AN ELEMENTARY PROOF OF A CONGRUENCE BY SKULA AND GRANVILLE

Romeo Meštrović

Abstract. Let $p \geq 5$ be a prime, and let $q_{p}(2):=\left(2^{p-1}-1\right) / p$ be the Fermat quotient of p to base 2 . The following curious congruence was conjectured by L. Skula and proved by A. Granville

$$
q_{p}(2)^{2} \equiv-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p)
$$

In this note we establish the above congruence by entirely elementary number theory arguments.

1. Introduction and statement of the main result

The Fermat Little Theorem states that if p is a prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1(\bmod p)$. This gives rise to the definition of the Fermat quotient of p to base a

$$
q_{p}(a):=\frac{a^{p-1}-1}{p},
$$

which is an integer. Fermat quotients played an important role in the study of cyclotomic fields and Fermat Last Theorem. More precisely, divisibility of Fermat quotient $q_{p}(a)$ by p has numerous applications which include the Fermat Last Theorem and squarefreeness testing (see [1], [2], [3], [5] and [9]). Ribenboim [10] and Granville [5], besides proving new results, provide a review of known facts and open problems.

By a classical Glaisher's result (see [4] or [7) for a prime $p \geq 3$,

$$
\begin{equation*}
q_{p}(2) \equiv-\frac{1}{2} \sum_{k=1}^{p-1} \frac{2^{k}}{k} \quad(\bmod p) . \tag{1.1}
\end{equation*}
$$

Recently Skula conjectured that for any prime $p \geq 5$,

$$
\begin{equation*}
q_{p}(2)^{2} \equiv-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

[^0]Applying certain polynomial congruences, Granville [7] proved the congruence (1.2). In this note, we give an elementary proof of this congruence which is based on congruences for some harmonic type sums.

Remark 1.1. Recently, given a prime p and a positive integer $r<p-1, \mathrm{R}$. Tauraso [14, Theorem 2.3] established the congruence $\sum_{k=1}^{p-1} 2^{k} / k^{r}(\bmod p)$ in terms of an alternating r-tiple harmonic sum. For example, combining this result when $r=2$ with the congruence (1.2) [14, Corollary 2.4], it follows that

$$
\sum_{1 \leq i<j \leq p-1} \frac{(-1)^{j}}{i j} \equiv q_{p}(2)^{2} \equiv-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p)
$$

2. Proof of the congruence (1.2)

The harmonic numbers H_{n} are defined by

$$
H_{n}:=\sum_{j=1}^{n} \frac{1}{j}, \quad n=1,2, \ldots
$$

where by convention $H_{0}=0$.
Lemma 2.1. For any prime $p \geq 5$ we have

$$
\begin{equation*}
q_{p}(2)^{2} \equiv \sum_{k=1}^{p-1}\left(2^{k}+\frac{1}{2^{k}}\right) \frac{H_{k}}{k+1} \quad(\bmod p) \tag{2.1}
\end{equation*}
$$

Proof. In the present proof we will always suppose that i and j are positive integers such that $i \leq p-1$ and $j \leq p-1$, and that all the summations including i and j range over the set of such pairs (i, j).

Using the congruence (1.1) and the fact that by Fermat Little Theorem, $2^{p-1} \equiv$ $1(\bmod p)$, we get

$$
\begin{align*}
q_{p}(2)^{2} & =\left(\frac{2^{p-1}-1}{p}\right)^{2} \equiv \frac{1}{4}\left(\sum_{k=1}^{p-1} \frac{2^{k}}{k}\right)^{2}=\frac{1}{4}\left(\sum_{k=1}^{p-1} \frac{2^{p-k}}{p-k}\right)^{2} \\
& \equiv \frac{1}{4}\left(2 \sum_{k=1}^{p-1} \frac{2^{(p-1)-k}}{-k}\right)^{2} \equiv\left(\sum_{k=1}^{p-1} \frac{1}{k \cdot 2^{k}}\right)^{2} \\
& =\sum_{i+j \leq p} \frac{1}{i j \cdot 2^{i+j}}+\sum_{i+j \geq p} \frac{1}{i j \cdot 2^{i+j}}-\sum_{i+j=p} \frac{1}{i j \cdot 2^{i+j}} \quad(\bmod p) . \tag{2.2}
\end{align*}
$$

The last three sums will be called S_{1}, S_{2} and S_{3}, respectively. We will determine them modulo p as follows.

$$
\begin{align*}
S_{1} & =\sum_{i+j \leq p} \frac{1}{i j \cdot 2^{i+j}}=\sum_{k=2}^{p} \sum_{i+j=k} \frac{1}{i j \cdot 2^{k}} \\
& =\sum_{k=2}^{p} \frac{1}{2^{k}} \cdot \frac{1}{k} \sum_{i=1}^{k-1}\left(\frac{1}{i}+\frac{1}{k-i}\right)=\sum_{k=2}^{p} \frac{2 H_{k-1}}{k \cdot 2^{k}}=\sum_{k=1}^{p-1} \frac{H_{k}}{(k+1) 2^{k}} . \tag{2.3}
\end{align*}
$$

Observe that the pair (i, j) satisfies $i+j=k$ for some $k \in\{p, p+1, \ldots, 2 p-2\}$ if and only if for such a k holds $(p-i)+(p-j)=l$ with $l:=2 p-k \leq p$. Accordingly, using the fact that by Fermat Little Theorem, $2^{2 p} \equiv 2^{2}(\bmod p)$, we have

$$
\begin{align*}
S_{2} & =\sum_{i+j \geq p} \frac{1}{i j \cdot 2^{i+j}}=\sum_{(p-i)+(p-j) \geq p} \frac{1}{(p-i)(p-j) \cdot 2^{(p-i)+(p-j)}} \\
& \equiv \sum_{i+j \leq p} \frac{1}{i j \cdot 2^{2 p-(i+j)}} \equiv \frac{1}{4} \sum_{i+j \leq p} \frac{2^{i+j}}{i j}=\frac{1}{4} \sum_{k=2}^{p} \sum_{i+j=k} \frac{2^{k}}{i j} \\
& =\frac{1}{4} \sum_{k=2}^{p} \frac{2^{k}}{k} \sum_{i=1}^{k-1}\left(\frac{1}{i}+\frac{1}{k-i}\right)=\sum_{k=2}^{p} \frac{2^{k-1} H_{k-1}}{k} \\
& =\sum_{k=1}^{p-1} \frac{2^{k} H_{k}}{k+1}(\bmod p) . \tag{2.4}
\end{align*}
$$

By Wolstenholme's theorem (see, e.g., [15], [6]; for its generalizations see [11, Theorems 1 and 2]) if p is a prime greater than 3 , then the numerator of the fraction $H_{p-1}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}$ is divisible by p^{2}. Hence, we find that

$$
\begin{align*}
S_{3} & =\sum_{i+j=p} \frac{1}{2^{i+j} i j}=\frac{1}{2^{p}} \sum_{i=1}^{p-1} \frac{1}{i(p-i)} \\
& =\frac{1}{p \cdot 2^{p}} \sum_{i=1}^{p-1}\left(\frac{1}{i}+\frac{1}{p-i}\right)=\frac{1}{p \cdot 2^{p-1}} H_{p-1} \equiv 0 \quad(\bmod p) . \tag{2.5}
\end{align*}
$$

Finally, substituting (2.3, 2.4 and 2.5 into (2.2), we immediately obtain 2.1).
Proof of the following result easily follows from the congruence $H_{p-1} \equiv 0$ $(\bmod p)$.

Lemma 2.2 ([13, Lemma 2.1]). Let p be an odd prime. Then

$$
\begin{equation*}
H_{p-k-1} \equiv H_{k} \quad(\bmod p) \tag{2.6}
\end{equation*}
$$

for every $k=1,2, \ldots, p-2$.
Lemma 2.3. For any prime $p \geq 5$ we have

$$
\begin{equation*}
q_{p}(2)^{2} \equiv \sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}}-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p) \tag{2.7}
\end{equation*}
$$

Proof. Since by Wolstenholme's theorem, $H_{p-1} / p \equiv 0(\bmod p)$, using this and the congruences $2^{p-1} \equiv 1(\bmod p)$ and 2.6 of Lemma 2.2 we immediately obtain

$$
\begin{align*}
\sum_{k=1}^{p-1} \frac{2^{k} H_{k}}{k+1} & \equiv \sum_{k=1}^{p-2} \frac{2^{k} H_{k}}{k+1}=\sum_{k=1}^{p-2} \frac{2^{p-k-1} H_{p-k-1}}{p-k} \\
& \equiv-\sum_{k=1}^{p-2} \frac{H_{k}}{k \cdot 2^{k}} \equiv-\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} \quad(\bmod p) \tag{2.8}
\end{align*}
$$

Further, using Wolstenholme's theorem, we have

$$
\begin{align*}
\sum_{k=1}^{p-1} \frac{H_{k}}{(k+1) 2^{k}} & =2 \sum_{k=0}^{p-2} \frac{H_{k+1}-\frac{1}{k+1}}{(k+1) 2^{k+1}}+\frac{H_{p-1}}{p \cdot 2^{p-1}} \\
& =2 \sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}}-2 \sum_{k=1}^{p-1} \frac{1}{k^{2} \cdot 2^{k}}+\frac{H_{p-1}}{p \cdot 2^{p-1}} \\
& \equiv 2 \sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}}-2 \sum_{k=1}^{p-1} \frac{1}{k^{2} \cdot 2^{k}} \quad(\bmod p) . \tag{2.9}
\end{align*}
$$

Moreover, from $2^{p} \equiv 2(\bmod p)$ we have

$$
\begin{align*}
\sum_{k=1}^{p-1} \frac{1}{k^{2} \cdot 2^{k}} & =\sum_{k=1}^{p-1} \frac{1}{(p-k)^{2} \cdot 2^{p-k}} \\
& \equiv \sum_{k=1}^{p-1} \frac{1}{k^{2} \cdot 2^{1-k}}=\frac{1}{2} \sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p) . \tag{2.10}
\end{align*}
$$

The congruences (2.8), 2.9) and 2.10 immediately yield

$$
\begin{align*}
\sum_{k=1}^{p-1}\left(2^{k}+\frac{1}{2^{k}}\right) \frac{H_{k}}{k+1} & =\sum_{k=1}^{p-1} \frac{2^{k} H_{k}}{k+1}+\sum_{k=1}^{p-1} \frac{H_{k}}{(k+1) 2^{k}} \\
& \equiv \sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}}-\sum_{k=1}^{p-1} \frac{2^{k}}{k^{2}} \quad(\bmod p) \tag{2.11}
\end{align*}
$$

Finally, comparing (2.1) of Lemma 2.1 with 2.11, we obtain the desired congruence 2.7.

Notice that the congruence $\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} \equiv 0(\bmod p)$ with a prime $p \geq 5$ is recently established by Z.W. Sun [13, Theorem 1.1 (1.1)] and it is based on the identity from [13, Lemma 2.4]. Here we give another simple proof of this congruence (Lemma 2.6).

Lemma 2.4. For any prime $p \geq 5$ we have

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} \equiv \frac{1}{2} \sum_{1 \leq i \leq j \leq p-1} \frac{2^{i}-1}{i j} \quad(\bmod p) \tag{2.12}
\end{equation*}
$$

Proof. From the identity

$$
\left(\sum_{k=1}^{p-1} \frac{1}{k}\right)\left(\sum_{k=1}^{p-1} \frac{1}{k \cdot 2^{k}}\right)=\sum_{1 \leq i<j \leq p-1} \frac{1}{i j \cdot 2^{j}}+\sum_{1 \leq j<i \leq p-1} \frac{1}{i j \cdot 2^{j}}+\sum_{k=1}^{p-1} \frac{1}{k^{2} \cdot 2^{k}},
$$

and the congruence $H_{p-1}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1} \equiv 0(\bmod p)$ it follows that

$$
\begin{equation*}
\sum_{1 \leq i<j \leq p-1} \frac{1}{i j \cdot 2^{j}}+\sum_{1 \leq j<i \leq p-1} \frac{1}{i j \cdot 2^{j}}+\sum_{k=1}^{p-1} \frac{1}{k^{2} \cdot 2^{k}} \equiv 0 \quad(\bmod p) . \tag{2.13}
\end{equation*}
$$

Since $2^{p} \equiv 2(\bmod p)$, we have

$$
\sum_{1 \leq j<i \leq p-1} \frac{1}{i j \cdot 2^{j}} \equiv \sum_{1 \leq j<i \leq p-1} \frac{1}{2} \frac{2^{p-j}}{(p-i)(p-j)} \equiv \frac{1}{2} \sum_{1 \leq i<j \leq p-1} \frac{2^{j}}{i j}(\bmod p),
$$

which substituting into 2.13 gives

$$
\begin{equation*}
\sum_{1 \leq i<j \leq p-1} \frac{1}{i j \cdot 2^{j}}+\sum_{k=1}^{p-1} \frac{1}{k^{2} \cdot 2^{k}} \equiv-\frac{1}{2} \sum_{1 \leq i<j \leq p-1} \frac{2^{j}}{i j}(\bmod p) . \tag{2.14}
\end{equation*}
$$

Further, if we observe that

$$
\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}}=\sum_{k=1}^{p-1} \frac{H_{k-1}+\frac{1}{k}}{k \cdot 2^{k}}=\sum_{1 \leq i<j \leq p-1} \frac{1}{i j \cdot 2^{j}}+\sum_{k=1}^{p-1} \frac{1}{k^{2} \cdot 2^{k}},
$$

then substituting (2.14) into the previous identity, we obtain

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} \equiv-\frac{1}{2} \sum_{1 \leq i<j \leq p-1} \frac{2^{j}}{i j} \quad(\bmod p) \tag{2.15}
\end{equation*}
$$

Since

$$
0 \equiv\left(\sum_{k=1}^{p-1} \frac{1}{k}\right)\left(\sum_{k=1}^{p-1} \frac{2^{k}}{k}\right)=\sum_{1 \leq j \leq i \leq p-1} \frac{2^{j}}{i j}+\sum_{1 \leq i<j \leq p-1} \frac{2^{j}}{i j}(\bmod p)
$$

comparing this with 2.15, we immediately obtain

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} \equiv \frac{1}{2} \sum_{1 \leq i \leq j \leq p-1} \frac{2^{i}}{i j} \quad(\bmod p) . \tag{2.16}
\end{equation*}
$$

From a well known fact that (see e.g., [9, p. 353])

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{1}{k^{2}} \equiv 0 \quad(\bmod p) \tag{2.17}
\end{equation*}
$$

we find that

$$
\sum_{1 \leq i \leq j \leq p-1} \frac{1}{i j}=\frac{1}{2}\left(\left(\sum_{k=1}^{p-1} \frac{1}{k}\right)^{2}+\sum_{k=1}^{p-1} \frac{1}{k^{2}}\right) \equiv 0 \quad(\bmod p) .
$$

Finally, the above congruence and 2.16 immediately yield the desired congruence (2.12).

Lemma 2.5. For any positive integer n we have

$$
\begin{equation*}
\sum_{1 \leq i \leq j \leq n} \frac{2^{i}-1}{i j}=\sum_{k=1}^{n} \frac{1}{k^{2}}\binom{n}{k} . \tag{2.18}
\end{equation*}
$$

Proof. Using the well known identities $\sum_{i=k}^{j}\binom{i-1}{k-1}=\binom{j}{k}$ and $\frac{1}{j}\binom{j}{k}=\frac{1}{k}\binom{j-1}{k-1}$ with $k \leq j$, and the fact that $\binom{i}{k}=0$ when $i<k$, we have

$$
\begin{aligned}
\sum_{1 \leq i \leq j \leq n} \frac{2^{i}-1}{i j} & =\sum_{1 \leq i \leq j \leq n} \frac{(1+1)^{i}-1}{i j}=\sum_{1 \leq i \leq j \leq n} \frac{1}{j} \sum_{k=1}^{i} \frac{1}{i}\binom{i}{k} \\
& =\sum_{1 \leq i \leq j \leq n} \frac{1}{j} \sum_{k=1}^{n} \frac{1}{k}\binom{i-1}{k-1}=\sum_{k=1}^{n} \frac{1}{k} \sum_{1 \leq i \leq j \leq n} \frac{1}{j}\binom{i-1}{k-1} \\
& =\sum_{k=1}^{n} \frac{1}{k} \sum_{k \leq i \leq j \leq n} \frac{1}{j}\binom{i-1}{k-1}=\sum_{k=1}^{n} \frac{1}{k} \sum_{j=k}^{n} \frac{1}{j} \sum_{i=k}^{j}\binom{i-1}{k-1} \\
& =\sum_{k=1}^{n} \frac{1}{k} \sum_{j=k}^{n} \frac{1}{j}\binom{j}{k}=\sum_{k=1}^{n} \frac{1}{k} \sum_{j=k}^{n} \frac{1}{k}\binom{j-1}{k-1} \\
& =\sum_{k=1}^{n} \frac{1}{k^{2}} \sum_{j=k}^{n}\binom{j-1}{k-1}=\sum_{k=1}^{n} \frac{1}{k^{2}}\binom{n}{k},
\end{aligned}
$$

as desired.
Lemma 2.6 ([13, Theorem 1.1 (1.1)]). For any prime $p \geq 5$ we have

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} \equiv 0 \quad(\bmod p) \tag{2.19}
\end{equation*}
$$

Proof. Using the congruence 2.12 from Lemma 2.4 and the identity 2.18 with $n=p-1$ in Lemma 2.5, we find that

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} \equiv \frac{1}{2} \sum_{k=1}^{p-1} \frac{1}{k^{2}}\binom{p-1}{k} \quad(\bmod p) \tag{2.20}
\end{equation*}
$$

It is well known (see e.g., [8]) that for $k=1,2, \ldots, p-1$,

$$
\begin{equation*}
\binom{p-1}{k} \equiv(-1)^{k} \quad(\bmod p) \tag{2.21}
\end{equation*}
$$

Then from (2.20), 2.21) and (2.17) we get

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} & \equiv \frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^{k}}{k^{2}}=\frac{1}{2}\left(2 \sum_{\substack{1 \leq j \leq p-1 \\
2 \mid j}} \frac{1}{j^{2}}-\sum_{k=1}^{p-1} \frac{1}{k^{2}}\right) \\
& =\frac{1}{4} \sum_{k=1}^{(p-1) / 2} \frac{1}{k^{2}}-\frac{1}{2} \sum_{k=1}^{p-1} \frac{1}{k^{2}} \equiv \frac{1}{4} \sum_{k=1}^{(p-1) / 2} \frac{1}{k^{2}}(\bmod p) .
\end{aligned}
$$

Finally, the above congruence together with the fact that from (2.17) (see e.g., 12 , Corollary 5.2 (a) with $k=2$])

$$
2 \sum_{k=1}^{(p-1) / 2} \frac{1}{k^{2}} \equiv \sum_{k=1}^{(p-1) / 2} \frac{1}{k^{2}}+\sum_{k=1}^{(p-1) / 2} \frac{1}{(p-k)^{2}}=\sum_{k=1}^{p-1} \frac{1}{k^{2}} \equiv 0 \quad(\bmod p)
$$

yields

$$
\sum_{k=1}^{p-1} \frac{H_{k}}{k \cdot 2^{k}} \equiv 0 \quad(\bmod p)
$$

This concludes the proof.
Proof of the congruence (1.2). The congruence 1.2) immediately follows from 2.7) of Lemma 2.3 and 2.19) of Lemma 2.6 .

References

[1] Agoh, T., Dilcher, K., Skula, L., Fermat quotients for composite moduli, J. Number Theory 66 (1997), 29-50.
[2] Cao, H. Q., Pan, H., A congruence involving product of q-binomial coefficients, J. Number Theory 121 (2006), 224-233.
[3] Ernvall, R., Metsänkylä, T., On the p-divisibility of Fermat quotients, Math. Comp. 66 (1997), 1353-1365.
[4] Glaisher, J. W. L., On the residues of the sums of the inverse powers of numbers in arithmetical progression, Quart. J. Math. 32 (1900), 271-288.
[5] Granville, A., Some conjectures related to Fermat's Last Theorem, Number Theory (Banff, AB, 1988), de Gruyter, Berlin (1990), 177-192.
[6] Granville, A., Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, Organic Mathematics-Burnaby, BC 1995, CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253-276.
[7] Granville, A., The square of the Fermat quotient, Integers 4 (2004), \# A22.
[8] Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1960.
[9] Lehmer, E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. Math. (1938), 350-360.
[10] Ribenboim, P., 13 lectures on Fermat's last theorem, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
[11] Slavutsky, I. Sh., Leudesdorf's theorem and Bernoulli numbers, Arch. Math. 35 (1999), 299-303.
[12] Sun, Z. H., Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (1-3) (2000), 193-223.
[13] Sun, Z. W., Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140 (2012), 415-428.
[14] Tauraso, R., Congruences involving alternating multiple harmonic sums, Electron. J. Comb. 17 (2010), \# R16.
[15] Wolstenholme, J., On certain properties of prime numbers, Quart. J. Pure Appl. Math. 5 (1862), 35-39.

Maritime Faculty, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro
E-mail: romeo@ac.me

[^0]: 2010 Mathematics Subject Classification: primary 11A07; secondary 11B65, 05A10.
 Key words and phrases: congruence, Fermat quotient, harmonic numbers.
 Received July 13, 2011, revised December 2011. Editor R. Kučera.
 DOI: 10.5817/AM2012-2-113

