WEAK*-CONTINUOUS DERIVATIONS IN DUAL BANACH ALGEBRAS

M. Eshaghi-Gordji¹, A. Ebadian², F. Habibian³, and B. Hayati⁴

ABSTRACT. Let \mathcal{A} be a dual Banach algebra. We investigate the first weak*-continuous cohomology group of \mathcal{A} with coefficients in \mathcal{A} . Hence, we obtain conditions on \mathcal{A} for which

$$H^{1}_{w^{*}}(\mathcal{A}, \mathcal{A}) = \{0\}.$$

1. INTRODUCTION

Let \mathcal{A} be a Banach algebra and let X be a Banach \mathcal{A} -bimodule. The right and left actions of \mathcal{A} on the dual space X^* of X can be defined as follows

$$\langle fa,b\rangle = \langle f,ab\rangle, \quad \langle af,b\rangle = \langle f,ba\rangle \qquad (a,b \in \mathcal{A}, f \in X^*).$$

Then X^* becomes a Banach \mathcal{A} -bimodule. For example, \mathcal{A} is a Banach \mathcal{A} -bimodule with respect to the product in \mathcal{A} . Then \mathcal{A}^* is a Banach \mathcal{A} -bimodule.

The second dual space \mathcal{A}^{**} of a Banach algebra \mathcal{A} admits a Banach algebra product known as the first (left) Arens product. We briefly recall the definition of this product.

By [1], for $m, n \in \mathcal{A}^{**}$, the first (left) Arens product indicated by mn is given by

$$\langle mn, f \rangle = \langle m, nf \rangle \qquad (f \in \mathcal{A}^*),$$

where nf as an element of \mathcal{A}^* is defined by

$$\langle nf, a \rangle = \langle n, fa \rangle \qquad (a \in \mathcal{A}).$$

A Banach algebra \mathcal{A} is said to be dual if there is a closed submodule \mathcal{A}_* of \mathcal{A}^* such that $\mathcal{A} = \mathcal{A}_*^*$. Let \mathcal{A} be a dual Banach algebra. A dual Banach \mathcal{A} -bimodule X is called normal if, for every $x \in X$, the maps $a \longmapsto a \cdot x$ and $a \longmapsto x \cdot a$ are weak*-continuous from \mathcal{A} into X. For example, if G is a locally compact topological group, then M(G) is a dual Banach algebra with predual $C_0(G)$. Also, if \mathcal{A} is an Arens regular Banach algebra, then \mathcal{A}^{**} is a dual Banach algebra with predual \mathcal{A}^* .

If X is a Banach A-bimodule then a derivation from A into X is a linear map D, such that for every $a, b \in A$, $D(ab) = D(a) \cdot b + a \cdot D(b)$. If $x \in X$, and we define $\delta_x : A \to X$ by $\delta_x(a) = a \cdot x - x \cdot a$ $(a \in A)$, then δ_x is a derivation. Derivations

²⁰¹⁰ Mathematics Subject Classification: primary 46H25.

Key words and phrases: Arens product, 2-weakly amenable, derivation.

Received Aaugust 12, 2010, revised February 2011. Editor V. Müller.

DOI: http://dx.doi.org/10.5817/AM2012-1-39

of this form are called inner derivations. A Banach algebra \mathcal{A} is amenable if every bounded derivation from \mathcal{A} into dual of every Banach \mathcal{A} -bimodule X is inner; i.e., $H^1(\mathcal{A}, X^*) = \{0\}$, [10]. Let $n \in \mathbb{N}$, then a Banach algebra \mathcal{A} is *n*-weakly amenable if every (bounded) derivation from \mathcal{A} into *n*-th dual of \mathcal{A} is inner; i.e., $H^1(\mathcal{A}, \mathcal{A}^{(n)}) = \{0\}$ (see [4]). A dual Banach algebra \mathcal{A} is Connes-amenable if every weak*-continuous derivation from \mathcal{A} into each normal dual Banach \mathcal{A} -bimodule X is inner; i.e., $H^1_{w^*}(\mathcal{A}, X) = \{0\}$, this definition was introduced by V. Runde (see Section 4 of [15] or [6] and [7]). In this paper we study the weak*-continuous derivations from \mathcal{A} into itself when \mathcal{A} is a dual Banach algebra. Hence, we obtain conditions on \mathcal{A} for which the following holds

(*)
$$H^1_{w^*}(\mathcal{A}, \mathcal{A}) = \{0\}.$$

One can see that every Connes-amenable dual Banach algebra satisfies in (*). We have already some examples to show that the condition (*) does not imply Connes-amenability (see Corollary 2.3).

Example 1.1. Let \mathcal{B} be a von-Neumann algebra. Then $H^1_{w^*}(\mathcal{B}, \mathcal{B}) \subseteq H^1(\mathcal{B}, \mathcal{B}) = \{0\}$ (Theorem 4.1.8 of [16]). Thus \mathcal{B} satisfies (*).

Example 1.2. Let \mathcal{A} be a commutative semisimple dual Banach algebra, then by commutative Singer-Warmer theorem, (see for example [2, Section 18, Theorem 16]) we have $H^1(\mathcal{A}, \mathcal{A}) = \{0\}$, so \mathcal{A} satisfies in (*).

Let now \mathcal{A} be a commutative Banach algebra which is Arens regular and let \mathcal{A}^{**} be semisimple. Trivially \mathcal{A}^{**} is commutative. Then \mathcal{A}^{**} is a dual Banach algebra which satisfies (*).

Let \mathcal{A} be a Banach algebra. The Banach \mathcal{A} -submodule X of \mathcal{A}^* is called left introverted if $\mathcal{A}^{**}X \subseteq X$ (i.e. $X^*X \subseteq X$). Let X be a left introverted Banach \mathcal{A} submodule of \mathcal{A}^* , then X^* by the following product is a Banach algebra:

$$\langle x'y', x \rangle = \langle x', y' \cdot x \rangle$$
 $(x', y' \in X^*, x \in X).$

(See [1] for further details.) For each $y' \in X^*$, the mapping $x' \mapsto x'y'$ is weak*-continuous. However, for certain x', the mapping $y' \mapsto x'y'$ may fail to be weak*-continuous. Due to this lack of symmetry the topological center $Z_t(X^*)$ of X^* is defined by

$$Z_t(X^*) := \{ x' \in X^* \colon y' \longmapsto x' \ y' \colon X^* \to X^* \text{ is weak*-continuous} \}.$$

See [5] and [12] for further details. If $X = \mathcal{A}^*$, then $Z_t(X^*) = Z_t(\mathcal{A}^{**})$ is the left topological center of \mathcal{A}^{**} .

2. Main results

In this section we study the first weak*-continuous cohomology group of \mathcal{A} with coefficients in \mathcal{A} , when \mathcal{A} is a dual Banach algebra. Indeed we show that an Arens regular Banach algebra \mathcal{A} is 2-weakly amenable if and only if the second dual of \mathcal{A} holds in (*). So we prove that a dual Banach algebra \mathcal{A} holds in (*) if it is 2-weakly amenable.

We have the following lemma for the left introverted subspaces.

Lemma 2.1. Let \mathcal{A} be a Banach algebra and let X be a left introverted subspace of A^* . Then the followings are equivalent.

- (a) X^* is a dual Banach algebra.
- (b) $Z_t(X^*) = X^*$.
- (c) X the canonical image of X in its bidual, is a right X^{*}-submodule of X^{**}.

Proof. (a) \iff (b) It follows from 4.4.1 of [15].

 $(b) \to (c)$ Let $x \in X, x' \in X^*$ and let $y'_{\alpha} \xrightarrow{\text{weak}^*} y'$ in X^* . Then by (b), $x'y'_{\alpha} \xrightarrow{\text{weak}^*} x'y'$ in X^* . So we have

$$\langle \widehat{x}x', y'_{\alpha} \rangle = \langle \widehat{x}, x'y'_{\alpha} \rangle = \langle x'y'_{\alpha}, x \rangle \rightarrow \langle x'y', x \rangle = \langle \widehat{x}, x'y' \rangle = \langle \widehat{x}x', y' \rangle \,.$$

It follows that $\hat{x}x' \colon X^* \to \mathbb{C}$ is weak*-continuous. Thus $\hat{x}x' \in \hat{X}$.

 $(c) \Longrightarrow (b)$ Let $x' \in X^*$ and let $y'_\alpha \xrightarrow[]{\text{weak}^*} y'$ in $X^*.$ Then for every $x \in X,$ we have

$$\langle x'y'_{\alpha}, x \rangle = \langle y'_{\alpha}, xx' \rangle \to \langle y', xx' \rangle = \langle x'y', x \rangle.$$

Then (b) holds.

Let G be a locally compact topological group, then the dual Banach algebra M(G) is Connes-amenable if and only if $L^1(G)$ is amenable (see Section 4 of [15]). Also $L^1(G)$ is always weakly amenable (see [11] or [8]). In the following we show that M(G) has condition (*).

Theorem 2.2. For every locally compact topological group G, M(G) has the condition (*).

Proof. Let $D: M(G) \to M(G)$ be a weak*-continuous derivation, since $L^1(G)$ is a two sided ideal in M(G), then for every $a, b \in L^1(G)$, we have $D(ab) = D(a) \cdot b + a \cdot D(b)$ belongs to $L^1(G)$. We know that for every (bounded) derivation $D: L^1(G) \to L^1(G)$, there is a $\mu \in M(G)$ such that for every $a \in L^1(G)$, $D(a) = a\mu - \mu a$, [13, Corollary 1.2]. On the other hand $L^1(G)$ is weak*-dense in M(G), and D is weak*-continuous. Then $D(a) = a\mu - \mu a$ for all $a \in M(G)$.

Corollary 2.3. If G is a non-amenable group, then M(G) is a dual Banach algebra satisfies in (*), but is not Connes-amenable.

Theorem 2.4. Let \mathcal{A} be a Banach algebra and let X be a left introverted \mathcal{A} -submodule of \mathcal{A}^* such that $D^*|_X \colon X \to \mathcal{A}^*$ taking values in X for every derivation $D \colon \mathcal{A} \to X^*$. If $Z_t(X^*) = X^*$, then the followings are equivalent.

- (a) X^* has the condition (*).
- (b) $H^1(\mathcal{A}, X^*) = \{0\}.$

Proof. (a) \Longrightarrow (b) Let $D: \mathcal{A} \to X^*$ be a (bounded) derivation. Then, by Proposition 1.7 of [4], $D^{**}: \mathcal{A}^{**} \to (X^*)^{**}$ the second transpose of D is a derivation. We define $D_1: X^* \to X^*$ by

$$\langle D_1(x'), x \rangle = \langle D^{**}(x'), \hat{x} \rangle \qquad (x' \in X^*, x \in X).$$

Since $Z_t(X^*) = X^*$, then by Lemma 2.1, \widehat{X} is a X^* -submodule of X^{**} . Then for every $x', y' \in X^*$ and $x \in \mathcal{A}^*$, we have

$$\langle D_1(x'y'), x \rangle = \langle D^{**}(x'y'), \widehat{x} \rangle = \langle D^{**}(x')y', \widehat{x} \rangle + \langle x'D^{**}(y'), \widehat{x} \rangle$$

= $\langle D^{**}(x'), y'\widehat{x} \rangle + \langle D^{**}(y'), \widehat{x}x' \rangle = \langle D^{**}(x'), \widehat{y'x} \rangle + \langle D^{**}(y'), \widehat{xx'} \rangle$
= $\langle D_1(x'), y'x \rangle + \langle D_1(y'), xx' \rangle = \langle D_1(x')y', x \rangle + \langle x'D_1(y'), x \rangle .$

So D_1 is a derivation. Now let $x'_{\alpha} \xrightarrow{\text{weak}^*} x'$ in X^* . Since D^{**} is weak*-continuous, then for every $x \in X$, we have

$$\lim_{\alpha} \langle D_1(x'_{\alpha}), x \rangle = \lim_{\alpha} \langle D^{**}(x'_{\alpha}), \widehat{x} \rangle = \langle D^{**}(x'), \widehat{x} \rangle = \langle D_1(x'), x \rangle.$$

It follows that D_1 is weak*-weak*-continuous. Then there exists $x' \in X^*$ such that $D_1 = \delta_{x'}$, so $D = \delta_{x'}$.

 $(b) \Longrightarrow (a)$ Let $D: X^* \to X^*$ be a weak*-continuous derivation, then $D \mid_{\mathcal{A}} : \mathcal{A} \to X^*$ is a bounded derivation. Thus, there is $x' \in X^*$ such that $D(\hat{a}) = \hat{a}x' - x'\hat{a}$ for every $a \in \mathcal{A}$. Since X^* is a dual Banach algebra, then $\delta_{x'} : X^* \to X^*$ is weak*-continuous. On the other hand $\hat{\mathcal{A}}$ is weak*-dense in X^* , and D is weak*-continuous, then we have $D = \delta_{x'}$.

Corollary 2.5. Let \mathcal{A} be an Arens regular Banach algebra, then \mathcal{A}^{**} has the condition (*) if and only if \mathcal{A} is 2-weakly amenable.

Theorem 2.6. Let \mathcal{A} be a dual Banach algebra. If \mathcal{A} is 2-weakly amenable, then \mathcal{A} has the condition (*).

Proof. Let \mathcal{A} be a dual algebra with predual \mathcal{A}_* , and let $D: \mathcal{A} \to \mathcal{A}$ be a weak*-continuous derivation, then D is bounded. In other wise, there exists a sequence $\{x_n\}$ in \mathcal{A} such that $\lim_n \|x_n\| = 0$ and $\lim_n \|D(x_n)\| = \infty$. By uniform boundedness theorem, $D(x_n) \xrightarrow{\text{weak}^*} 0$. On the other hand, weak* $-\lim_n x_n = 0$, therefore D is not weak*-continuous, which is a contradiction. The natural embedding $\widehat{}: \mathcal{A} \to \mathcal{A}^{**}$ is an \mathcal{A} -bimodule morphism, then $\widehat{} oD: \mathcal{A} \to \mathcal{A}^{**}$ is a bounded derivation. Since \mathcal{A} is 2-weakly amenable, then there exists $a'' \in \mathcal{A}^{**}$ such that $\widehat{} oD = \delta_{a''}$. We have the following direct sum decomposition

$$\mathcal{A}^{**} = \mathcal{A} \oplus \mathcal{A}_*^{\perp}$$

as \mathcal{A} -bimodules, [9]. Let $\pi: \mathcal{A}^{**} \to \mathcal{A}$ be the projection map. Then π is an \mathcal{A} -bimodule morphism, so that $D = \delta_{\pi(a'')}$.

In the following (example 1) we will show that the converse of Theorem 2.6 does not hold.

EXAMPLES

1 Let $\omega \colon \mathbb{Z} \to \mathbb{R}$ define by $\omega(n) = 1 + |n|$ and let

$$\ell^{1}(\mathbb{Z},\omega) = \left\{ \sum_{n \in \mathbb{Z}} f(n)\delta_{n} : \|f\|_{\omega} = \sum |f(n)|\omega(n) < \infty \right\}.$$

Then $\ell^1(\mathbb{Z}, \omega)$ is a Banach algebra with respect to the convolution product defined by the requirement that

$$\delta_m \delta_n = \delta_{mn} \qquad (m, n \in \mathbb{Z}) \,.$$

We define

$$\ell^{\infty}\left(\mathbb{Z}, \frac{1}{\omega}\right) = \left\{\lambda = \sum_{n \in \mathbb{Z}} \lambda(n)\lambda_n : \sup \frac{|\lambda(n)|}{\omega(n)} < \infty\right\},\$$

and

$$C_0(\mathbb{Z}, \frac{1}{\omega}) = \{\lambda \in l^\infty(\mathbb{Z}, \frac{1}{\omega}) : \frac{|\lambda|}{\omega(n)} \in C_0(\mathbb{Z})\}.$$

Then $\mathcal{A} = \ell^1(\mathbb{Z}, \omega)$ is an Arens regular dual Banach algebra with predual $C_0(\mathbb{Z}, \frac{1}{\omega})$ [5]. \mathcal{A} is commutative and semisimple, then \mathcal{A} has the condition (*) (see Example 1.2). On the other hand, by [5], \mathcal{A} is not 2-weakly amenable. It follows that \mathcal{A}^{**} does not have the condition (*).

2 The algebra $C^{(1)}(\mathbb{I})$ consists of the continuously differentiable functions on the unit interval $\mathbb{I} = [0,1]$; $C^{(1)}(\mathbb{I})$ is a Banach function algebra on \mathbb{I} with respect to the norm $||f||_1 = ||f||_{\mathbb{I}} + ||f'||_{\mathbb{I}}$ $(f \in C^{(1)}(\mathbb{I}))$. By Proposition 3.3 of [4], $C^{(1)}(\mathbb{I})$ is Arens regular but it is not 2-weakly amenable. Thus by Corollary 2.5 above, $C^{(1)}(\mathbb{I})^{**}$ is a dual Banach algebra which does not have the condition (*).

3 For a function $f \in L^1(\mathbb{T})$, the associated Fourier series is $(\hat{f}(n): n \in \mathbb{Z})$. For $\alpha \in (0,1)$ the associated Beurling algebra $A_{\alpha}(\mathbb{T})$ on \mathbb{T} consists of the continuous functions f on \mathbb{T} such that $||f||_{\alpha} = \sum_{n \in \mathbb{Z}} |\hat{f}(n)| (1+|n|)^{\alpha} < \infty$. By Proposition 3.7 of [4], $A_{\alpha}(\mathbb{T})$ is Arens regular and 2-weakly amenable. Then by applying Corollary 3.5 above, $A_{\alpha}(\mathbb{T})^{**}$ has the condition (*).

Acknowledgement. The authors would like to express their sincere thanks to referee for his/her helpful suggestions and valuable comments to improve the manuscript.

References

- [1] Arens, R., The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848.
- [2] Bonsall, F. F., Duncan, J., Complete normed algebras, Springer, Berlin, 1973.
- [3] Dales, H. G., Banach algebras and automatic continuity, Oxford, New York, 2000.
- [4] Dales, H. G., Ghahramani, F., Grønbæk, N., Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54.
- [5] Dales, H. G., Lau, A. T. M., The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (836) (2005).
- [6] Daws, M., Connes-amenability of bidual algebras, Math. Scand. 99 (2) (2006), 217-246.
- [7] Daws, M., Dual Banach algebras: representations and injectivity, Studia Math. 178 (3) (2007), 231–275.
- [8] Despic, M., Ghahramani, F., Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165–167.
- [9] Ghahramani, F., Laali, J., Amenability and topological centers of the second duals of Banach algebras, Bull. Austral. Math. Soc. 65 (2002), 191–197.
- [10] Johnson, B. E., Cohomology in Banach algebras, Mem. Amer. Math Soc. 127 (1972).

- [11] Johnson, B. E., Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281–284.
- [12] Lau, A. T. M., Ülger, A., Topological centers of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996), 1191–1212.
- [13] Losert, V., The derivation problem for group algebras, Ann. of Math. (2) **168** (1) (2008), 221–246.
- [14] Runde, V., Amenability for dual Banach algebras, Studia Math. 148 (1) (2001), 47-66.
- [15] Runde, V., Lectures on amenability, Springer Verlag, Berlin–Heidelberg–New York, 2002.
- [16] Sakai, S., C^{*}-algebras and W^{*}-algebras, Springer, New York, 1971.

^{1,3}DEPARTMENT OF MATHEMATICS, SEMNAN UNIVERSITY,
P. O. BOX 35195-363, SEMNAN, IRAN *E-mail*: madjid.eshaghi@gmail.com habibianf72@yahoo.com

²Department of Mathematics, Faculty of Science, URMIA UNIVERSITY, URMIA, IRAN *E-mail*: ebadian.ali@gmail.com

⁴Department of Mathematics, Malayer University, Malayer, Hamedan, Iran *E-mail*: hayati@malayeru.ac.ir