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A CHARACTERIZATION OF HARMONIC SECTIONS
AND A LIOUVILLE THEOREM

Simão Stelmastchuk

Abstract. Let P (M,G) be a principal fiber bundle and E(M,N,G, P ) an
associated fiber bundle. Our interest is to study the harmonic sections of
the projection πE of E into M . Our first purpose is give a characterization
of harmonic sections of M into E regarding its equivariant lift. The second
purpose is to show a version of a Liouville theorem for harmonic sections of
πE .

1. Introduction

Let πE : (E, k) → (M, g) be a Riemannian submersion and σ a section of πE ,
that is, πE ◦σ = IdM . It is known that TE = V E⊕HE where V E = ker(πE∗) and
HE is the horizontal bundle orthogonal to V E. C. Wood has studied the harmonic
sections in many contexts, see [22], [24], [23], [25] and [2]. To recall, a harmonic
section is a minimal solution for the vertical energy functional

E(σ) = 1
2

∫
M

‖vσ∗‖2 vol(g) ,

where vσ∗ is the vertical component of σ∗. Furthermore, in [22], Wood showed that
if σ is a minimizer of the vertical energy functional, then

τvσ = tr∇vvσ∗ = 0 ,
where ∇v is the vertical part of the Levi-Civita connection on E, since πE has
totally geodesics fibers. Wood called σ a harmonic section if τvσ = 0.

In this work, the Riemannian submersion condition of πE will be replaced by
another submersion condition of πE . Thus, equip E, which is not necessarily a
Riemannian manifold, with a symmetric connection ∇E . Let πE : (E,∇E)→ (M, g)
be a submersion with totally geodesic fibers.

With these conditions we can define harmonic sections in the same way as Wood
[22], only observing that ∇v is the vertical connection induced by ∇E . There is
not, necessarily, a compatibility between ∇E and the Levi-Civita connection on M .
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Furthermore, the context of our study will be restricted. Let P (M,G) be a
Riemannian G-principal fiber bundle over a Riemannian manifold M such that
the projection π of P into M is a Riemannian submersion. Suppose that P has
a connection form ω. Let E(M,N,G, P ) be an associated fiber bundle of P with
fiber N , where N is a differential manifold (see for example [19, ch.1]). It is well
known that ω yields horizontal spaces on E. Our goal is to study the harmonic
sections of the projection πE : E →M .

Let F : P → N be a differential map. We call F a horizontally harmonic map if
τF ◦ (H ⊗H) = 0, where H is the horizontal lift of M into P associated to ω.

Let σ be a section of πE . There exists a unique equivariant lift Fσ : P → N
associated to σ. Our first purpose is to give a stochastic characterization horizontally
harmonic map Fσ, σ a section of πE . Furthermore, we extent Theorem 1 in [22],
namely, a section of πE is harmonic section if and only if Fσ is horizontally
harmonic. C. Wood considers πE as Riemannian submersions and we deal with πE
as submersions with totally geodesic fibers.

Our second purpose is to show our main theorem. For this, we consider P (M,G)
endowed with the Kaluza-Klein metric, M and G with the Brownian coupling
property and N with the nonconfluence property of martingales. With these
conditions we show a version of a Liouville Theorem, namely, being σ a section
of πE , if σ is a harmonic section then its equivariant lift Fσ is a constant map.
Further, we show a version of the result to harmonic sections due to T. Ishihara in
[11].

Aiming applications of our Liouville Theorem, suppose that M is a complete
Riemannian manifold with nonnegative Ricci curvature or a compact Riemannian
manifold. If its tangent bundle TM is endowed with a complete lift connection
or the Sasaky metric, then the harmonic sections σ of πTM are the 0-section. In
the same way we can establish conditions for Hopf fibrations, with a Riemannian
structure, such that the harmonic sections are the 0-section.

2. Preliminaries

In this work we use freely the concepts and notations of P. Protter [20], E. Hsu
[9], P. Meyer [17], M. Emery [7] and [8], W. Kendall [14] and S. Kobayashi and
N. Nomizu [15]. We suggest the reading of [3] for a complete survey about the
objects of this section.

Let (Ω,F , (Ft)t≥0,P) be a probability space which satisfies the usual hypotheses
(see for example [7]). Our basic assumption is that every stochastic process is
continuous.

Definition 2.1. Let M be a differential manifold. Let X be a stochastic process
with value in M . We call X a semimartingale if, for all f smooth functions on M ,
f(X) is a real semimartingale.

Let M be a differential manifold endowed with a symmetric connection ∇M . Let
X be a semimartingale in M and θ a 1-form on M defined along X. Let (x1, . . . , xn)
be a local coordinate system on M . We define the Itô integral of θ along X, locally,
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by ∫ t

0
θd∇

M

Xs =
∫ t

0
θi(Xs)dXi

s + 1
2

∫ t

0
Γijk(Xs)θi(Xs)d[Xj , Xk]s ,

where θ = θidx
i with θi smooth functions and Γijk are the Christoffel symbols of

the connection ∇M . Let b ∈ T (2,0)M be defined along X. We define the quadratic
integral on M along X, locally, by∫ t

0
b(dX, dX)s =

∫ t

0
bij(Xs)d[Xi, Xj ]s ,

where b = bijdx
i ⊗ dxj with bij smooth functions.

Let M and N be differential manifolds endowed with the symmetric connections
∇M and ∇N , respectively. Let F : M → N be a differential map and θ a section of
TN∗. We have the following geometric Itô formula:

(1)
∫ t

0
θd∇

N

F (Xs) =
∫ t

0
F ∗θd∇

M

Xs + 1
2

∫ t

0
β∗F θ(dX, dX)s ,

where βF is the second fundamental form of F (see [3] or [12] for the definition
of βF ). It is well known that F is an affine map if βF ≡ 0. Here, the second
fundamental form is important because based on this we can define harmonic maps.
Another notation for βF is ∇dF .

On the next section we will characterize harmonic maps in the stochastic way.
For that we need a concept of martingales on manifolds. Following, we define
martingales and Brownian motions in smooth manifolds. Furthermore, we will
define two important properties of both. First, we will define martingales. In
stochastic calculus the Itô integral of a real martingale is also a real martingale. In
an analogous way, martingales in manifolds are defined from the Itô integral along
a semimartingale( see for example [17] or [8]).

Definition 2.2. Let M be a differential manifold endowed with a symmetric
connection ∇M . A semimartingale X with values in M is called a ∇M -martingale
if
∫ t

0 θ d
MXs is a real local martingale for all θ ∈ Γ(TM∗).

The most relevant stochastic process in stochastic calculus is the Brownian
motion. Further, in our work, the Brownian coupling property is fundamental to
show Theorem 4.2, which gives a strong result about harmonic sections.

Definition 2.3. Let (M, g) be a Riemannian manifold. Let B be a semimartin-
gale with values in M . We say that B is a g-Brownian motion in M if B is a
∇g-martingale, where ∇g is the Levi-Civita connection of g, and for any section b
of T (2,0)M we have that

(2)
∫ t

0
b(dB, dB)s =

∫ t

0
tr bBs ds .

From (1) and (2) we deduce the useful formula:

(3)
∫ t

0
θd∇

N

F (Bs) =
∫ t

0
F ∗θd∇

g

Bs + 1
2

∫ t

0
τ∗F θBs ds ,
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where τF is the tension field of F .
From formula (2) and the Doob-Meyer decomposition it follows that F is an

harmonic map if and only if F sends g-Brownian motions to ∇N -martingales.
We now introduce a necessary material about the nonconfluence property of

martingales and the Brownian coupling property. Both will be used in Section 4.

Definition 2.4. Let M be a differential manifold endowed with a symmetric
connection ∇M . M has the nonconfluence property of martingales if for every
filtered space (Ω,F , (Ft)t≥0,P), every ∇M -martingales X and Y defined over Ω
and every finite stopping time T such that

XT = YT a.s. we have X = Y over [0, T ] .

Example 2.1. Let M = V be a n-dimensional vector space with a flat connection
∇V . Let X and Y be ∇V -martingales. Suppose that there is a stopping time
τ with respect to (Ft)t≥0, K > 0 such that τ ≤ K < ∞ and Xτ = Yτ . Then
straightforward calculus shows that Xt = Yt for t ∈ [0, τ ].

Definition 2.5. A Riemannian manifold M has the Brownian coupling property
if for all x0, y0 ∈ M we can construct a complete probability space (Ω,F ,P),
a filtration (Ft; t ≥ 0) and two Brownian motions X and Y , not necessarily
independent, but both adapted to the filtration such that

X0 = x0, Y0 = y0

and
P(Xt = Yt for some t ≥ 0) = 1 .

The stopping time T (X,Y ) = inf{t > 0;Xt = Yt} is called coupling time.

Example 2.2. Let M be a complete Riemannian manifold. In [13], W. Kendall
has showed that if M is compact or M has nonnegative Ricci curvature then M
has the Brownian coupling property.

Our next step is to construct a useful result about Brownian coupling, which
is the key to prove Theorem 4.2. Let M be a Riemmanian manifold with metric
g. Consider X and Y two g-Brownian motions in M which satisfy the Brownian
coupling property and X0 = x, Y0 = y, where x, y ∈M . Denote by T (X,Y ) their
coupling time. The process Ȳ is defined by

(4) Ȳt =
{
Yt , t ≤ T (X,Y )
Xt , t ≥ T (X,Y ) .

It follows immediately that Ȳ0 = y.

Proposition 2.1. Let M be a Riemannian manifold with metric g. Suppose that
M has the Brownian coupling property. Let X, Y be two g-Brownian motions in M
which satisfy the Brownian coupling property. Then the process Ȳ is a g-Brownian
motion in M .

Proof. It is a straightforward proof from the definition of Brownian motion. �



CHARACTERIZATION OF HARMONIC SECTIONS AND A LIOUVILLE THEOREM 153

In the sequel we explain the idea we use to prove Theorem 4.2, a theorem type
Liouville. With this we expect to show the role of the Brownian coupling property,
the nonconfluence property of martingales and the Brownian motion Ȳ .

Let (M, g) be a Riemmanian manifold with the Brownian coupling property,
N a differential manifold with a connection ∇N and the nonconfluence property
of martingales and F : M → N a harmonic map. Given x, y ∈M distinct points.
Then, by Brownian coupling property in M , there exist two Brownian motion X
and Y in M such that X0 = x, Y0 = y and the coupling time T (X,Y ) > 0. By
definition (4) and Proposition 2.1, we have the Brownian motion Ȳ . Applying F in
X and Ȳ we see that, for t ≥ T (X,Y ),

(5) F (X) = F (Ȳ ) .

Since X and Ȳ are Brownian motions and F is a harmonic map, F (X) and F (Ȳ )
are ∇N -martingales. From nonconfluence property of martingale in N we obtain
F (X0) = F (Y0). Thus we get F (x) = F (y). Because x, y are arbitrary points, F is
a constant map.

The Brownian motion Ȳ has a fundamental role in the argument above. First,
its geometric nature gives equality (5). Second, its stochastic nature turns F (Ȳ )
into a ∇N -martingale, since F is a harmonic map. Then, by nonconfluence property
of martingale, we obtain the constancy of F .

3. Harmonic sections

In this section we work to obtain a characterization of harmonic sections. Our
line of work is: first, we introduce an appropriated geometric context; second, we
define harmonic sections, horizontally harmonic maps and vertical martingales;
third, we characterize, stochastically, horizontally harmonic maps; finally we show
an equivalence between harmonic maps and horizontally harmonic maps.

Let P (M,G) be a principal fiber bundle over M and E(M,N,G, P ) an associated
fiber bundle to P (M,G), where the differential manifold N is known as fiber of E
(see for example [19, ch.1]). We denote the canonical projection from P ×N into E
by µ, namely, µ(p, ξ) = p · ξ. For each p ∈ P , we have the map µp : N → E defined
by µp(ξ) = µ(p, ξ). Let σ : M → E be a section of the projection πE : E →M , that
is, πE ◦ σ = IdM . There exists a unique equivariant lift Fσ : P → N associated to
σ, which is defined by

(6) Fσ(p) = µ−1
p ◦ σ ◦ π(p) .

The equivariance property of Fσ is given by

Fσ(p · g) = g−1 · Fσ(p) , g ∈ G .

Let us endow P and M with Riemmanian metrics k and g, respectively, such
that π : (P, k)→ (M, g) is a Riemmanian submersion. Let ω be a connection form
on P . We observe that the connection form ω yields a horizontal structure on E,
that is, for each b ∈ E, TbE = VbE ⊕ HbE, where VbE := Ker(πEb∗) and HbE
is the horizontal subspace yielded by ω on E (see for example [15, pp.87]). We
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denote by v : TE → V E and h : TE → HE the vertical and horizontal projection,
respectively.

Let ∇M denote the Levi-Civita connection on M and let ∇E be a connection
on E. We are interested in connections ∇E such that the projection πE of E into
M has totally geodesic fibers.

We denote by ∇v the vertical connection associated to ∇E on TE, that is,
∇v is the vertical projection of ∇E . In other words, since that πE has totally
geodesic fibers, for U, V vertical vector fields we have ∇vUV = v(∇EUV ). The ∇v is
usually founded in study of Riemanian submanifolds as the vertical projection of
the Levi-Civita connection.

We endow N with a connection ∇N such that, for each p ∈ P , µp is an affine
map over its image, the fiber π−1

E (x) with π(p) = x.
Let σ be a section of πE . Write σ∗ = vσ∗ + hσ∗, where vσ∗ and hσ∗ are the

vertical and the horizontal components of σ∗, respectively. The second fundamental
form for vσ∗ is defined by

βvσ = ∇̄v ◦ vσ∗ − vσ∗ ◦ ∇M ,

where ∇̄v is the induced connection on σ−1V E. The vertical tension field is given
by

τvσ = trβv
σ .

Following, we extend the definition given by C. M. Wood [24] for harmonic
sections.

Definition 3.1.
1. A section σ of πE is called a harmonic section if τvσ = 0;
2. A differential map F : P → N is called horizontally harmonic if τF ◦ (H⊗H) = 0,
where H is the horizontal lift of M into P associated to ω.

We will now give a stochastic way to characterize horizontally harmonic maps.
In the sequel, a 1-form θ on E will be called a vertical form if θ ∈ V E∗, the adjoint
of the vertical bundle V E.

Proposition 3.1. Let P (M,G) be a Riemannian principal fiber bundle endowed
with a connection form ω and M a Riemannian manifold such that the projection
π of P into M is a Riemannian submersion. Let E(M,N,G, P ) be an associated
fiber bundle to P and suppose that N has a symmetric connection ∇N . Then the
equivariant lift Fσ associated to σ, σ a section of πE, is a horizontally harmonic
map if and only if, for every horizontal Brownian motion Bh in P , Fσ(Bh) is a
∇N -martingale.

Proof. Let B be a g-Brownian motion in M and Bh a horizontal Brownian motion
in P , that is, Bh is a solution of the stochastic differential equation

(7) d∇
P

Bh = HBd
∇MB ,
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where H is the horizontal lift of M into P associated to ω. Set θ ∈ Γ(TN∗). By
geometric Itô formula (1),∫ t

0
θ d∇

N

Fσ(Bhs ) =
∫ t

0
F ∗σθ d

∇PBhs + 1
2

∫ t

0
β∗Fσθ(dB

h, dBh)s .

From (7) we see that∫ t

0
θ d∇

N

Fσ(Bhs ) =
∫ t

0
H∗F ∗σθ d

∇MBs + 1
2

∫ t

0
β∗Fσθ(HBd

∇MB,HBd
∇MB)s .

As B is a Brownian motion we have∫ t

0
θ d∇

N

Fσ(Bhs ) =
∫ t

0
H∗F ∗σθ d

∇MBs + 1
2

∫ t

0
(τHFσ )∗θ(Bs) ds ,

where τHFσ = τFσ ◦ (H ⊗H). Since θ and B are arbitrary, the Doob-Meyer decom-
position shows that

∫ t
0 θd

∇NFσ(Bhs ) is a real local martingale if and only if τHFσ
vanishes. From the definitions of martingales and horizontally harmonic maps we
conclude the proof. �

Remark 1. In equation (7) we can see that the hypothesis of Riemannian sub-
mersion over π : P →M is necessary. In fact, the horizontal Brownian motion is
defined as a solution of the Stratonovich stochastic equation, see for example [21].
However, Corollary 16 in [6] shows that Stratonovich and Itô differential equations
are equivalent because the horizontal lift of a geodesic in M is a geodesic in P ,
since π is a Riemannian submersion.

Now we will give an extension of the harmonic sections characterization obtained
by C.M. Wood (see Theorem 1 in [24]). The key of this proof is Lemma 3 in [24]
showed by Wood. The reader can see that the application of this Lemma can be
more general than Wood used in his paper [24]. In fact, it is possible to use the
same Lemma in our context. For the convenience of the reader we repeat this
Lemma without proof.

Lemma 3.2. Let P (M,G) be a Riemannian principal fiber bundle endowed with
a connection form ω and M a Riemannian manifold such that the projection π of
P into M is a Riemannian submersion. Let E(M,N,G, P ) be an associated fiber
to P endowed with a symmetric connection ∇E such that the projection πE has
totally geodesic fibers. Moreover, suppose that N has a symmetric connection ∇N
such that µp is an affine map for each p ∈ P . For any X,Y ∈ TpP we have that

µp∗βFσ (hX,hY ) = βvσ(π∗X,π∗Y ) ,

where hX,hY are the horizontal components of X,Y .

Following, we state the main theorem of this section.

Theorem 3.3. Under hypothesis of Lemma 3.2, a section σ of πE is a harmonic
section if and only if Fσ is a horizontally harmonic map.
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Proof. Let σ be a section of πE and Fσ its equivariant lift. Let Bt be a Brownian
motion and θ a vertical form on E. From Lemma 3.2 we see that βvσ(x)(X,Y ) =
µq∗βFσ (Xh, Y h), where π(q) = x and X,Y ∈ TxM . It follows that∫ t

0
βv∗σ θ(dB, dB)s =

∫ t

0
θβvσ(dB, dB)s =

∫ t

0
θµBh∗βFσ (dBh, dBh)s

=
∫ t

0
ψβFσ (dBh, dBh)s =

∫ t

0
β∗Fσψ(dBh, dBh)s,

where ψ = µ∗Bhθ is a 1-form on N . As dBh = HBtd
∇MB we have∫ t

0
βv∗σ θ(dB, dB) =

∫ t

0
β∗Fσψ(HBd

∇MB,HBd
∇MB)s .

Since B is a Brownian motion, it follows that∫ t

0
τv∗σ θ(Bs)ds =

∫ t

0
τH∗Fσ ψ(Bs) ds ,

where τHFσ = τFσ ◦ (H ⊗ H). Being B an arbitrary Brownian motion and θ an
arbitrary vertical form, we conclude that

τv∗σ = τH∗Fσ .

Therefore, σ is a harmonic section if and only if Fσ is a horizontally harmonic
map. �

Remark 2. One can think that to use of the stochastic tools is not necessary
in the proof of Theorem 3.3, because it could be just a geometric computation
from Lemma 3.2. It is not the case, because the vertical fundamental form βvσ
is not symmetric. C. Wood, in a Riemmanian context [24], worked with this
problem. He used the properties of the metric to identify the symmetric and
skew-symmetric components of the vertical fundamental form βvσ, for a section σ of
πE (see Proposition 2 and Remark 2 in [24]). Here, the quadratic integral has an
advantage, because it only computes the symmetric part of any bilinear form on
a differential manifold, since for any skew-symmetric bilinear form the quadratic
integral vanishes (see 3.14 in [7]).

4. A Liouville theorem for harmonic sections

We begin this section with the definition of the Kaluza-Klein metric on P (M,G).
Let P (M,G) be a principal fiber bundle such that the differential Lie group G has
a bi-invariant metric h, ω a connection form on P and M a Riemannian manifold
with a metric g. The Kaluza-Klein metric is defined by
(8) k = π∗g + ω∗h .

From now on P (M,G) is endowed with the Kaluza-Klein metric.
Here, the principal fiber bundle P (M,G) with Kaluza-Klein metric can be view

as particular example of the study done by D. Elworhty and W. Kendal in [5] with
respect to Brownian motions in P (M,G). In the proof of main Theorem we will
use this remark.
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Lemma 4.1. Let P (M,G) be a principal fiber bundle with a Kaluza-Klein metric
k, where g is the Riemannian metric on M and h is the bi-invariant metric on G
associated to k. The following assertions are true:

(i) Let τ : [0, 1] → P be a differential curve such that τ(t) = u · µ(t) with
τ(0) = u and µ(t) ∈ G, then∫ 1

0
k(τ̇(t), τ̇(t)) 1

2 dt =
∫ 1

0
h(µ̇(t), µ̇(t)) 1

2 dt .

(ii) Let τ : [0, 1]→ P be a differential curve. If γ is a curve in M and if µ is a
curve in G such that τ = γ(t)h · µ(t), then∫ 1

0
k(τ̇(t), τ̇(t)) 1

2 dt ≤
∫ 1

0
g(γ̇(t), γ̇(t)) 1

2 dt+
∫ 1

0
h(µ̇(t), µ̇(t)) 1

2 dt .

(iii) Let x ∈ M and u, v, w ∈ π−1(x). If a and b are points in G such that
v = u · a and w = u · b, then

dP (v, w) = dG(a, b) .

Proof. (i) and (ii) The proofs are straightforward.
(iii) Let τ : [0, 1] → P be a differential curve such that τ(0) = v and τ(1) = w.
Consider a curve γ in M such that π(τ) = γ. There exists a differential curve µ
in G such that µ(0) = a, µ(1) = b and τ = γh · µ. We observe that γ(0) = x and
γ(1) = x. This gives

∫ 1
0 g(γ̇(t), γ̇(t)) 1

2 dt = 0. Thus, from item (i) and item (ii) we
conclude that ∫ 1

0
k(τ̇(t), τ̇(t)) 1

2 dt =
∫ 1

0
h(µ̇(t), µ̇(t)) 1

2 dt .

Therefore, it is only necessary to consider vertical curves. It follows that dP (v, w) =
dP (u · a, u · b) = dG(a, b), by the definition of Riemmanian distances. �

Finally, we can show our main theorem. Liouville type theorems say, under some
conditions, that if a map is harmonic then it is a constant map. In our case, it
is not possible that the sections are constant maps because of their definition. In
fact, we will prove that if σ is a harmonic section then the equivariant map Fσ is
constant. In this sense we have a Liouville type Theorem.

Theorem 4.2. Let P (M,G) be a principal fiber bundle equipped with a Kaluza-Klein
metric and E(M,N,G, P ) an associated fiber bundle to P . Let ∇E and ∇N be
symmetric connections on E and N , respectively, such that the projection πE has
totally geodesic fibers and µp is an affine map for each p ∈ P . Moreover, if N
has the nonconfluence property of martingales and if M and G have the Brownian
coupling property, then

(i) a section σ of πE is a harmonic section if and only if Fσ is a constant
map;

(ii) the left action of G into N has a fixed point if there exists a harmonic
section σ of πE;

(iii) a section σ of πE is a harmonic section if and only if σ is parallel.



158 S. STELMASTCHUK

Proof. (i) We first suppose that Fσ is a constant map. Then it is clear that τvσ = 0,
so σ is a harmonic section.

Conversely, the proof will be divided into two parts. First, we find a suitable
stopping time τ . After, we use τ to prove that Fσ is constant over P .

Set u, v ∈ P such that π(u) = x and π(v) = x. Thus v = u · a. Since G has
the Brownian coupling property, we have two h-Brownian motions µ and ν in G
such that µ0 = e, ν0 = a. Moreover, there is a finite coupling time T (µ, ν) > 0.
Proposition 2.1 now assures that the process

(9) ν̄t =
{
νt , t ≤ T (µ, ν)
µt , t ≥ T (µ, ν)

is a h-Brownian motion in G. Take a Brownian motion X in M such that it is
independent of µ and ν and defining Xh

t ·µ(t) and Xh
t · ν̄(t). More exactly, Elworthy

and Kendall in [5] showed that Xh
t · µ(t) and Xh

t · ν̄(t) are Brownian motion in P .
Taking t > T (µ, ν) > 0 we see that

dP (Xh
t · µt, Xh

t · ν̄t) = dG(µt, ν̄t) ,
which follows from Lemma 4.1, item (iii).

Setting t ≥ T (µ, ν) we obtain Fσ(Xh
t · µt) = Fσ(Xh

t · ν̄t). Since Xh
t · µt and

Xh
t · ν̄t are Brownian motions, it follows that Fσ(Xh

t · µt) and Fσ(Xh
t · ν̄t) are

N -martingales. Using the nonconfluence property of martingale in N , we conclude
that

Fσ(Xh
0 · µ0) = Fσ(Xh

0 · ν̄0) .
It follows immediately that Fσ(u) = Fσ(v). Consequently, Fσ is a constant map
over fibers.

As Fσ is a constant map over fibers we have a good definition for the map F̃σ
from M into N defined by F̃σ(x) = Fσ(p) such that π(p) = x. Let x, y be distinct
points in M . The Brownian coupling property yields two Brownian motion X,Y in
M such that X0 = x, Y0 = y and the coupling time T (X,Y ) is finite and positive.
Proposition 2.1 now assures that the process

(10) Ȳt =
{
Yt , t ≤ T (X,Y )
Xt , t ≥ T (X,Y )

is a g-Brownian motion in M . Applying F̃ at X and Ȳ we obtain for t > T (X,Y )
that
(11) F̃σ(Xt) = F̃σ(Ȳt) .
Let Xh

t and Ȳ ht be two horizontal Brownian motions in P associated to X and Ȳ ,
respectively, such that Xh

0 = u and Ȳ h0 = v. From (11) we see for t > T (X,Y ) that
(12) Fσ(Xh

t ) = Fσ(Ȳ ht ) .
Since σ is a harmonic section, from Theorem 3.3 we see that Fσ is a horizon-

tally harmonic map. Proposition 3.1 now shows that Fσ(Xh
t ) and Fσ(Ȳ ht ) are

∇N -martingales in N . Since N has the nonconfluence property of martingales,
Fσ(Xh

0 ) = Fσ(Ȳ h0 ) .
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It follows immediately that Fσ(u) = Fσ(v). Consequently, Fσ is a constant map.
(ii) Let σ be a harmonic section of πE . From item (i) there exists ξ ∈ N such that
Fσ(p) = ξ for all p ∈ P . We claim that ξ is a fixed point. In fact, set a ∈ G. From
the equivariant property of Fσ we deduce that

a · ξ = a · Fσ(p) = Fσ(p · a−1) = ξ .

(iii) Let σ be a section of πE . Suppose that σ is parallel. Then σ∗(X) is horizontal
for all X ∈ TM (see for example [15], pp.114). This gives vσ∗(X) = 0. Then it is
clear, by definition, that σ is a harmonic section.

Suppose that σ is a harmonic section. From item (i) it follows that there is
ξ ∈ N such that Fσ(p) = ξ for all p ∈ P . By the definition of equivariant lift,

σ(x) = σ ◦ π(p) = µ(p, ξ) = µξ(p) , π(p) = x ,

where µξ is an application from P into E. Take v ∈ TxM and let γ(t) be a curve
in M such that γ(0) = x and γ̇(0) = v. Then,

σ∗(v) = d

dt

∣∣∣∣
0
σ ◦ γ(t) = d

dt

∣∣∣∣
0
µξ ◦ γh(t) = µξ∗(γ̇h(0)) ,

where γh is the horizontal lift of γ into P . Since γ̇h(0) is a horizontal vector in P ,
so µξ∗(γ̇h(0)) is also horizontal in E (see for example [15], pp.87). Therefore σ∗(v)
is a horizontal vector. So we conclude that σ is parallel. �

Remark 3. Item i) of Theorem 4.2 can be weakened in the following way. Under
the same hypothesis of Theorem 4.2, but without assumption that M has the
Brownian coupling property, if σ is a harmonic section, then Fσ is constant over
the fibers of P .

5. Examples

In this section, we will give three applications. First, using Theorem 4.2 we show
that the unique harmonic section in the tangent bundle with complete lift is the
0-section. Also, from Theorem 4.2 we will show that under geometric conditions the
unique harmonic section in the Tangent bundle with Sasaki metric is null. Finally,
we will work with Hopf fibrations and harmonic sections.

Tangent bundle with complete lift

Let (M, g) be a complete Riemannian manifold which is compact or has nonne-
gative Ricci curvature. Let us denote by TM the tangent bundle associated to M .
It is clear that TM is an associated fiber bundle to the orthonormal frame bundles
OM , with fiber Rn. It is possible to introduce a Kaluza-Klein metric on OM . In
fact, the Lie group O(n) is the group acting on OM , and O(n) is a compact group.
Therefore, there exists a bi-invariant metric h on O(n) (see Theorem 3.8 in [1]).
Thus, we define the Kaluza-Klein metric on OM in the same way that (8).

To study harmonic sections of πE we need to introduce a connection on TM .
Given a symmetric connection on M , we can prolong ∇ to a connection on TM . A
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well known way to prolong it is the complete lift ∇c (see [10] for the definition of
∇c). Let X,Y be vector fields on M , so ∇c satisfies the following equations:

(13)

∇cXV Y
V = 0

∇cXV Y
H = 0 ,

∇cXHY
V = (∇XY )V ,

∇cXHY
H = (∇XY )H + γ(R(−, X)Y ,

where R(−, X)Y denotes a tensor field W of type (1,1) on M such that W (Z) =
R(Z,X)Y for any Z ∈ T (1,0)M , and γ is a lift of tensors, which is defined at page
12 in [10].

We claim that the applications µp : Rn → TM , for all p ∈ OM , are harmonic
maps over their images. Since the second fundamental form is a tensor, it is
sufficient to show that βµp = 0 for local coordinates. In fact, let (Rn, να) be a
coordinate system in Rn. Let us denote by ∂α the coordinate vector fields on
(Rn, να). Applying βµp on the coordinate vector fields we deduce that

βxµp(∂α, ∂β) = ∇x∂αµp∗∂β − µp∗(∇
Rn
∂α ∂β) .

Observing that ∇x ≡ 0 we get βxµp(∂α, ∂β) = 0. So βxµp ≡ 0. It follows that µp, for
all p ∈ P , are affine maps. Furthermore, ∇c is a symmetric connection because
∇ is also a symmetric connection (see Proposition 6.1 in [10, Ch.1]), and πTM is
a submersion with totally geodesic fibers. Besides, it follows from examples 2.1
and 2.2 that M and O(n) have the Brownian coupling property, and Rn has the
nonconfluence property of martingales.

Proposition 5.1. Let M be a Riemannian manifold, ∇ a symmetric connection
on M and TM its tangent bundle. Suppose that TM is endowed with the complete
lift connection ∇c and Rn is endowed with the euclidian metric. If σ is a section
of πTM , then σ is the 0-section.

Proof. Let σ be a harmonic section of πTM . By Theorem 4.2, item (i), there exists
ξ ∈ N such that Fσ(u) = ξ for all u ∈ P . Moreover, by item (ii) of Theorem 4.2, ξ
is a fixed point of the left action of O(n) into Rn. We observe that 0 ∈ Rn is the
unique fixed point of the left action. We thus get Fσ(u) = 0. Therefore σ is the
0-section. �

Tangent bundle with Sasaki metric

Let M be a complete Riemannian manifold which is compact or has non-
negative Ricci curvature. Let OM be the orthonormal frame bundle endowed
with the Kaluza-Klein metric. See the first paragraph at the example above to
the construction of the Kaluza-Klein metric on OM . Let TM be the tangent
bundle equipped with the Sasaki metric gs. Thus πE is a Riemannian submersion
with totally geodesic fibers and, for each p ∈ P , µp is an isometric map (see for
example [18]). From these assumptions and Examples 2.1 and 2.2 it follows that
the hypotheses of Theorem 4.2 are satisfied.
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Proposition 5.2. Under the conditions stated above, if σ is a harmonic section
of πTM , then σ is the 0-section.

Proof. The proof is analogous to the proof of Proposition 5.1. �

Hopf fibration

Let S1 → S2n−1 → CPn−1 be a Hopf fibration. It is well known that S2n−1(CPn−1,
S1) is a principal fiber bundle. We recall that U(1) ∼= S1. Let φ be the application
of U(1)× Cm into Cm given by
(14) (g, (z1, . . . , zm))→ g · (z1, . . . , zm) = (gz1, . . . , gzm) .
Clearly, φ is a left action of U(1) into Cm. Thus, we can consider Cm as the fiber of
the associated fiber bundle E(CPn−1,Cm, S1, S2n−1), where E = S2n−1 ×U(1) Cm.
We are considering the canonical scalar product 〈, 〉 on Cm and the induced
Riemannian metric g on CPn−1. Since U(1) is invariant by 〈, 〉, there exists one
and only one Riemannian metric ĝ on E such that πE is a Riemannian submersion
of (E, ĝ) into (CPn−1, g) with totally geodesic fibers isometrics to (Cm, 〈, 〉) (see
for example [12]). From these assumptions and examples 2.1 and 2.2 wee see that
the hypotheses of Theorem 4.2 hold.

Proposition 5.3. Under the conditions stated above, if σ is a harmonic section
of πE, then σ is the 0-section.

Proof. We first observe that (0, . . . , 0) is the unique fixed point of the left action
(14). Since σ is a harmonic section, from Theorem 4.2 we see that Fσ is a constant
map and Fσ(p) = (0, . . . , 0) for all p ∈ S2n−1. Therefore σ is the 0-section. �
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