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COMPACT SPACE-LIKE HYPERSURFACES

WITH CONSTANT SCALAR CURVATURE

IN LOCALLY SYMMETRIC LORENTZ SPACES

Yaning Wang and Ximin Liu

Abstract. A new class of (n+ 1)-dimensional Lorentz spaces of index 1 is
introduced which satisfies some geometric conditions and can be regarded
as a generalization of Lorentz space form. Then, the compact space-like
hypersurface with constant scalar curvature of this spaces is investigated and
a gap theorem for the hypersurface is obtained.

1. Introduction

Let Nn+p
p be an (n + p)-dimensional connected semi-Riemannian manifold of

index p. It is called a semi-definite space of index p. When we refer to index p,
we mean that there are only p negative eigenvalues of semi-Riemannian metric of
Nn+p
p and the other eigenvalues are positive. In particular, Nn+1

1 is called a Lorentz
space when p = 1. When the Lorentz space Nn+1

1 is of constant curvature c, we
call it Lorentz space form, denote it by Nn+1

1 (c), with de Sitter space Sn+1
1 (1) and

anti-de Sitter space Hn+1
1 (−1) as its special cases. A hypersurface M of a Lorentz

space is said to be space-like if the induced metric from that of the ambient space
is positive definite.

The authors in [3] introduced a class of Lorentz spaces M of index 1. Let ∇, K
and R denote the semi-Riemannian connection, sectional curvature and curvature
tensor on M , respectively. For constant c1, c2 and c3, they considered Lorentz
spaces which satisfy the following conditions:

(1) for any space-like vector u and any time-like vector v, K(u, v) = − c1n ,
(2) for any space-like vector u and v, K(u, v) ≥ c2,
(3)

|∇R| ≤ c3

n
.
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When M satisfies conditions (1) and (2), they say that M satisfies condition (∗).
When M satisfies conditions (1)− (3), they say that M satisfies condition (∗∗).

Also they give some examples as following.

Example 1.1. The semi-Riemannian product manifold Hk1 (− c1n )×Mn+1−k(c2),
c1 > 0. Its sectional curvature is given by

K(u1, ub) = K(ua, ub) = −c1

n
, K(ua, ur) = 0 , K(ur, us) = c2 ,

where a, b = 2, . . . , k; r, s = k + 1, . . . , n + 1, u1 and ua, ur denote time-like and
space-like vectors respectively.

Example 1.2. The semi-Riemannian product manifold Rk1 × Sn+1−k(1). Its sec-
tional curvature is given by

K(u1, ua) = K(ua, ub) = 0, K(u1, ur) = 0 , K(ur, us) = 1 ,
where a, b = 2, . . . , k; r, s = k + 1, . . . , n + 1. In particular, R1

1 × Sn(1) is called
Einstein Static Universe. Notice that it is not a Lorentz space form.

The authors in [2, 8] investigated complete space-like hypersurfaces M in a Lo-
rentz space satisfying condition (∗∗). They estimate the square norm of the second
fundamental form of M under some conditions. Baek-Cheng-Suh in [3] studied
complete space-like hypersurfaces with constant mean curvature satisfying the
condition (∗). Later, Xu and Chen in [9] generalized the related results in [3] by
investigating complete space-like submanifolds with constant mean curvature in
locally symmetric semi-Riemannian spaces. Recently, Liu and Wei in [4] obtained
a gap theorem for complete space-like hypersurface with constant scalar curvature
in locally symmetric Lorentz spaces.

Now we consider Lorentz spaces which satisfy another condition:
(4) for any space-like vectors u and v, K(u, v) ≤ c2.
When M satisfies conditions (1) and (4), we shall say that M satisfies conditions

(∗). When M satisfies conditions (1), (3) and (4), we shall say that M satisfies
condition (∗∗). In this paper, we mainly discuss the compact space-like hypersurfaces
with constant scalar curvature in a locally symmetric Lorentz spaces satisfying the
condition (∗). It is worthy to point out that both Example 1.1 and 1.2 satisfy the
condition (∗).

Remark 1.3. It is easy to see that a Lorentz space form Nn+1
1 (s) satisfies both

conditions (∗∗) and (∗∗), where − c1n = c2 = s.

Remark 1.4. If a Lorentz space M is locally symmetric, then the condition (3)
holds naturally, because ∇R = 0 in this situation.

Remark 1.5. As discussed in section 4, our theorem extend the results in [6]
under some geometric conditions.

2. Preliminaries

Let (M, g) be an (n+ 1)-dimensional Lorentz space of index 1. Throughout the
paper, manifolds are assumed to be connected and geometric objects are assumed
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to be of class C∞. For any point p ∈M , we choose a local field of semi-orthonormal
frames {eA} = {e1, e2, . . . , en+1} on a neighborhood of p, where e1, . . . , en are
space-like and en+1 is time-like. We use the following convention on the range of
indices throughout the paper

A,B, . . . = 1, . . . , n+ 1 ; i, j, . . . = 1, 2, . . . , n .

Let {ωA} = {ω1, ω2, . . . , ωn+1} denote the dual frame fields of {eA} on M . The
metric tensor g of M satisfies g(eA, eB) = εAδAB, where ε1 = . . . = εn = 1 and
εn+1 = −1. The canonical forms {ωA} and the connection forms {ωAB} satisfy the
following structure equations

dωA = −
∑
B

εBωAB ∧ ωB , ωAB + ωBA = 0 ,(2.1)

dωAB = −
∑
C

εCωAC ∧ ωCB −
1
2
∑
C,D

εCεDRABCDωC ∧ ωD .(2.2)

The components RCD of the Ricci tensor and the scalar curvature R are given
respectively by

RCD =
∑
B

εBRBCDB ,(2.3)

and

R =
∑
A

εARAA .(2.4)

The components RABCD;E of the covariant derivative of the Riemannian curva-
ture tensor R are defined by

(2.5)
∑
E

εERABCD;E

= dRABCD−
∑
E

εE(REBCDωEA+RAECDωEB +RABEDωEC +RABCEωED) .

Restricting the forms {ωA} to a space-like hypersurface M in M , we have

(2.6) ωn+1 = 0 ,

and the induced metric g of M is given by g =
∑
i

ωi ⊗ ωi. It is well known that by

Cartan’s Lemma we get

(2.7) ω(n+1)i =
∑
j

hijωj , hij = hji ,

where hij are the coefficients of the second fundamental form of M . Then we denote
by H = 1

n

∑
i

hii and S =
∑
ij

h2
ij the mean curvature and squared norm of the

second fundamental form of M , respectively.
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The structure equations of M are given by

dωi = −
∑
i

ωij ∧ ωj , ωij + ωji = 0 ,(2.8)

dωij = −
∑
k

ωik ∧ ωkj −
1
2
∑
k,l

Rijklωk ∧ ωl .(2.9)

The Gauss equation is given by

(2.10) Rijkl = Rijkl + (hikhjl − hilhjk) .

The Ricci tensor and normalized scalar curvature of M are given respectively by

Rij =
∑
k

Rkijk − nHhij +
∑
k

hikhkj ,(2.11)

and

n(n− 1)R =
∑
j,k

Rkjjk − n2H2 + S .(2.12)

Let M be a locally symmetric Lorentz space satisfying the condition (∗). We
know that the scalar curvature R of M is a constant. By using the structure
equations of M , we have

(2.13) R =
∑
A

εARAA = −2
∑
i

R(n+1)ii(n+1) +
∑
i,j

Rijji = −2c1 +
∑
i,j

Rijji ,

which means that
∑
i,j

Rijji is a constant. We assume from now that the scalar

curvature R of M is constant. Together with the above equation and (2.12), we
define a constant P by

(2.14) n(n− 1)P = n2H2 − S =
∑
ij

Rijji − n(n− 1)R .

By taking exterior differentiation of (2.7) and defining hijk by

(2.15)
∑
k

hijkωk = dhij −
∑
k

(hkjωki + hikωkj) ,

we have the following Codazzi equation

(2.16) hijk − hikj = R(n+1)ijk.

Similarly, we define hijkl by

(2.17)
∑
l

hijklωl = dhijk −
∑
l

(hljkωli + hilkωlj + hijlωlk) .

By taking exterior differentiation of (2.15), we have Ricci formula for the second
fundamental form of M

(2.18) hijkl − hijlk = −
∑
r

(hirRrjkl + hjrRrikl) .
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Restricting (2.5) on M , R(n+1)ijk;l is given by

R(n+1)ijk;l = R(n+1)ijkl +R(n+1)i(n+1)khjl

+R(n+1)ij(n+1)hkl +
∑
m

Rmijkhml ,(2.19)

where R(n+1)ijkl denote the covariant derivative of R(n+1)ijk as a tensor on M by∑
l

R(n+1)ijklωl = dR(n+1)ijk −
∑
l

R(n+1)ljkωli

−
∑
l

R(n+1)ilkωlj −
∑
l

R(n+1)ijlωlk .(2.20)

Remark 2.1. If M is a Lorentz space form of index 1, by a straightforward
calculation we check that the sum of the last three terms of right-hand side of
(2.19) goes to zero. Then we have R(n+1)ijk;l = R(n+1)ijkl, which is the same as in
the case that the ambient space is a space form.

It is well known that the Laplacian ∆hij is defined by

(2.21) ∆hij =
∑
k

hijkk .

By using Codazzi equation and Ricci formula, we get

(2.22)

∆hij =
∑
k

hikjk +
∑
k

R(n+1)ijkk =
∑
k

hkijk +
∑
k

R(n+1)ijkk

=
∑
k

(
hkikj −

∑
l

(hklRlijk + hilRlkjk) +R(n+1)ijkk

)
.

From the Codazzi equation hikjk = hkkij +R(n+1)kikj , we have

∆hij =
∑
k

hkkij +
∑
k

(
R(n+1)ijkk +R(n+1)kikj

)
−
∑
k,l

(
hklRlijk + hilRlkjk

)
.

Together with Gauss equation and above equation and (2.19), we have

(2.23)

∆hij =
∑
k

hkkij +
∑
k

(
R(n+1)ijk;k +R(n+1)kik;j

)
−
∑
k,l

(
2hklRlijk + hjlRlkik + hilRlkjk

)
+ Shij

−
∑
k

(
hkkR(n+1)ij(n+1) + hijR(n+1)k(n+1)k

)
− nH

∑
l

hilhjl .
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Thus
1
2∆S =

∑
i,j,k

h2
ijk +

∑
i,j

hij∆hij

=
∑
i,j,k

h2
ijk +

∑
i,j

(nH)ijhij +
∑
i,j,k

(
R(n+1)ijk;k +R(n+1)kik;j

)
hij

−
(
nH

∑
i,j

hijR(n+1)ij(n+1) + S
∑
k

R(n+1)k(n+1)k

)
+ S2

−
∑
i,j,k,l

2
(
hklhijRlijk + hilhijRlkjk

)
− nH

∑
i,j,l

hilhljhij .

(2.24)

3. Estimates of Laplacian and Key lemmas

Let M be a locally symmetric Lorentz space, i.e., RABCD;E = 0. We also may
choose a canonical bases {e1, e2, . . . , en} such that hij = λiδij , thus

(3.1) R(n+1)ijk;k +R(n+1)kik;j = 0 .

Noticing that M satisfies condition (∗), we have

−
(
nH

∑
i,j

hijR(n+1)ij(n+1) + S
∑
k

R(n+1)k(n+1)k

)
= −

(
nH

∑
i

λiR(n+1)ii(n+1) + S
∑
i

R(n+1)i(n+1)i

)
= c1(S − nH2) .

(3.2)

Also we have
−
∑
i,j,k,l

2(hklhijRlijk + hilhijRlkjk)

= − 2
∑
j,k

(λjλk − λ2
k)Rkjjk ≤ c2

∑
j,k

(λj − λk)2 = 2c2(nS − n2H2) .
(3.3)

Substituting (3.1), (3.2) and (3.3) in to (2.24), it yields that

(3.4) 1
2∆S ≤

∑
i,k

h2
iik+

∑
i

λi(nH)ii+ (2nc2 + c1)(S−nH2) + (S2−nH
∑
i

λ3
i ) .

Lemma 3.1 ([7]). Let {µ1, µ2, . . . , µn} be real numbers satisfying
∑
i

µi = 0 and∑
i

µ2
i = A, where A is a constant no less than zero. Then we have∣∣∣∑

i

µ3
i

∣∣∣ ≤ n− 2√
n(n− 1)

A
3
2 ,

and the equality holds if and only if at least n− 1 of the µi are equal, i.e.,

µ1 = µ2 = . . . = µn−1 = −

√
1

n(n− 1)A, µn =
√
n− 1
n

A .
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Lemma 3.2. Let M be a space-like hypersurface with constant normalized scalar
curvature R in locally symmetric (n+ 1)-dimensional Lorentz space satisfying the
condition (∗). If hijk ≥ 0, then∑

i,j,k

h2
ijk ≤ n2|∇H|2 .

Proof. Notice that the following equation holds:

n2|∇H|2 =
∑
k

(∑
i,j

hijk
)2 =

∑
i,j,k,l,m

hijkhlmk

=
∑
i,j,k

h2
ijk +

∑
i6=l,j,k,m

hijkhlmk +
∑
i,j 6=m,k

hijkhimk .

Then the proof follows from the above equation. �

Next we will use the well known self-adjoint operator � introduced in [1] to the
function nH and using (2.14), we have

�(nH) :=
∑
i,j

(nHδij − hij)(nH)ij

= 1
2∆(nH)2 −

∑
i

(nH)2
i −

∑
i

λi(nH)ii

= 1
2∆(n(n− 1)P ) + 1

2∆S − n2|∇H|2 −
∑
i

λi(nH)ii .

(3.5)

By (2.14), we know that P is a constant, so we have 1
2 ∆(n(n − 1)P ) = 0. Then

substituting (3.4) to (3.5), we obtain

(3.6) �(nH) ≤
∑
i,j,k

h2
ijk − n2|∇H|2 + (2nc2 + c1)(S − nH2) + (S2 − nH

∑
i

λ3
i ) .

Lemma 3.3. Let M be a compact space-like hypersurface of dimension n with
constant scalar curvature in a locally symmetric Lorentz space which satisfies
condition (∗) and hijk ≥ 0. Then we have the following inequality

�(nH) ≤ n− 1
n

(S − nP )φP (S) ,

where φP (S) = nc − 2(n − 1)P + n−2
n S + n−2

n

√
(n(n− 1)P + S)(s− nP ) and

c = 2c2 + c1
n .

Proof. We denote
µi = λi −H, B =

∑
i

µ2
i .

It is obvious to see that∑
i

µi = 0 , B = S − nH2 ,
∑
i

λ3
i =

∑
i

µ3
i + 3HB + nH3 .
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By using Lemma 3.1, we have

−nH
∑
i

λ3
i =− n2H4 − 3nH2B − nH

∑
i

µ3
i

≤2n2H4 − 3nSH2 + n(n− 2)√
n(n− 1)

‖H‖B 3
2 .

(3.7)

Substituting (3.7) to (3.6) and together with the Lemma 3.2, we get

(3.8) �(nH) ≤ B
(
nc− nH2 +B + n(n− 2)√

n(n− 1)
‖H‖B 1

2

)
.

It follows from (2.14) that

(3.9) B = S − nH2 = n− 1
n

(S − nP ) .

Putting the above equation into (3.8), we get

(3.10) �(nH) ≤ n− 1
n

(S − nP )φH(S) ,

where

(3.11) φH(S) = nc− 2nH2 + S + n(n− 2)√
n(n− 1)

‖H‖
√
S − nH2 .

Putting (3.9) into (3.11), we have

φP (S) = nc− 2(n− 1)P + n− 2
n

S + n− 2
n

√
(n(n− 1)P + S)(S − nP ) .

Finally, (3.10) becomes

(3.12) �(nH) ≤ n− 1
n

(S − nP )φP (S) ,

then we complete the proof. �

4. Main theorems and proofs

Theorem 4.1. Let M be a compact space-like hypersurface of dimension n (where
n > 2) with constant scalar curvature in a locally symmetric Lorentz space of
dimension n + 1 which satisfies condition (∗) and hijk ≥ 0. If 0 ≤ c ≤ P or
c ≤ P < 2

nc or P > 1
n−1c, c < 0, then the norm square of the second fundamental

form S satisfies

S ≥ n

(n− 2)(nP − 2c)
(
n(n− 1)P 2 − 4c(n− 1)P + nc2) ,

where P is given by (2.14) and c = 2c2 + c1
n .

Proof. Since � is a self-adjoint operator and M is compact, then we have

(4.1)
∫
M

�(nH) ∗ 1 = 0 .
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We notice that S − nP ≥ 0 holds naturally by (3.9) because S ≥ nH2. By taking
integration on both sides of (3.12), we get φP (S) ≥ 0. By directly calculation we
see that φP (S) ≥ 0 is equivalent to

S ≥ n

n− 2
(
2(n− 1)P − nc

)
or

n

(n− 2)(nP − 2c)
(
n(n− 1)P 2− 4c(n− 1)P +nc2) ≤ S < n

n− 2
(
2(n− 1)P −nc

)
.

By solving the above inequalities, we complete the proof. �

Theorem 4.2. Let M be a compact space-like hypersurface of dimension n (where
n > 2) with constant scalar curvature in a locally symmetric Lorentz space of
dimension n + 1 which satisfies condition (∗) and hijk ≥ 0 and 0 ≤ c ≤ P or
c ≤ P < 2

nc or P > 1
n−1c, c < 0. If the norm square of the second fundamental

form S satisfies

(4.2) nP ≤ S ≤ n

(n− 2)(nP − 2c)
(
n(n− 1)P 2 − 4c(n− 1)P + nc2),

then
(i) S = nP and M is totally umbilical, or
(ii) S = n

(n−2)(nP−2c)
(
n(n− 1)P 2 − 4c(n− 1)P + nc2) and M has two distinct

principal curvatures.

Proof. Together with (4.2) and the definition of P , we see that the right-hand
side term of (3.12) is non-positive. As in proof of Theorem 4.1, we take integration
on both sides of (3.12) and notice (4.1), we have (S−nP )φP (S) = 0. In particular,
we notice that φP (S) = 0 if and only if the equality holds in Lemma 3.1, thus we
prove the theorem. �

Remark 4.3. Let M in Theorem 4.2 be a Lorentz space form with constant
sectional curvature s. In particular, we assume that s = 1 such that M is nothing
but a de Sitter space. As seen in Remark 1.3, we have − c1n = c2 = 1. Thus c defined
in Lemma 3.3 is 1. Then our theorem is just like Liu’s corollary in [6].

Finally, we discuss the compact space-like surface in a locally symmetric Lorentz
spaces of dimension 3, i.e., the version of n = 2 of the Theorem 4.1. We using the
convention of the ranges of the indexes as following

i, j, k = 1, 2 , A,B,C = 1, 2, 3 .

Theorem 4.4. Let M be a compact space-like surface with constant scalar curvature
in a locally symmetric 3-Minkowski space which satisfies condition (∗) and hijk ≥ 0.
Then

P ≤ c ,
where P is given by (2.14) and c = 2c2 + c1

n and hijk is defined by (2.15).

Proof. We notice that when n = 2, (3.12) becomes �(2H) ≤ (S − 2P )(c − P ).
Taking integration on both sides of the inequality, then we complete the proof. �
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Corollary 4.5. Let M be a compact space-like surface with constant scalar cur-
vature in a locally symmetric 3-Minkowski space which satisfies condition (∗) and
hijk ≥ 0. If P ≥ c, then

(i) S = 2P and M is totally umbilical, or
(ii) P = c.

The proof is the same as the proof of Theorem 4.2.

Acknowledgement. The authors would like to thank the referee for the valuable
suggestions and comments for the improvement of this paper.
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