of Lorentzian metrics ([5, 20, 8, 17, 19, 24, 25).
2.2. The tangent bundle TM. Let (M, g) be a pseudo-Riemannian manifold and D its Levi-Civita connection. We denote by $\pi: T M \rightarrow M$ the tangent bundle. The subspace $\mathcal{V}_{(p, u)}=\operatorname{Ker}\left(d \pi_{\mid(p, u)}\right)$ is called the vertical subspace of $T_{(p, u)} T M$ at (p, u). The connection application is the application $K_{(p, u)}: T_{(p, u)} T M \rightarrow T_{p} M$ defined by

$$
K_{(p, u)}\left(d Z_{p}\left(X_{p}\right)\right)=\left(D_{X} Z\right)_{p}
$$

where $Z \in \mathfrak{X}(M)$ and $X_{p} \in T_{p} M$. The horizontal space $\mathcal{H}_{(p, u)}$ at (p, u) is defined by

$$
\mathcal{H}_{(p, u)}=\operatorname{Ker}\left(K_{(p, u)}\right) .
$$

The tangent space $T_{(p, u)} T M$ of tangent bundle $T M$ at (p, u) is the direct some of its horizontal space and its vertical space:

$$
T_{(p, u)} T M=\mathcal{H}_{(p, u)} \oplus \mathcal{V}_{(p, u)}
$$

If $X \in \mathfrak{X}(M)$, we denote by X^{h} (and X^{v}, respectively) the horizontal lift (and the vertical lift, respectively) of X to $T M$. A curve $\widetilde{\gamma}: I \rightarrow T M, t \mapsto(\gamma(t), U(t))$ is a horizontal curve if the vector field $U(t)$ is parallel along the curve $\gamma=\pi \circ \widetilde{\gamma}$.

Theorem 4 ([16]). Let (M, g) be a pseudo-Riemannian manifold, D be the Levi-Civita connexion and R be the curvature tensor of D. Then the Lie bracket on the tangent bundle TM of M satisfies the following:
i) $\left[X^{v}, Y^{v}\right]=0$,
ii) $\left[X^{h}, Y^{v}\right]=\left(D_{X} Y\right)^{v}$,
iii) $\left[X^{h}, Y^{h}\right]=([X, Y])^{h}-(R(X, Y) u)^{v}$.
for all $X, Y \in \mathfrak{X}(M)$ and $(p, u) \in T M$.

3. Sasaki pseudo-Riemannian metric

Definition 2. Let (M, g) be a pseudo-Riemannian manifold of signature (r, s) $(m=r+s)$. The Sasaki metric g^{s} on the tangent bundle TM is defined by the following relations

$$
\begin{aligned}
& g_{(p, u)}^{s}\left(X^{h}, Y^{h}\right)=g_{(p, u)}^{s}\left(X^{v}, Y^{v}\right)=g_{p}(X, Y) \\
& g_{(p, u)}^{s}\left(X^{h}, Y^{v}\right)=0
\end{aligned}
$$

for $X, Y \in \mathfrak{X}(M)$.
We notice that the signature of g^{s} is $(2 r, 2 s)$. With the same computations that in the Riemannian case The Levi-Civita connection associated to g^{s} is given by

Proposition 1 ([22]). If we denote by D^{s} the Levi-Civita connection of $\left(T M, g^{s}\right)$. Then

$$
\begin{aligned}
\left(D_{X^{h}}^{s} Y^{h}\right)_{(p, u)} & =\left(D_{X} Y\right)_{(p, u)}^{h}-\frac{1}{2}\left(R_{p}(X, Y) u\right)^{v} \\
\left(D_{X^{h}}^{s} Y^{v}\right)_{(p, u)} & =\left(D_{X} Y\right)_{(p, u)}^{v}+\frac{1}{2}\left(R_{p}(u, Y) X\right)^{h} \\
\left(D_{X^{v}}^{s} Y^{h}\right)_{(p, u)} & =\frac{1}{2}\left(R_{p}(u, X) Y\right)^{h} \\
\left(D_{X^{v}}^{s} Y^{v}\right)_{(p, u)} & =0
\end{aligned}
$$

Proposition $2([22])$. The curvature R^{s} of $\left(T M, g^{s}\right)$ is given by the following formulas

1) $R_{(p, u)}^{s}\left(X^{v}, Y^{v}\right) Z^{v}=0$
2) $R_{(p, u)}^{s}\left(X^{v}, Y^{v}\right) Z^{h}=\left(\left(R(X, Y) Z+\frac{1}{4} R(u, X)(R(u, Y) Z)-\frac{1}{4} R(u, Y)(R(u, X) Z)\right)^{h}\right.$
3) $R_{(p, u)}^{s}\left(X^{h}, Y^{v}\right) Z^{v}=-\left(\frac{1}{2} R(Y, Z) X+\frac{1}{4} R(u, Y)(R(u, Z) X)\right)^{h}$
4) $R_{(p, u)}^{s}\left(X^{h}, Y^{v}\right) Z^{h}=\left(\frac{1}{4} R(R(u, Y) Z, X) u+\frac{1}{2} R(X, Z) Y\right)^{v}+\frac{1}{2}\left(\left(D_{X} R\right)(u, Y) Z\right)^{h}$
5) $R_{(p, u)}^{s}\left(X^{h}, Y^{h}\right) Z^{v}=\left(R(X, Y) Z+\frac{1}{4} R(R(u, Z) Y, X) u-\frac{1}{4} R(R(u, Z) X, Y) u\right)^{v}$

$$
+\frac{1}{2}\left(\left(D_{X} R\right)(u, Z) Y-\left(D_{Y} R\right)(u, Z) X\right)^{h}
$$

6) $R_{(p, u)}^{s}\left(X^{h}, Y^{h}\right) Z^{h}=\frac{1}{2}\left(\left(D_{Z} R\right)(X, Y) u\right)^{v}+\left(R(X, Y) Z+\frac{1}{4} R(u, R(Z, Y) u) X\right.$ $\left.+\frac{1}{4} R(u, R(X, Z) u) Y+\frac{1}{2} R(u, R(X, Y) u) Z\right)^{h}$,
for $X, Y, Z \in \mathfrak{X}(M)$.
3.1. Holonomy group of $\left(T M, g^{s}\right)$. Let (M, g) be a pseudo-Riemannian manifold and $\left(T M, g^{s}\right)$ its tangent bundle provided with the Sasaki metric. Let γ be a C^{1}-piecewise path starting from p in M, its horizontal lift at $(p, 0)$ is $\Gamma: t \rightarrow(\gamma(t), 0)$. According to Proposition 1 we obtain

$$
\begin{aligned}
D_{\dot{\Gamma}(t)}^{s} X^{h} & =\left(D_{\dot{\gamma}(t)} X\right)^{h} \\
D_{\dot{\Gamma}(t)}^{s} X^{v} & =\left(D_{\dot{\gamma}(t)} X\right)^{v}
\end{aligned}
$$

for X vector field along γ. Hence, the parallel transport along Γ satisfies

$$
\begin{align*}
& \tau_{\Gamma}^{s}\left(X^{h}\right)=\left(\tau_{\gamma}(X)\right)^{h} \tag{1}\\
& \tau_{\Gamma}^{s}\left(X^{v}\right)=\left(\tau_{\gamma}(X)\right)^{v}
\end{align*}
$$

Then the holonomy group H^{s} of $\left(T M, g^{s}\right)$ at $(p, 0)$ contains the subgroup $\left\{\left(\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right), A \in H\right\}$, where H is the holonomy group of (M, g) at p.

Theorem 5. Let (M, g) be a pseudo-Riemannian manifold and $\left(T M, g^{s}\right)$ its tangent bundle provided with the Sasaki metric. Let H^{s} (respectively H) the holonomy group of $\left(T M, g^{s}\right)$ at $(p, 0)$ (respectively of (M, g) at $\left.p\right)$. Then

1) H^{s} contains the subgroup:

$$
H \times H=\left\{\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) ; A, B \in H\right\}
$$

2) The holonomy algebra hol ${ }^{s}$ of $\left(T M, g^{s}\right)$ at $(p, 0)$ contains the set

$$
\left\{\bar{R}_{\gamma}^{s}(X, Y):=\left(\begin{array}{cc}
0 & -\bar{R}_{\gamma}(Y, X) \\
\bar{R}_{\gamma}(X, Y) & 0
\end{array}\right) ; X, Y \in T_{p} M \text { and } \gamma \in \mathcal{C}_{p}\right\}
$$

where

$$
\bar{R}_{\gamma}(X, Y)(Z)=\tau_{\gamma}^{-1}\left(R\left(\tau_{\gamma}(X), \tau_{\gamma}(Z)\right)\left(\tau_{\gamma}(Y)\right)\right)
$$

and \mathcal{C}_{p} the set of the C^{1}-piecewise paths starting from p.
Proof. According to the decomposition $T_{(p, 0)} T M=\mathcal{H}_{(p, 0)} \oplus \mathcal{V}_{(p, 0)}$ and from Proposition 2 we have:

$$
R^{s}\left(X^{v}, Y^{v}\right)=\left(\begin{array}{cc}
R(X, Y) & 0 \\
0 & 0
\end{array}\right) \quad R^{s}\left(X^{h}, Y^{h}\right)=\left(\begin{array}{cc}
R(X, Y) & 0 \\
0 & R(X, Y)
\end{array}\right)
$$

and $R^{s}\left(X^{h}, Y^{v}\right)=\frac{1}{2}\left(\begin{array}{cc}0 & -\bar{R}(Y, X) \\ \bar{R}(X, Y) & 0\end{array}\right)$, with $\bar{R}(X, Y)(Z)=R(X, Z)(Y)$.
(1) implies that

$$
\begin{aligned}
\tau_{\Gamma}^{-1}\left(R^{s}\left(\tau_{\Gamma}\left(X^{v}\right), \tau_{\Gamma}\left(Y^{v}\right)\right)\left(\tau_{\Gamma}\left(Z^{h}\right)\right)\right) & =\tau_{\Gamma}^{-1}\left(R^{s}\left(\left(\tau_{\gamma}(X)\right)^{v},\left(\tau_{\gamma}(Y)\right)^{v}\left(\left(\tau_{\gamma}(Z)\right)^{h}\right)\right)\right. \\
& =\tau_{\Gamma}^{-1}\left(R^{s}\left(\tau_{\gamma}(X), \tau_{\gamma}(Y)\left(\tau_{\gamma}(Z)\right)\right)^{h}\right. \\
& =\left(\tau_{\gamma}^{-1}\left(R\left(\tau_{\gamma}(X), \tau_{\gamma}(Y)\right)\left(\tau_{\gamma}\right)(Z)\right)\right)^{h}
\end{aligned}
$$

By Ambrose-Singer Theorem ([2]), we deduces 1).
In the same way, according to (1) and Proposition 2 we have

$$
\tau_{\Gamma}^{-1}\left(R^{s}\left(\tau_{\Gamma}\left(X^{h}\right), \tau_{\Gamma}\left(Y^{v}\right)\right)\left(\tau_{\Gamma}\left(Z^{h}\right)\right)\right)=\frac{1}{2}\left(\tau_{\gamma}^{-1}\left(R\left(\tau_{\gamma}(X), \tau_{\gamma}(Y)\right)\left(\tau_{\gamma}\right)(Z)\right)\right)^{v}
$$

and

$$
\tau_{\Gamma}^{-1}\left(R^{s}\left(\tau_{\Gamma}\left(X^{h}\right), \tau_{\Gamma}\left(Y^{v}\right)\right)\left(\tau_{\Gamma}\left(Z^{v}\right)\right)\right)=-\frac{1}{2}\left(\tau_{\gamma}^{-1}\left(R\left(\tau_{\gamma}(Y), \tau_{\gamma}(X)\right)\left(\tau_{\gamma}\right)(Z)\right)\right)^{h}
$$

Hence we obtain 2).
Corollary 1. $\left(T M, g^{s}\right)$ is flat if and only if (M, g) is flat.

Proof.

a) It is easy to see that the curvature $R^{s}=0$ if $R=0$. Conversely, if $h o l^{s}=\{0\}$, according to Theorem 5, we get hol $=\{0\}$.

Theorem 6. Let (M, g) be a connected, simply connected pseudo-Riemannian manifold.

1) If (M, g) is decomposable then $\left(T M, g^{s}\right)$ is decomposable.
2) If $\left(T M, g^{s}\right)$ is reducible then (M, g) is reducible.

In particular, if (M, g) is a Riemannian manifold, then $\left(T M, g^{s}\right)$ is irreducible if and only if (M, g) is irreducible.

Proof.

1) If (M, g) is decomposable, i.e. $(M, g)=\left(M_{1}, g_{1}\right) \times\left(M_{2}, g_{2}\right)$, then

$$
\left(T M, g^{s}\right)=\left(T M_{1}, g_{1}^{s}\right) \times\left(T M_{2}, g_{2}^{s}\right)
$$

2) If $\left(T M, g^{s}\right)$ is reducible, then its holonomy group H^{s} at $(p, 0)$ leaves invariant a proper subspace E_{1} of $T_{(p, 0)} T M$ and its orthogonal $E_{2}=E_{1}^{\perp}$, i.e. $T_{(p, 0)} T M=$ $E_{1} \oplus E_{2}$. We suppose that $\operatorname{dim} E_{1} \geq m$ and $\operatorname{dim} E_{2} \leq m$. We denote by $\mathcal{V} \equiv \mathcal{V}_{(p, 0)}$ and $\mathcal{H} \equiv \mathcal{H}_{(p, 0)}$. We will distinguish three cases

- if $\{0\} \varsubsetneqq E_{1} \cap \mathcal{H} \varsubsetneqq \mathcal{H}$, according to Theorem 5 we have

$$
\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right)\left(E_{1} \cap \mathcal{H}\right) \subset E_{1} \cap \mathcal{H}
$$

for all $A \in$ hol. Consequently $E_{1} \cap \mathcal{H}$ is hol-invariant. Then (M, g) is reducible.

- If $\{0\}=E_{1} \cap \mathcal{H}$, hence $T_{(p, 0)} T M=E_{1} \oplus \mathcal{H}$. According to Theorem 5, we have for $A \in$ hol that

$$
\begin{aligned}
& \left(\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right) \mathcal{H}=0 \\
& \left(\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right) E_{1} \subset E_{1} \cap \mathcal{V}
\end{aligned}
$$

then $\operatorname{hol}\left(T_{(p, 0)} T M\right) \subset E_{1} \cap \mathcal{V}$. We distinguish two cases \star if $E_{1} \cap \mathcal{V}=0$, then hol $=0$ and (M, g) is reducible. \star If $E_{1} \cap \mathcal{V} \neq\{0\}$

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & A
\end{array}\right)\left(E_{1} \cap \mathcal{V}\right) \subset E_{1} \cap \mathcal{V}
$$

for all $A \in$ hol. Hence $E_{1} \cap \mathcal{V}$ is hol-invariant. Then (M, g) is reducible.

- If $E_{1} \cap \mathcal{H}=\mathcal{H}$, then $\mathcal{H} \subset E_{1}$ and

$$
R^{s}\left(X^{h}, Y^{v}\right)(\mathcal{H}) \subset E_{1} \cap \mathcal{V}
$$

* If $E_{1} \cap \mathcal{V}=0$, then $R^{s}\left(X^{h}, Y^{v}\right) \mathcal{H} \subset \mathcal{V} \cap E_{1}=\{0\}$. Hence $R=0$ and (M, g) is reducible.
* If $E_{1} \cap \mathcal{V} \neq 0$, its is stable by hol, then (M, g) is reducible.
3.2. Geometric structure on TM. In this section, we found conditions on the base manifold (M, g) under which $\left(T M, g^{s}\right)$ is locally symmetric, Einstein or Kählerian manifold.

3.2.1. Symmetry on TM.

Proposition 3. Let (M, g) be a pseudo-Riemannian manifold. Then $\left(T M, g^{s}\right)$ is locally symmetric if and only if (M, g) is locally symmetric and hol \circ hol $=0$, where hol is the holonomy algebra of (M, g).
Proof. According to the holonomy principle ([7, Ch. 10]), ($T M, g^{s}$) is locally symmetric if and only if its holonomy group H^{s} preserves the curvature R^{s} :
$A \circ R^{s}\left(X^{*}, Y^{*}\right)=R^{s}\left(A X^{*}, A Y^{*}\right) \circ A, \quad \forall A \in H^{s}, \quad$ and $\quad \forall X^{*}, Y^{*} \in T_{(p, u)} T M$.
In term of holonomy algebra, it is equivalent to: $\forall \bar{A} \in h o l^{s}$, and $\forall X^{*}, Y^{*} \in$ $T_{(p, u)} T M$

$$
\begin{equation*}
\left[\bar{A}, R\left(X^{*}, Y^{*}\right)\right]=R\left(\bar{A} X^{*}, Y^{*}\right)+R\left(X^{*}, \bar{A} Y^{*}\right) \tag{2}
\end{equation*}
$$

For $\bar{A}=\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ with $A, B \in$ hol and $R\left(X^{*}, Y^{*}\right)=R\left(X^{v}, Y^{v}\right)$, 2) implies

$$
\left\{\begin{array}{l}
{[B, R(X, Y)]=0} \\
{[A, R(X, Y)]=R(A X, Y)+R(X, A Y)}
\end{array}\right.
$$

Then hol is commutative and (M, g) is locally symmetric. For $\bar{A}=R^{s}\left(Z^{h}, T^{v}\right)$ and $R\left(X^{*}, Y^{*}\right)=R\left(X^{h}, Y^{h}\right)$, 22 implies

$$
\begin{equation*}
B C-D A=R(A X, Y)+R(X, B Y)=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
C B-A D=R(B X, Y) \tag{4}
\end{equation*}
$$

where $A=\bar{R}(T, Z), B=-\bar{R}(Z, T), C=\bar{R}(X, Y)$ and $D=-\bar{R}(Y, X)$.
If we replace in (4), X by Y and Z by T, we obtain $B C-D A=R(A X, Y)$. Then (3) implies

$$
R(X, B Y)=R(X, R(T, Y) Z)=0, \quad \forall X, Y, Z, T \in T_{p} M
$$

Hence

$$
\begin{equation*}
R(X, Y) \circ R(Z, T)=0, \quad \forall X, Y, Z, T \in T_{p} M \tag{5}
\end{equation*}
$$

Because the holonomy algebra of locally symmetric space is only generated by the curvature, (5) is equivalent to $h o l \circ h o l=0$. Conversely, if we have (5), and (M, g) is locally symmetric, by a direct computation we get (2).

Corollary 2. Let (M, g) be a non-flat pseudo-Riemannian locally symmetric space of dimension $m \geq 2$ satisfying hol \circ hol $=0$. Then
a) (M, g) is reducible.
b) The index of g is ≥ 2.

Proof.

a) If (M, g) is supposed irreducible, the condition hol \circ hol $=0$ implies hol $=0$.
b) If (M, g) is Riemannian, according to De Rham-Wu's Theorem, we can suppose that it is irreducible. Then by a) we deduce a contradiction.
Now if (M, g) is Lorentzian, according to a) we can suppose that hol leaves invariant a light-like line. Then

$$
\begin{array}{r}
h o l \subset(\mathbb{R} \oplus s o(m-2)) \ltimes \mathbb{R}^{m-2}=\left\{\left(\begin{array}{ccc}
a & { }^{t} X & 0 \\
0 & A & X \\
0 & 0 & -a
\end{array}\right) ; a \in \mathbb{R}, X \in \mathbb{R}^{m-2},\right. \\
A \in \operatorname{so}(m-2)\} .
\end{array}
$$

However if the square of such an element of hol is null, it is necessarily null. Impossible.

As concerns explicit examples for Corollary 2. see more details in Example 1 at the end of Subsection 3.2.2.
3.2.2. Einstein structure on $T M$. Let (M, g) be a pseudo-Riemannian manifold and $\left\{e, \ldots, e_{m}\right\}$ an orthonormal basis of $T_{p} M$, then the family $\left\{e_{1}^{h}, \ldots, e_{m}^{h}, e_{1}^{v}, \ldots, e_{m}^{v}\right\}$ is an orthonormal basis of $T_{(p, u)} T M$. And hence the Ricci curvature of $\left(T M, g^{s}\right)$ is given by the following formula

$$
\operatorname{Ric}_{(p, u)}^{s}\left(X^{*}, Y^{*}\right)=\sum_{i=1}^{i=m} \varepsilon_{i} g^{s}\left(R^{s}\left(X^{*}, e_{i}^{h}\right) Y^{*}, e_{i}^{h}\right)+\sum_{i=1}^{i=m} \varepsilon_{i} g^{s}\left(R^{s}\left(X^{*}, e_{i}^{v}\right) Y^{*}, e_{i}^{v}\right)
$$

where

$$
\varepsilon_{i}=g^{s}\left(e_{i}^{h}, e_{i}^{h}\right)=g^{s}\left(e_{i}^{v}, e_{i}^{v}\right)=g^{s}\left(e_{i}, e_{i}\right)= \pm 1
$$

According to Proposition 2 we have

$$
\begin{align*}
\operatorname{Ric}_{(p, u)}^{s}\left(X^{h}, Y^{h}\right) & =\sum_{i=1}^{i=m} \varepsilon_{i} g^{s}\left(R^{s}\left(X^{h}, e_{i}^{h}\right) Y^{h}, e_{i}^{h}\right)+\sum_{i=1}^{i=m} \varepsilon_{i} g^{s}\left(R^{s}\left(X^{h}, e_{i}^{v}\right) Y^{h}, e_{i}^{v}\right) \\
& =\operatorname{Ric}(X, Y)+\frac{3}{4} \sum_{i=1}^{i=m} \varepsilon_{i} g\left(R\left(X, e_{i}\right) u, R\left(Y, e_{i}\right) u\right) \tag{6}
\end{align*}
$$

$$
\begin{align*}
& \operatorname{Ric}_{(p, u)}^{s}\left(X^{h}, Y^{v}\right)=\sum_{i=1}^{i=m} \varepsilon_{i} g^{s}\left(R^{s}\left(X^{h}, e_{i}^{h}\right) Y^{v}, e_{i}^{h}\right)+\sum_{i=1}^{i=m} \varepsilon_{i} g^{s}\left(R^{s}\left(X^{h}, e_{i}^{v}\right) Y^{v}, e_{i}^{v}\right) \\
&=\frac{1}{2} \sum_{i=1}^{i=m} \varepsilon_{i} g\left(\left(D_{X} R\right)(u, Y) e_{i}, e_{i}\right)-\sum_{i=1}^{i=m} \varepsilon_{i} g\left(\left(D_{e_{i}} R\right)(u, Y) X, e_{i}\right) \\
&=\frac{1}{2} \sum_{i=1}^{i=m} \varepsilon_{i} g\left(\left(D_{X} R\right)\left(e_{i}, e_{i}\right) u, Y\right)-\delta R(u, Y) X=-\delta R(u, Y) X . \tag{7}\\
&(7) \\
& \operatorname{Ric}_{(p, u)}^{s}\left(X^{v}, Y^{v}\right)=\sum_{i=1}^{i=m} \varepsilon_{i} g^{s}\left(R^{s}\left(X^{v}, e_{i}^{h}\right) Y^{v}, e_{i}^{h}\right)+\sum_{i=1}^{i=m} \varepsilon_{i} g^{s}\left(R^{s}\left(X^{v}, e_{i}^{v}\right) Y^{v}, e_{i}^{v}\right) \\
&=\frac{1}{2} \sum_{i=1}^{i=m} \varepsilon_{i} g\left(R(X, Y) e_{i}, e_{i}\right)+\frac{1}{4} \sum_{i=m}^{i=m} \varepsilon_{i} g\left(R(u, X) R(u, Y) e_{i}, e_{i}\right) \\
&=\frac{1}{2} \sum_{i=1}^{i=m} \varepsilon_{i} g\left(R\left(e_{i}, e_{i}\right) X, Y\right)+\frac{1}{4} \operatorname{trace}(R(u, X) R(u, Y)) \tag{8}\\
&=\frac{1}{4} \operatorname{trace}(R(u, X) R(u, Y)) .
\end{align*}
$$

Proposition 4. Let (M, g) be a pseudo-Riemannian manifold. If $\left(T M, g^{s}\right)$ is Einstein, then it is Ricci-flat. And $\left(T M, g^{s}\right)$ is Ricci-flat if and only if (M, g) satisfies the following conditions:
a) (M, g) is Ricci-flat,
b) trace $A^{2}=0$, for all $A \in$ hol,
c) (M, g) admits a harmonic curvature:

$$
\delta R(X, Y) Z=\sum_{i=1}^{i=m} \varepsilon_{i} g\left(D_{e_{i}} R(X, Y) Z, e_{i}\right)=0, \quad \forall X, Y, Z \in \mathfrak{X}(M)
$$

d) $\sum_{i=1}^{i=m} \varepsilon_{i} g\left(R\left(X, e_{i}\right) Z, R\left(Y, e_{i}\right) Z\right)=0, \forall X, Y, Z \in \mathfrak{X}(M)$.

Proof. Let us suppose that the metric g^{s} is λ-Einstein then

$$
\operatorname{Ric}_{(p, u)}\left(X^{*}, Y^{*}\right)=\lambda g_{(p, u)}^{s}\left(X^{*}, Y^{*}\right), \forall X^{*}, Y^{*} \in \mathfrak{X}(M), \quad \text { and } \quad \forall(p, u) \in T M
$$

If we take $u=0$ in (6) and then in (4), we obtain $\lambda=0$. Then (M, g) is Ricci-flat. Consequently $\left(T M, g^{s}\right)$ is Ricci-flat.
Hence from (4)-(6), we obtain the conditions a)-d). Conversely, if we have the conditions a)-d), it is easy to see that $\left(T M, g^{s}\right)$ i Ricci-flat.
Corollary 3. Let (M, g) be a non flat pseudo-Riemannian manifold such that $\left(T M, g^{s}\right)$ is Einstein. Then
i) (M, g) is reducible or locally symmetric.
ii) The index of g is ≥ 2.

Proof.

i) If (M, g) is irreducible and non locally symmetric, then its holonomy algebra is one of algebras of Berger's list (Theorem 2). But no algebra of this list verifies the condition b) of Proposition 4
ii) Now, if (M, g) is Lorentzian. According to De Rham-Wu's Theorem, we can suppose that it is indecomposable.
If it is irreductible, it is well known that hol $=s o(1, n+1)$, where $m=n+2$. But according to the condition b) of Proposition 4 it is impossible.
If (M, g) is indecomposable-reducible, we use the following lemma.
Lemma 1 ([18). Let (M, g) be a Lorentzian indecomposable reducible non Ricci-flat manifold of signature $(1,1+n)$. Then
(α) either hol $=(\mathbb{R} \oplus \mathcal{G}) \ltimes \mathbb{R}^{m}$, where $\mathcal{G} \subset$ so (n) is a holonomy algebra of a Riemanian metric and in the decomposition of $\mathcal{G} \subset$ so(n) at least one subalgebra $\mathcal{G}_{i} \subset \operatorname{so}\left(n_{i}\right)$ coincide with one of algebras so $\left(n_{i}\right), u\left(n_{i}\right), \operatorname{sp}\left(\frac{n_{i}}{4}\right) \oplus \operatorname{sp}(1)$ or with a symmetric Berger algebra.
(β) or hol $=\mathcal{G} \ltimes \mathbb{R}^{m}$ and in the decomposition of $\mathcal{G} \subset \operatorname{so}(n)$ each algebra $\mathcal{G}_{i} \subset \operatorname{so}\left(n_{i}\right)$ coincide with one of algebras so $\left(n_{i}\right), \operatorname{su}\left(n_{i}\right), \operatorname{sp}\left(\frac{n_{i}}{4}\right), G_{2} \subset \operatorname{so}(7), \operatorname{spin}(7) \subset \operatorname{so}(8)$.

The condition b) of Proposition (4) impose that hol cannot be of type (α) of Lemma 1 . Now, if hol is of type (β), the same condition b) implies that $\mathcal{G}=0$. Impossible.

Example 1. Let (M, g) be a simply connected pseudo-Riemannian locally symmetric space of signature $(2,2)$ with holonomy group

$$
\mathbb{A}=\left\{\left(\begin{array}{cc}
I_{2} & a J \\
0 & I_{2}
\end{array}\right), a \in \mathbb{R}\right\}, \quad \text { where } \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

Its satisfies the conditions of Propositions 3 and 4 Then $\left(T M, g^{s}\right)$ is an Einstein locally symmetric space of signature $(4,4)$. The simply connected pseudo-Riemannian locally symmetric spaces of signature $(2,2)$ with holonomy group \mathbb{A} are given in ([6]).
3.2.3. Kählerian structure on $T M$. Let (M, g) be a pseudo-Riemannian manifold. Let J be the natural almost complex structure definite on $T M$ by

$$
\bar{J}\left(X^{h}\right)=X^{v} \text { and } \bar{J}\left(X^{v}\right)=-X^{h} .
$$

It is easy to see that $\left(T M, g^{s}, \bar{J}\right)$ is almost Hermitian:

$$
g^{s}\left(\bar{J} X^{*}, \bar{J} Y^{*}\right)=g^{s}\left(X^{*}, Y^{*}\right), \quad \forall X^{*}, Y^{*} \in \mathfrak{X}(M)
$$

Proposition 5. If $\left(T M, g^{s}, \bar{J}\right)$ is Kählerian, then it is flat.
Proof. We suppose $\left(T M, g^{s}, J\right)$ is Kählerian. According to the holonomy principle, the tensor \bar{J} at $(p, 0)$ commute with the curvature and in particular, we have:

$$
\left.\bar{J} \circ R^{s}\left(X^{h}, Y^{v}\right)=R^{s}\left(X^{h}, Y^{v}\right) \circ \bar{J}, \quad \forall X, Y \in T_{p} M\right) .
$$

This implies $\left.R(X, Z) Y=R(Y, Z) X, \forall X, Y, Z \in T_{p} M\right)$. Hence $R=0$.

Now, we suppose that (M, g, J) is a Kählerian pseudo-Riemannian manifold and we consider the almost complex structure \tilde{J} defined on $T M$ by

$$
\tilde{J}\left(X^{h}\right)=(J X)^{v}, \quad \tilde{J}\left(X^{v}\right)=(J X)^{h}
$$

$\left(T M, g^{s}, \tilde{J}\right)$ is an almost Hermitian manifold.
Proposition 6. If $\left(T M, g^{s}, \tilde{J}\right)$ is Kählerian, then it is flat.
Proof. We suppose $\left(T M, g^{s}, \tilde{J}\right)$ is Kählerian. According to the holonomy principle, the tensor \tilde{J} at $(p, 0)$ commute with the curvature and in particular, we have:

$$
\tilde{J} \circ R^{s}\left(X^{h}, Y^{v}\right)=R^{s}\left(X^{h}, Y^{v}\right) \circ \tilde{J}, \quad \forall X, Y \in T_{p} M
$$

This implies $J \circ R(X, Y)=-R(Y, X) \circ J, \forall X, Y \in T_{p} M$. Then, $R(X, J X) X=0, \forall X \in T_{p} M$. Hence, according to ([21, p. 166]), we get $R=0$.

4. Neutral metric

Definition 3. Let (M, g) be a pseudo-Riemannian manifold of dimension m with signature (r, s). The neutral metric g^{n} of g on $T M$ is defined by

$$
\begin{aligned}
g_{(p, u)}^{n}\left(X^{h}, Y^{h}\right) & =g_{(p, u)}^{n}\left(X^{v}, Y^{v}\right)=0 \\
g_{(p, u)}^{n}\left(X^{v}, Y^{h}\right) & =g_{p}(X, Y)
\end{aligned}
$$

for $X, Y \in \mathfrak{X}(M)$.
g^{n} is of neutral signature (m, m).
By a simple computation, we obtain
Proposition 7. If we denote by D^{n} the Levi-Civita connection of $\left(T M, g^{n}\right)$ then

$$
\begin{aligned}
\left(D_{X^{h}}^{n} Y^{h}\right)_{(p, u)} & =\left(D_{X} Y\right)_{(p, u)}^{h}+\left(R_{p}(u, X) Y\right)^{v} \\
\left(D_{X^{h}}^{n} Y^{v}\right)_{(p, u)} & =\left(D_{X} Y\right)_{(p, u)}^{v} \\
\left(D_{X^{v}}^{n} Y^{h}\right)_{(p, u)} & =0 \\
\left(D_{X^{v}}^{n} Y^{v}\right)_{(p, u)} & =0
\end{aligned}
$$

Proposition 8. If we denote by R^{n} the tensorial curvature of $\left(T M, g^{n}\right)$. Then we have the following formulas:

$$
\begin{aligned}
& R_{(p, u)}^{n}\left(X^{v}, Y^{v}\right) Z^{v}=0 \\
& R_{(p, u)}^{n}\left(X^{v}, Y^{v}\right) Z^{h}=0 \\
& R_{(p, u)}^{n}\left(X^{h}, Y^{v}\right) Z^{v}=0 \\
& R_{(p, u)}^{n}\left(X^{h}, Y^{v}\right) Z^{h}=(R(X, Y) Z)^{v} \\
& R_{(p, u)}^{n}\left(X^{h}, Y^{h}\right) Z^{v}=(R(X, Y) Z)^{v} \\
& R_{(p, u)}^{n}\left(X^{h}, Y^{h}\right) Z^{h}=\left(R_{x}(X, Y) Z\right)^{h}+\left(\left(D_{X} R\right)_{p}(u, Y) Z-\left(D_{Y} R\right)_{p}(u, X) Z\right)^{v}
\end{aligned}
$$

for $X, Y, Z \in \mathfrak{X}(M)$.

4.1. Holonomy group.

Proposition 9. a) The holonomy group H of (M, g) is a subgroup of the holonomy group H^{n} of $\left(T M, g^{n}\right)$:

$$
H \equiv\left\{\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right) ; A \in H\right\} \subset H^{n}
$$

b) According to the decomposition $\mathbb{R}^{2 n}=T_{(p, 0} T M=\mathcal{V}_{(p, 0} \oplus \mathcal{H}_{(p, 0}$, the holonomy algebra hol ${ }^{n}$ of $\left(T M, g^{n}\right)$ is exactly the algebra

$$
\left\{\left(\begin{array}{cc}
A & B \\
0 & A
\end{array}\right) ; A, B \in h o l\right\}
$$

where hol is the holonomy algebra of (M, g).
Proof. Let γ be a C^{1}-piecewise path starting from p in M, its horizontal lift at $(p, 0)$ is $\Gamma: t \rightarrow(\gamma(t), 0)$. According to Proposition 7, we have

$$
\begin{aligned}
D_{\dot{\Gamma}(t)}^{n} X^{h} & =\left(D_{\dot{\gamma}(t)} X\right)^{h} \\
D_{\dot{\Gamma}(t)}^{n} X^{v} & =\left(D_{\dot{\gamma}(t)} X\right)^{v}
\end{aligned}
$$

for X vector field along γ. Consequently, if γ is a loop at p, the parallel transport along Γ is given by:

$$
\tau_{\Gamma}^{s}\left(X^{h}\right)=\left(\tau_{\gamma}(X)\right)^{h} \quad \text { and } \quad \tau_{\Gamma}^{s}\left(X^{v}\right)=\left(\tau_{\gamma}(X)\right)^{v}
$$

Hence we have a). Moreover, According to Proposition 8, we have

$$
R^{s}\left(X^{h}, Y^{v}\right) Z^{h}=(R(X, Y) Z)^{v} \quad \text { and } \quad R^{s}\left(X^{h}, Y^{v}\right) Z^{v}=0
$$

Then

$$
\begin{aligned}
\tau_{\Gamma}^{-1}\left(R^{n}\left(\tau_{\Gamma}\left(X^{h}\right), \tau_{\Gamma}\left(Y^{v}\right)\right)\left(\tau_{\Gamma}\left(Z^{h}\right)\right)\right) & =\tau_{\Gamma}^{-1}\left(R^{n}\left(\left(\tau_{\gamma}(X)\right)^{h},\left(\tau_{\gamma}(Y)\right)^{v}\left(\left(\tau_{\gamma}(Z)\right)^{h}\right)\right)\right. \\
& =\tau_{\Gamma}^{-1}\left(R^{n}\left(\tau_{\gamma}(X), \tau_{\gamma}(Y)\left(\tau_{\gamma}(Z)\right)\right)^{v}\right. \\
& =\left(\tau_{\gamma}^{-1}\left(R\left(\tau_{\gamma}(X), \tau_{\gamma}(Y)\right)\left(\tau_{\gamma}(Z)\right)\right)^{v}\right.
\end{aligned}
$$

In the same way, we have

$$
\tau_{\Gamma}^{-1}\left(R^{n}\left(\tau_{\Gamma}\left(X^{h}\right), \tau_{\Gamma}\left(Y^{v}\right)\right)\left(\tau_{\Gamma}\left(Z^{v}\right)\right)\right)=0
$$

Then we get

$$
\left\{\left(\begin{array}{cc}
A & B \\
0 & A
\end{array}\right) ; \quad A, B \in h o l\right\} \subset h o l^{n}
$$

However the definition of g^{n} from g and the Proposition 7 imply b).
Proposition 10. If (M, g) is irreducible then $\left(T M, g^{n}\right)$ is indecomposable. The reciprocal is true if g is a Riemannian metric.

Proof. First we notice that if hol is irreducible $E:=\left\{A X, A \in h o l, X \in \mathbb{R}^{m}\right\}=$ \mathbb{R}^{m}. Indeed, E is hol-invariant, then $E=0$ or $E=\mathbb{R}^{2 m}$. But hol is non trivial, hence $E=\mathbb{R}^{2 m}$. Now, let F be a non-degenerate proper subspace of $\mathbb{R}^{2 m}$ hol ${ }^{n}$-invariant, then its projections $F_{i},(i=1,2)$ on \mathbb{R}^{m} are hol-invariant. Since hol
is irreducible $F_{i}=0$ or $F_{i}=\mathbb{R}^{m} . F$ is non-degenerate then $F_{i}=\mathbb{R}^{m}$. hol ${ }^{n}$ contains $\left\{\left(\begin{array}{cc}0 & A \\ 0 & 0\end{array}\right), A \in H\right\}$, then F contains the subspace

$$
\left\{(A X, 0) ; A \in \text { hol }, X \in \mathbb{R}^{m}\right\}=\mathbb{R}^{m} \times\{0\}
$$

Hence $F=\mathbb{R}^{2 m}$. Consequently hol ${ }^{n}$ is indecomposable.
Remark 1. According to Proposition 9 the vertical direction $\mathcal{V}_{(p, 0)}$ is hol ${ }^{n}$ - invariant witch is totaly isotrope. Consequently, we get a class of indecomposable-reducible manifolds $\left(T M, g^{n}\right)$ once the base manifold (M, g) is irreducible.

4.2. Geometric consequences.

4.2.1. Symmetry on $\left(T M, g^{n}\right)$.

Proposition 11. $\left(T M, g^{n}\right)$ is locally symmetric if and only if (M, g) is locally symmetric and hol \circ hol $=0$.

Proof. For the proof we need the following lemma.
Lemma 2. Let (M, g) be a pseudo-Riemannian manifold. the covariant derivatives of the tensor curvature R^{n} are given by the following formulas

1) $\left(D_{W^{h}}^{n} R_{(p, u)}^{n}\right)\left(X^{h}, Y^{h}\right) Z^{h}=\left(\left(D_{W} R\right)_{p}(X, Y) Z\right)^{h}+\left(\left(D_{W} D_{X} R\right)_{p}(u, Y) Z\right.$

$$
\begin{aligned}
& \left.-\left(D_{W} D_{Y} R\right)_{p}(u, X) Z\right)^{v}-\left(\left(D_{u} D_{W} R\right)_{p}(Y, X) Z\right. \\
& +\left(D_{W} D_{u} R\right)_{p}(Y, X) Z+\left(D_{[u, W]} R\right)_{p}(Y, X) Z \\
& \left.+2 R_{p}(Y, R(u, W) X) Z\right)^{v}
\end{aligned}
$$

2) $\left(D_{W^{v}}^{n} R_{(p, u)}^{n}\right)\left(X^{h}, Y^{h}\right) Z^{h}=\left(\left(D_{W} R\right)_{p}(X, Y) Z\right)^{v}$
3) $\left(D_{W^{h}}^{n} R_{(p, u)}^{n}\right)\left(X^{h}, Y^{h}\right) Z^{v}=\left(\left(D_{W} R\right)_{p}(X, Y) Z\right)^{v}$
4) $\left(D_{W^{v}}^{n} R_{(p, u)}^{n}\right)\left(X^{h}, Y^{h}\right) Z^{v}=0$
5) $\left(D_{W^{h}}^{n} R_{(p, u)}^{n}\right)\left(X^{h}, Y^{v}\right) Z^{h}=\left(\left(D_{W} R\right)_{p}(X, Y) Z\right)^{v}$
6) $\left(D_{W^{v}}^{n} R_{(p, u)}^{n}\right)\left(X^{h}, Y^{v}\right) Z^{h}=0$
7) $\left(D_{W^{h}}^{n} R_{(p, u)}^{n}\right)\left(X^{h}, Y^{v}\right) Z^{v}=0$
8) $\left(D_{W^{v}}^{n} R_{(p, u)}^{n}\right)\left(X^{h}, Y^{v}\right) Z^{v}=0$
9) $\quad\left(D_{W^{h}}^{n} R_{(p, u)}^{n}\right)\left(X^{v}, Y^{v}\right) Z^{h}=0$
10) $\left(D_{W^{v}}^{n} R_{(p, u)}^{n}\right)\left(X^{v}, Y^{v}\right) Z^{h}=0$
11) $\left(D_{W^{h}}^{n} R_{(p, u)}^{n}\right)\left(X^{v}, Y^{v}\right) Z^{v}=0$
12) $\left(D_{W^{v}}^{n} R_{(p, u)}^{n}\right)\left(X^{v}, Y^{v}\right) Z^{v}=0$.

We suppose that $\left(T M, g^{n}\right)$ is locally symmetric. According to 2) of Lemma 2 , (M, g) is locally symmetric.
By 1) of Lemma 2 we get $g(R(Y, R(u, W) X) Z, V)=0$. It is equivalent to

$$
g(R(Z, V) R(u, W) X, Y)=0
$$

then

$$
R(X, Y) \circ R(Z, V)=0, \quad \forall X, Y, Z, V \in \chi(M)
$$

and since (M, g) is locally symmetric, we have

$$
\begin{equation*}
A \circ B=0, \quad \forall A, B \in \text { hol } . \tag{9}
\end{equation*}
$$

Conversly, according to Lemma 2, if we have (9) and (M, g) is locally symmetric, we get $\left(T M, g^{n}\right)$ is locally symmetric.
4.2.2. Einstein structure on $T M$. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be an orthonormal basis of $T_{p} M$, then the Ricci curvature at (p, u) is

$$
\operatorname{Ric}_{(p, u)}^{s}\left(X^{*}, Y^{*}\right)=\sum_{i=1}^{i=m} \varepsilon_{i} g^{n}\left(R^{n}\left(X^{*}, e_{i}^{h}\right) Y^{*}, e_{i}^{v}\right)+\sum_{i=1}^{i=m} \varepsilon_{i} g^{n}\left(R^{n}\left(X^{*}, e_{i}^{v}\right) Y^{*}, e_{i}^{h}\right)
$$

where

$$
\varepsilon_{i}=g^{n}\left(e_{i}^{h}, e_{i}^{v}\right)=g\left(e_{i}, e_{i}\right)= \pm 1
$$

Let's compute Ric ${ }^{n}$. We have

$$
\begin{align*}
\operatorname{Ric}^{n}\left(X^{h}, Y^{h}\right) & =\sum_{i=1}^{i=m} \varepsilon_{i} g^{n}\left(R^{n}\left(X^{h}, e_{i}^{h}\right) Y^{h}, e_{i}^{v}\right)+\sum_{i=1}^{m} \varepsilon_{i} g^{n}\left(R^{n}\left(X^{h}, e_{i}^{v}\right) Y^{h}, e_{i}^{h}\right) \tag{10}\\
& =2 \sum_{i=1}^{m} \varepsilon_{i} g\left(R\left(X, e_{i}\right) Y, e_{i}\right)=2 \operatorname{Ric}(X, Y)
\end{align*}
$$

$$
\begin{align*}
\operatorname{Ric}^{n}\left(X^{v}, Y^{v}\right)= & \sum_{i=1}^{m} \varepsilon_{i} g^{n}\left(R^{n}\left(X^{v}, e_{i}^{h}\right) Y^{v}, e_{i}^{v}\right) \\
& +\sum_{i=1}^{m} \varepsilon_{i} g^{n}\left(R^{n}\left(X^{v}, e_{i}^{v}\right) Y^{v}, e_{i}^{h}\right)=0 \tag{11}
\end{align*}
$$

$$
\begin{aligned}
\operatorname{Ric}^{n}\left(X^{v}, Y^{h}\right)= & \sum_{i=1}^{m} \varepsilon_{i} g^{n}\left(R^{n}\left(X^{v}, e_{i}^{h}\right) Y^{h}, e_{i}^{v}\right) \\
& +\sum_{i=1}^{m} \varepsilon_{i} g^{n}\left(R^{n}\left(X^{v}, e_{i}^{v}\right) Y^{h}, e_{i}^{h}\right)=0
\end{aligned}
$$

Proposition 12. If $\left(T M, g^{n}\right)$ is λ-Einstein, then it is Ricci-flat. Therefore $\left(T M, g^{n}\right)$ is Ricci-flat if and only if (M, g) is Ricci-flat.

Proof. According to (10), if $\left(T M, g^{n}\right)$ is Einstein, it is Ricci-flat. According to (8), we deduce the proposition.
4.2.3. Kählerian structure on $T M$. Let (M, g, J) be a Kählerian pseudo-Riemannian manifold. Let J^{n} be the natural almost complex structure definite on $T M$ by

$$
J^{n}\left(X^{h}\right)=(J X)^{v} \text { and } J^{n}\left(X^{h}\right)=(J X)^{h} .
$$

It is easy to see that $\left(T M, g^{n}, J^{n}\right)$ is an almost Hermitian pseudo-Riemannian manifold.

Proposition 13. $\left(T M, g^{n}, J^{n}\right)$ is a Kählerian pseudo-Riemannian manifold.
Proof. According to the decomposition $\mathbb{R}^{2 n}=T_{(p, 0} T M=\mathcal{V}_{(p, 0} \oplus \mathcal{H}_{(p, 0}$ the tensor $J^{n}=\left(\begin{array}{ll}J & 0 \\ 0 & J\end{array}\right)$ at $(p, 0)$ commute with hol ${ }^{n}$ since J commute with hol at p. Then the holonomy principle implies the proposition.

Remark 2. According to the previous propositions, the tangent bundle can support some reducible-imdecomposable metrics of neutral signature. Notably Einstein, Kählerian or Ricci-flat metrics. For example, if $\operatorname{Hol}(M, g)=U(r, s),\left(T M, g^{n}\right)$ is a Kählerian pseudo-Riemannian manifold. If $\operatorname{Hol}(M, g)=S U(r, s),\left(T M, g^{n}\right)$ is an Einstein Kählerian pseudo-Riemannian manifold.

References

[1] Alekseevsky, D. V., Riemannian manifolds with exceptional holonomy groups, Funksional Anal. Prilozh. 22 (1968), 1-10.
[2] Ambrose, W., Singer, I. M., A theorem on holonomy, Trans. Amer. Math. Soc. 79 (1953), 428-443.
[3] Berger, M., Sur les groupes d’holonomie des variétés à connexion affine et des variétés Riemanniennes, Bull. Soc. Math. France 83 (1955), 279-330.
[4] Berger, M., Les espace symétriques non compacts 1957, Ann. Sci. École Norm. Sup. (1957).
[5] Bergery, L. Bérard, Ikemakhen, A., On the holonomy of Lorentzian manifolds, Proceedings of Symposia in Pure Mathematics, vol. 54 Part 2, 1993, pp. 27-40.
[6] Bergery, L. Bérard, Ikemakhen, A., Sur l’holonomie des variétés pseudo-Riemanniennes de signature (n, n), Bull. Soc. Math. France 125 (1) (1997), 93-114.
[7] Besse, A., Einstein manifolds, Springer Verlag, New York, 1987.
[8] Boubel, Ch., Sur l'holonomie des manifolds pseudo-Riemanniennes, Ph.D. thesis, Université Henri Poincaré Nancy I, 2000.
[9] Boubel, Ch., On the holonomy of Lorentzian metrics, Ann. Fac. Sci. Toulouse 14 (3) (2007), 427-475.
[10] Bryant, R. L., Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), 525-576.
[11] Bryant, R. L., Classical, exceptional, and exotic holonomies: A status report, Actes de la Table Ronde de Géométrie Différentielle en l'Honneur de Marcel Berger, Soc. Math. France, 1996, pp. 93-166.
[12] Cahen, A., Wallach, N., Lorentzian symmetric spaces, Bull. Amer. Math. Soc. 76 (1970), 585-591.
[13] Cahen, M., Parker, M., Sur des classes d'espaces pseudo-Riemannien symétriques, Bull. Soc. Math. Belg. 22 (1970), 339-354.
[14] Cahen, M., Parker, M., Pseudo-Riemannian symmetric spaces, Mem. Amer. Math. Soc. 24 (229) (1980).
[15] Rham, G. de, Sur la réductibilité d'un espace de Riemann, Math Helv. 26 (1952), 328-344.
[16] Dombrowski, P., On the geometry of the tangent bundle, J. Reine Angew. Math. 2101 (1962), 73-88.
[17] Galaev, A. S., Metrics that realize all Lorentzian holonomy algebras, Int. J. Geom. Meth. Modern Phys. 3 (5-6) (2006), 1025-1045.
[18] Galaev, A. S., Holonomy of Einstein Lorentzian manifolds, Classical and Quantum Gravity 27 (7) (2010), 1-13.
[19] Galaev, A. S., Leistner, T., Holonomy groups of Lorentzian manifolds: Classification, examples, and applications, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc. (2008), 53-96.
[20] Ikemakhen, A., Example of indecomposable non-irreductible Lorentzian manifolds, Ann. Sci. Math. Quebec 20 (1996), 53-66.
[21] Kobayashi, S., Nomizu, K., Fondation of Differential Geometry, vol. I, II , Intersciense, New York-London, 1963.
[22] Kowalski, O., Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifolds, J. Reine Angew. Math. 250 (1971), 124-129.
[23] Krantz, T., Holonomie des connexions sans torsion, Ph.D. thesis, University Henri Poincaré Nancy 1, 2007.
[24] Leistner, T., Berger algebras, weak-Berger algebras and Lorentzian holonomy, (2002), sfb 288 preprint no. 567.
[25] Leistner, T., On the classification of Lorentzian holonomy groups, J. Differential Geom. 76 (3) (2007), 423-484.
[26] Wu, H., On the de Rham decomposition theorem, llinois J. Math. 8 (1964), 291-311.

University Moulay Tahar,
Faculty of the Sciences and Technologies, Saïda, Algeria

University Cadi-Ayyad,
Faculty of the Sciences and Techniques, Marrakech, Morocco
E-mail: ikemakhen@fstg-marrakech.ac.ma

[^0]: 2010 Mathematics Subject Classification: primary 53B30; secondary 53C07, 53C29, 53C50.
 Key words and phrases: pseudo-Riemannian manifold, tangent bundle, Sasaki metric, neutral metric, holonomy group, indecomposable-reducible manifold, Einstein manifold.

 Received May 4, 2011, revised May 2011. Editor O. Kowalski.

