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TWO-MODE BIFURCATION IN SOLUTION OF A PERTURBED
NONLINEAR FOURTH ORDER DIFFERENTIAL EQUATION

Ahmed Abbas Mizeal and Mudhir A. Abdul Hussain

Abstract. In this paper, we are interested in the study of bifurcation solutions
of nonlinear wave equation of elastic beams located on elastic foundations with
small perturbation by using local method of Lyapunov-Schmidt.We showed
that the bifurcation equation corresponding to the elastic beams equation is
given by the nonlinear system of two equations. Also, we found the parameters
equation of the Discriminant set of the specified problem as well as the
bifurcation diagram.

1. Introduction

It is known that many of the nonlinear problems that appear in mathematics
and physics can be written in the form of operator equation,
(1.1) F (x, λ, ε) = b , x ∈ O ⊂ X , b ∈ Y , λ ∈ Rn

where F is a smooth Fredholm map of index zero, ε is small parameter indicate
the perturbation of the equation

F (x, λ) = b , x ∈ O ⊂ X , b ∈ Y , λ ∈ Rn .
X, Y are Banach spaces and O is open subset of X. For these problems, the method
of reduction to finite dimensional equation,
(1.2) θ(ξ, λ, ε) = β , ξ ∈ M̂ , β ∈ N̂

can be used, where M̂ and N̂ are smooth finite dimensional manifolds.

Vainberg [11], Loginov [5] and Sapronov [6, 7] are dealing with equation (1.1)
into equation (1.2) by using local method of Lyapunov-Schmidt with the conditions
that, equation (1.2) has all the topological and analytical properties of equation
(1.1) (multiplicity, bifurcation diagram, etc).
Definition 1.1. Suppose that E and F are Banach spaces and A : E → F be a
linear continuous operator. The operator A is called Fredholm operator, if
1- The kernel of A, Ker(A), is finite dimensional,
2- The Range of A, Im(A), is closed in F ,
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3- The Cokernel of A, Coker(A), is finite dimensional.
The number dim(KerA)−dim(CokerA) is called Fredholm index of the operator A.

Definition 1.2. The discriminate set Σ of equation (1.1) is defined to be the union
of all λ = λ̄ for which the equation (1.1) has degenerate solution x̄ ∈ O:

F (x̄, λ̄, ε) = b , Codim
(

Im ∂F

∂x
(x̄, λ̄, ε)

)
> 0 .

The oscillations and motion of waves of the elastic beams located on elastic
foundations can be described by means of the following PDE,

∂2y

∂t2
+ ∂4y

∂x4 + α
∂2y

∂x2 + (β + ε1x)y + ε2
∂y

∂x
+ g(λ, ỹ) = ψ ,

ỹ = (y, yx, yxx, yxxx, yxxxx) .
where y is the deflection of beam, ε1, ε2 indicates the perturbation parameters,
ψ = ε̃ϕ(x) (ε̃ – small parameter) is a continuous function and g(λ, ỹ) is a generic
nonlinearity. It is known that, to study the oscillations of beams, equilibrium state
(w(x) = y(x, t)) should be consider which is describe by the equation

d4w

dx4 + α
d2w

dx2 + (β + ε1x)w + ε2
dw

dx
+ g(λ, w̃) = ψ .(1.3)

w̃ = (w,w′, w′′, w′′′, w′′′′) .

When g(λ, w̃) = −kw3, (k is a parameter) [4], ψ = 0 and ε1 = ε2 = 0 equation
(1.3) has been studied as follows: Thompson and Stewart [10] showed numerically
the existence of periodic solutions of equation (1.3) for some values of parameters.
Sapronov [9] applied the local method of Lyapunov-Schmidt and found the bifurca-
tion solutions of equation (1.3) when g(λ, w̃) = w3, ψ = 0 and ε1, ε2 6= 0 with the
boundary conditions,

w(0) = w(π) = w′′(0) = w′′′(π) = 0
in his study he solved the bifurcation equation corresponding to the equation
(1.3) and found the bifurcation diagram of a specify problem. When g(λ, w̃) = w2,
ε1 = ε2 = 0 and ψ 6= 0, equation (1.3) has been studied with the boundary
conditions,

w(0) = w(1) = w′′(0) = w′′(1) = 0
by Abdul Hussain [1]. He showed that by using local method of Lyapunov-Schmidt
the existence of bifurcation solutions of equation (1.3). When g(λ, w̃) = w2 + w3

ψ = 0, and ε1 = ε2 = 0 equation (1.3) was studied by Sapronov [8], in his work
he found bifurcation periodic solutions of equation (1.3) by using local method
of Lyapunov-Schmidt. Also, he solved the bifurcation equation corresponding to
the equation (1.3) and found the bifurcation diagram of a specify problem. When
g(λ, w̃) = w2 + w3, ψ 6= 0 and ε1, ε2 6= 0 equation (1.3) was studied with the
boundary conditions,

w(0) = w(π) = w′′(0) = w′′(π) = 0
by Abdul Hussain [2]. He found the bifurcation solutions of equation (1.3) by using
local method of Lyapunov-Schmidt.
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In this paper we used the local method of Lyapunov-Schmidt to find two modes
bifurcation solutions of boundary value problem,

d4w

dx4 + α
d2w

dx2 + (β + ε1x)w + ε2
dw

dx
+ w2 = ψ ,(1.4)

w(0) = w(1) = w′′(0) = w′′(1) = 0
where ε1 and ε2 are small parameters indicates the perturbation and ψ = ε̃ϕ(x)
(ε̃ – small parameter) is a symmetric function with respect to the involution
I : ψ(x) 7→ ψ(1− x).

2. Reduction to bifurcation equation

To the study problem (1.4) it is convenient to set the ODE in the form of
operator equation, that is;

(2.1) F (w, λ, ε1, ε2) = d4w

dx4 + α
d2w

dx2 + (β + ε1x)w + ε2
dw

dx
+ w2

Where F : E →M is nonlinear Fredholm map of index zero from Banach space E to
Banach space M , E = C4([0, 1], R) is the space of all continuous functions that have
derivative of order at most four, M = C0([0, 1], R) is the space of all continuous
functions and w = w(x), x ∈ [0, 1], λ = (α, β). In this case, the bifurcation solutions
of equation (2.1) is equivalent to the bifurcation solutions of operator equation
(2.2) F (w, λ, ε1, ε2) = ψ , ψ ∈M
It is clear that when ε1 and ε2 are both equal to zero, then the operator F
have variational property that is; there exist a functional V : Ω → R such that
F (w, λ, 0, 0) = gradH V (w, λ, 0) or equivalently,

∂V

∂w
(w, λ, 0)h = 〈f(w, λ, 0, 0), h〉H , ∀ w ∈ Ω , h ∈ E

where (〈·, ·〉H is the scalar product in Hilbert space H )and

V (w, λ, ψ) =
∫ 1

0

( (w′′)2

2 − α (w′)2

2 + β
w2

2 + w3

3 − w ψ
)
dx .

In this case the solutions of the equation F (w, λ, 0, 0) = ψ are the critical points of
the functional V (w, λ, ψ), where the critical points of the functional V (w, λ, ψ) are
the solutions of Euler-Lagrange equation

∂V

∂w
(w, λ, 0)h =

∫ 1

0
(w′′′′ + αw′′ + βw + w2)h dx = 0 .

The bifurcation solutions of problem (1.4) when ε1 = ε2 = 0 have been studied by
Abdul Hussain [1], in his work he showed that the discriminate set of problem (1.4)
is given by the parameter equation β̃(β̃2 − q) = 0, where the parameters β̃ and
q depend on α and β. Also, he showed the existence and stability solutions of a
specify problem. If ε1 and ε2 are not both equal to zero, then the operator F should
be lose the variational property, in this case we go to seek the existence of regular
solutions of problem (1.4) in the plane of parameters by using local method of
Lyapunov-Schmidt. It is well known that by finite dimensional reduction theorem
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the solutions of problem (1.4) is equivalent to the solutions of finite dimensional
system with 2 = dim(kerFw(0, λ)) variables and 2 = dim(CokerFw(0, λ)) equations,
so first step in this work we shall find this system and then we analyze the results
to find the bifurcation solutions of problem (1.4). Our purpose is to study the
bifurcation solutions of problem (1.4) near the bifurcation solutions of the problem

d4w

dx4 + α
d2w

dx2 + βw + w2 = ψ

w(0) = w(1) = w′′(0) = w′′(1) = 0 .
The first step in this reduction is determines the linearized equation corresponding
to the equation (2.2), which is given by the following equation:

Ah = 0 , h ∈ E ,

A = ∂f

∂w
(0, λ, 0, 0) = d4

dx4 + α
d2

dx2 + β , x ∈ [0, 1] ,

h(0) = h(1) = h′′(0) = h′′(1) = 0 .
The solution of linearized equation which is satisfied the boundary conditions is
given by

ep = cp sin(pπx) , p = 1, 2, 3, . . .
and the characteristic equation corresponding to this solution is

p4π4 − αp2π2 + β = 0 .
This equation gives in the αβ-plane characteristic lines `p. The characteristic lines
`p consist the points (α, β) in which the linearized equation has non-zero solutions.
The point of intersection of characteristic lines in the αβ-plane is a bifurcation
point [8]. So for equation (2.2) the point (α, β) = (5π2, 4π4) is a bifurcation point.
Localized parameters α, β as follows,

α = 5π2 + δ1 , β = 4π4 + δ2 , δ1 , δ2are small parameters
lead to bifurcation along the modes

e1(x) = c1 sin(πx) , e2(x) = c2 sin(2πx)
where ‖ e1 ‖H=‖ e2 ‖H= 1 and c1 = c2 =

√
2. Let N = ker(A) = span {e1, e2 },

then the space E can be decomposed in direct sum of two subspaces, N and the
orthogonal complement to N ,

E = N ⊕N⊥ , N⊥ = {v ∈ E : v⊥N} .
Similarly, the space M can be decomposed in direct sum of two subspaces, N and
the orthogonal complement to N ,

M = N ⊕ Ñ⊥ , Ñ⊥ = {v ∈M : v⊥N} .
There exist two projections P : E → N and I − P : E → N⊥ such that Pw = u,
(I − P )w = v and hence every vector w ∈ E can be written in the form

w = u+ v , u =
2∑
i=1

ξiei ∈ N , v ∈ N⊥ , ξi = 〈w, ei〉 .
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Similarly, there exist projections Q : M → N and I −Q : M → Ñ⊥ such that
QF (w, λ, ε1, ε2) = F1(w, λ, ε1, ε2) ,

(I −Q)F (w, λ, ε1, ε2) = F2(w, λ, ε1, ε2) ,
and hence,

F (w, λ, ε1, ε2) = F1(w, λ, ε1, ε2) + F2(w, λ, ε1, ε2) ,

F1(w, λ, ε1, ε2) =
2∑
i=1

vi(w, λ, ε1, ε2)ei ∈ N , F2(w, λ, ε1, ε2) ∈ Ñ⊥ ,

vi(w, λ, ε1, ε2) = 〈F (w, λ, ε1, ε2), ei〉 .

Since ψ ∈M implies that ψ = ψ1+ψ2, ψ1 = t1e1+t2e2 ∈ N , ψ2 ∈ Ñ⊥. Accordingly,
equation (2.2) can be written in the form

QF (w, λ, ε1, ε2) = ψ1 ,

(I −Q)F (w, λ, ε1, ε2) = ψ2

or

QF (u+ v, λ, ε1, ε2) = ψ1 ,

(I −Q)F (u+ v, λ, ε1, ε2) = ψ2 .

By implicit function theorem, there exists a smooth map Φ: N → N⊥ (depending
on λ), such that, Φ(w, λ, ε1, ε2) = v and

(I −Q)F (u+ Φ(w, λ, ε1, ε2), λ, ε1, ε2) = ψ2 .

To find the solutions of the equation F (w, λ, ε1, ε2) = ψ in the neighbourhood of
the point w = 0 it is sufficient to find the solutions of the equation
(2.3) QF (u+ Φ(w, λ, ε1, ε2), λ, ε1, ε2) = ψ1 .

Equation (2.3) is called bifurcation equation of the equation (2.1) and then we
have the bifurcation equation in the form

Θ(ξ, λ, ε1, ε2) = ψ1 , ξ = (ξ1, ξ2) , λ = (α, β)
where

Θ(ξ, λ, ε1, ε2) = F1(u+ Φ(w, λ, ε1, ε2), λ, ε1, ε2) .
Equation (2.1) can be written in the form,

F (u+ v, λ, ε1, ε2) = A(u+ v) +B(u+ v) + T (u+ v)

= Au+ ε1xu+ ε2u
/

+ u2 + . . .

where B(u+ v) = ε1x(u+ v) + ε2(u+ v)′, T (u+ v) = (u+ v)2 and the dots denote
the terms consists the element v. Hence

Θ(ξ, λ, ε1, ε2) = F1(u+ v, λ, ε1, ε2)

=
2∑
i=1
〈Au+ ε1xu+ ε2u

′ + u2, ei〉ei + · · · = ψ1(2.4)
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where (〈·, ·〉H is the scalar product in Hilbert space L2([0, 1], R)). Equation (2.4)
implies that

(2.5)
2∑
i=1
〈Au+ ε1xu+ ε2u

′ + u2, ei〉ei + · · · = t1 e1 + t2 e2 .

After some calculations of equation (2.5) we have the following result

(A1ξ
2
1 +A2ξ

2
2 +A3ξ1 −A4ξ2)e1 + (B1ξ1ξ2 +B2ξ1 +B3ξ2)e2 = t1 e1 + t2 e2

where Ae1 = α̃1(λ)e1, Ae2 = α̃2(λ)e2

A1 = 5
8B1 = 8

√
2

3π , A2 = 4
5A1 = 32

√
2

15π , A3 = ε1

2 + α̃1(λ)

A4 = 8ε2

3 + 16ε1

9π2 , B2 = 8ε2

3 −
16ε1

9π2 , B3 = ε1

2 + α̃2(λ)

and α̃1, α̃2 are smooth functions. The symmetry of the function ψ(x) with respect
to the involution I : ψ(x) 7→ ψ(1− x) implies that t2=0, then we have stated the
following theorem

Theorem 2.1. The bifurcation equation

Θ(ξ, λ, ε1, ε2) = F1(u+ Φ(w, λ, ε1, ε2), λ, ε1, ε2) = ψ1

corresponding to the equation (2.2) have the following form

Θ(ξ, λ̃) =
(
A1ξ

2
1 +A2ξ

2
2 +A3ξ1 −A4ξ2 − t1

B1ξ1ξ2 +B2ξ1 +B3ξ2

)
+ o(|ξ|2) +O(|ξ|2)O(δ) = 0

where ξ = (ξ1, ξ2), λ̃ = (A3, A4, B2, B4, t1) ∈ R5, δ = (δ1, δ2). The equation
Θ(ξ, λ̃) = 0 is symmetric contact equivalent to the equation

Θ0(ξ̃, γ) =
(
ξ̃2

1 + ξ̃2
2 + λ1ξ̃1 + λ2ξ̃2 + q1

2 ξ̃1ξ̃2 + λ3ξ̃1 + λ4ξ̃2

)
+ o(|ξ̃|2) +O(|ξ̃|2)O(δ) = 0

where γ = (λ1, λ2, λ3, λ4, q1) ∈ R5.

Contact equivalence implies that the study of the Discriminant set of the equation
Θ(ξ, λ̃) = 0 in the space of parameters A3, A4, B2, B3, t1 is similar to the study
of the Discriminant set of the equation Θ0(ξ̃, γ) = 0 in the space of parameters
λ1, λ2, λ3, λ4 and q1. The discriminate Σ set of the equation Θ0(ξ̃, γ) = 0 is locally
equivalent in the neighborhood of the point zero to the discriminate set of the
following equation [3],

(2.6) Θ1(ξ̃, γ) =
(
ξ̃2

1 + ξ̃2
2 + λ1ξ̃1 + λ2ξ̃2 + q1

2ξ̃1ξ̃2 + λ3ξ̃1 + λ4ξ̃2

)
= 0

this means that, to study the discriminate set of the equation Θ0(ξ̃, γ) = 0 it is
sufficient to study the discriminate set of the equation Θ1(ξ̃, γ) = 0. By changing
variables,

η1 = ξ̃1 + λ1

2 , η2 = ξ̃2 + λ2

2 ,
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we have equation (2.6) is equivalent to the following equation

(2.7) Θ1(η, λ̂) =
(

η2
1 + η2

2 − β1
2 η1η2 + λ̃1η1 + λ̃2η2 − β2

)
= 0

where η = (η1, η2), λ̂ = (λ̃1, λ̃2, β1, β2) ∈ R4.

3. Analysis of bifurcation

From Section 2 we note that the point a ∈ E is a solution of equation (2.1) if
and only if

a =
2∑
i=1

η̄iei + Φ(η̄, λ̄) ,

where η̄ is a solution of the equation

(3.1) Θ1(η, λ̂) = 0 ,

also, the Discriminant set of equation (2.1) is equivalent to the Discriminant set
of equation (3.1). This section concerning the determination of Discriminant set
of equation (3.1) and then the determination of solutions of equation (3.1) as λ̂
varied. There are two ways to determine the Discriminant set,
1. By finding a relationship between the parameters and variables given in the
equation (3.1).
2. By finding the parameters equation, that is; equation of the form,

h(λ̂) = 0 , λ̂ = (λ̃1, λ̃2, β1, β2) ∈ R4

such that the set of all λ̂ = (λ̃1, λ̃2, β1, β2) in which equation (3.1) has degenerate
solutions that satisfy the equation h(λ̂) = 0, where h : R4 → R is a map. In
this section we used the two ways, the first for the geometric description of the
Discriminant set and the second for the theoretical description of the Discriminant
set. Let

p1 = λ̃1 , p2 = λ̃2
1 + λ̃2

2 − 4β1

4 ,

p3 = 2λ̃2β2 − 4λ̃1β1

4 , p4 = β2
2 − λ̃2

1β1

4 ,

p̃1 = λ̃1

2 , p̃2 = λ̃2
1 + λ̃2

2 − 16β1

16 ,

p̃3 = −λ̃1β1

4 , p̃4 = 4β2
1 − λ̃2β1

16 ,
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a1 = 3λ̃1

2 , a2 = 3λ̃2
1

4 ,

a3 =
λ̃1λ̃

2
2

2 − λ̃2β2 + λ̃3
1

2
4 , a4 =

λ̃1λ̃2β2
2 − β2

2
4 ,

b1 = − λ̃1

2 , b2 = −3(λ̃2
1 + λ̃2

2)
16 − 2β1 ,

b3 = 3λ̃1β1

4 − λ̃2β2

2 , b4 =
β2

1 − β2
2 + λ̃2

1β1 − λ̃2β1
4

4 ,

c1 = λ̃1

2 , c2 = 1− λ̃2
1 − λ̃2

2
4 − β1 ,

c3 =
λ̃1λ̃

2
2

2 − 3λ̃2β2 + λ̃3
1

2
4 + λ̃1β1 , c4 =

λ̃1λ̃2β2
4 − β2

2 + λ̃2
1β1
2

2 ,

and

d1 = 7(λ̃3
1 − λ̃1λ̃

2
2)

32 −
3λ̃1β1 − 1

4 λ̃1

2 ,

d2 =
7λ̃2

1β1 − 5λ̃1λ̃2β2 + λ̃2
1λ̃

2
2

2 + λ̃4
1

2
8 ,

d3 =
λ̃1β

2
1

2 − λ̃1λ̃2β1
8 − 3λ̃1β

2
2

2 + λ̃3
1β1 + λ̃2

1λ̃2β2
4

4 ,

k =
√
d2

2 − 4d1d3 .

Then the following result has been stated

Theorem 3.1. The Discriminant set of equation (3.1) in the space of parameters
(λ̃1, λ̃2, β1, β2) is given by the following surface

[(4(d2
1β1 − d2

2) + d1d2λ̃1 + 8d1d3)2 + (4d2 − d1λ̃1)2k2

− (2d2
1β1 + d2

2 − 2d1d3)2d2
1λ̃

2
2]2

− [(2d1λ̃1 − 8d2)(4(d2
1β1 − d2

2) + d1d2λ̃1 + 8d1d3) + 2d2
1d2λ̃

2
2]2k2 = 0 .

Proof. The set of singular points of the map (2.7) is given by the equation

2η2
1 − 2η2

2 + λ̃2η1 − λ̃1η2 = 0 .

Hence, the surface can be found by solving the following system in terms of
(λ̃1, λ̃2, β1, β2). The system is

(3.2)


η2

1 + η2
2 + β1 = 0 ,

2η1η2 + λ̃1η1 + λ̃2η2 + β2 = 0 ,
2η2

1 − 2η2
2 + λ̃2η1 − λ̃1η2 = 0 .
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By using the substitution and subtracting between the equations of system (3.2)
we have the following three quartic equations

(3.3)


η4

2 + p1η
3
2 + p2η

2
2 + p3η2 + p4 = 0 ,

η4
2 + p̃1η

3
2 + p̃2η

2
2 + p̃3η2 + p̃4 = 0 ,

η4
2 + a1η

3
2 + a2η

2
2 + a3η2 + a4 = 0 .

Similarly, by using the substitution and subtracting between the equations of
system (3.3) we have the following two cubic equations

(3.4)
{
b1η

3
2 + b2η

2
2 + b3η2 + b4 = 0 ,

c1η
3
2 + c2η

2
2 + c3η2 + c4 = 0 .

System (3.4) gives rise to the quadratic equation of the form d1η
2
2 + d2η2 + d3 = 0.

Solve this equation in terms of η2, (d1 6= 0) and then substitute the result in the
third equation of system (3.2) we have the required surface. �

To study the Discriminant set of the equation (3.1) it is convenient to fixed the
values of λ̃1, λ̃2 and then find all sections of the Discriminant set in the β1β2-plane.
To do this, we used the following parameterization

β1 = η2
1 + η2

2 ,

β2 = 2η1η2 + λ̃1η1 + λ̃2η2

and then we describe the Discriminant set of equation (3.1) in the β1β2-plane for
some values of λ̃1, λ̃2 with the number of regular solutions in every region in the
following figures, (all figures were drawn by Maple 11).

Figure 1: Describe the Discriminant set of equation (3.1) when λ̃1 = 0, λ̃2 = 5.
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Figure 2: Describe the Discriminant set of equation (3.1) when λ̃1 = 3, λ̃2 = 5.

Figure 3: Describe the Discriminant set of equation (3.1) when λ̃1 = −3, λ̃2 = 5.

In figures (1), (2) and (3) the complement of the Discriminant set Γ = R4\Σ
is the union of three open subsets Γ = Γ0 ∪ Γ2 ∪ Γ4 such that if λ̂ ∈ Γ0 then
equation (3.1) has no regular solutions, if λ̂ ∈ Γ2 then equation (3.1) has two
regular solutions with topological indices 1, -1 and if λ̂ ∈ Γ4 then equation (3.1)
has four regular solutions with topological indices 1,-1,1,-1. If λ̃1 = λ̃2 = 0 then
the complement of the Discriminant set is a union of two open subsets Γ = Γ0 ∪ Γ4
in which we have zero or four regular solutions.
Acknowledgement. I would like to thank the referee for useful discussions and
suggestions, and for his comments.
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