ARCHIVUM MATHEMATICUM (BRNO) Tomus 48 (2012), 183–196

ON μ -SINGULAR AND μ -EXTENDING MODULES

Yahya Talebi and Ali Reza Moniri Hamzekolaee

ABSTRACT. Let M be a module and μ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a μ -essential submodule provided it has a non-zero intersection with any non-zero submodule in μ . We define and investigate μ -singular modules. We also introduce μ -extending and weakly μ -extending modules and mainly study weakly μ -extending modules. We give some characterizations of μ -co-H-rings by weakly μ -extending modules. Let R be a right non- μ -singular ring such that all injective modules are non- μ -singular, then R is right μ -co-H-ring if and only if R is a QF-ring.

1. Introduction

Let R be a ring with identity. All modules we consider are unitary right R-modules and we denote the category of all such modules by Mod - R.

Let μ be a class of modules. For any module M the trace of μ in M is denoted by $\text{Tr}(\mu, M) = \sum \{\text{Im } f : f \in \text{Hom}(C, M), C \in \mu\}$. Dually the reject of μ in M is denoted by $\text{Rej}(M, \mu) = \bigcap \{\text{Ker } f : f \in \text{Hom}(M, C), C \in \mu\}$.

Let N be a submodule of M ($N \leq M$). The notations $N \ll M$, $N \leq_e M$ and $N \leq_d M$ is used for a small submodule, an essential submodule and a direct summand of M, respectively. Soc(M) will denote the socle of M. An R-module M is said to be small, if $M \cong L \ll K$ for some R-modules L and K. Dually, M is called singular if $M \cong N/K$ such that $K \leq_e N$. Every module M contains a largest singular submodule which is denoted by Z(M). Then $Z(M) = \text{Tr}(\mathcal{U}, M)$ where \mathcal{U} denotes the class of all singular modules.

Simple modules split into four disjoint classes by combining the exclusive choices [injective or small] and [projective or singular]. Also note that if a module M is singular and projective, then it is zero.

Talebi and Vanaja in [10], define cosingular modules as a dual of singular modules. Let M be a module and \mathcal{M} denotes the class of all small modules. Then $\overline{Z}(M) = \bigcap \{\ker g \mid g \in \operatorname{Hom}(M,L), L \in \mathcal{M}\}$ is a submodule of M. Then M is called $\operatorname{cosingular}(\operatorname{non-cosingular})$ if $\overline{Z}(M) = 0$ ($\overline{Z}(M) = M$). Every small module

Received April 6, 2011, revised June 25, 2012. Editor J. Trlifaj.

DOI: 10.5817/AM2012-3-183

²⁰¹⁰ Mathematics Subject Classification: primary 16S90; secondary 16D10, 16D70, 16D99. Key words and phrases: μ -essential submodule, μ -singular module, μ -extending module, weakly μ -extending module.

is cosingular. The class of all cosingular modules is closed under submodules, direct sums and direct products ([10, Corollary 2.2]).

In Section 2, we give the definition of μ -singular modules and discuss some properties of such modules. It is proved that R is a GCO-ring (i.e. every simple singular module is injective) if and only if for every \mathcal{M} -singular module N, $\overline{Z}(N) = N$ if and only if for every δ -singular module N, $\overline{Z}(N) = N$ (Corollary 2.14). When we consider the class of all finitely cogenerated modules \mathcal{FC} we prove that every finitely cogenerated R-module is projective if and only if for every \mathcal{FC} -singular R-module N, $\operatorname{Rej}(N,\mathcal{FC}) = N$ if and only if R is semisimple Artinian (Corollary 2.16).

In Section 3, we define μ -extending and weakly μ -extending modules and show that any direct summand of a weakly μ -extending module and any homomorphic image of a weakly μ -extending module are weakly μ -extending modules (Proposition 3.12 and Corollary 3.13).

In Section 4, we discuss when a direct sum of weakly μ -extending modules is a weakly μ -extending module. We show that a direct sum of a μ -singular module and a semisimple module is weakly μ -extending (Theorem 4.2).

In Section 5, we study rings in which every projective module is μ -extending. We call such rings μ -co-H-ring. We show that a ring R is μ -co-H-ring if and only if every R-module is weakly μ -extending (Theorem 5.3). Let R be a right non- μ -singular ring such that all injective modules are non- μ -singular, then R is right μ -co-H-ring if and only if R is a QF-ring (Corollary 5.6).

In this paper μ will be a class in Mod -R which is closed under isomorphisms and submodules, unless otherwise stated. We shall call any member of μ , a μ -module. In this article we denote the following classes:

```
\begin{split} \mathcal{S} &= \{ M \in \operatorname{Mod} - R, M \text{ is simple} \}, \\ \mathcal{M} &= \{ M \in \operatorname{Mod} - R, M \text{ is small} \}, \\ \delta &= \{ M \in \operatorname{Mod} - R, \overline{Z}(M) = 0 \}, \\ \mu - \operatorname{Sing} &= \{ M \in \operatorname{Mod} - R, M \text{ is } \mu\text{-singular} \}, \\ \mathcal{FC} &= \{ M \in \operatorname{Mod} - R, M \text{ is finitely cogenerated} \}. \end{split}
```

2. μ -singular modules

Özcan in [8], investigate some properties of μ -essential submodules. Let M be a module and $N \leq M$. Then N is called a μ -essential submodule of M, denoted by $N \leq_{\mu e} M$, if $N \cap K \neq 0$ for any nonzero submodule K of M such that $K \in \mu$. Now we list the properties of μ -essential submodules. We omit the proofs because they are similar to those for essential submodules (see, [4]).

Lemma 2.1. Let M be a module.

- a) Let $N \leq L \leq M$. Then $N \leq_{\mu e} M$ if and only if $N \leq_{\mu e} L \leq_{\mu e} M$.
- b) If $K_1 \leq_{\mu e} L_1 \leq M$, $K_2 \leq_{\mu e} L_2 \leq M$, then $K_1 \cap K_2 \leq_{\mu e} L_1 \cap L_2$.
- c) If $f: N \to M$ is a homomorphism and $K \leq_{\mu e} M$, then $f^{-1}(K) \leq_{\mu e} N$.
- d) If $N/L \leq_{\mu e} K/L \leq M/L$, then $N \leq_{\mu e} K$.
- e) Let K_i ($i \in I$) be an independent family of submodules of M. If $K_i \leq_{\mu e} L_i \leq M$ for all $i \in I$, then $\bigoplus_{i \in I} K_i \leq_{\mu e} \bigoplus_{i \in I} L_i$.

Definition 2.2. Let M be a module. M is called μ -singular if $M \cong K/L$ such that $L \leq_{\mu e} K$.

Every module M contains a largest μ -singular submodule which we denote by $Z_{\mu}(M)=\operatorname{Tr}(\mu-\operatorname{Sing},M)$ where $\mu-\operatorname{Sing}$ is the class of all μ -singular modules. Then $Z(M)\leq Z_{\mu}(M)$. If M is a μ -singular module (i.e. $Z_{\mu}(M)=M)$ and a μ -module, then M is singular. For, let $M\in \mu$ and $M\cong K/L$ where $L\leq_{\mu e}K$. We claim that $L\leq_e K$. Let $0\neq X\leq K$ and assume that $L\cap X=0$. Then $X\cong (L\oplus X)/L\leq K/L$ and so $X\in \mu$. Since $L\leq_{\mu e}K$ we have a contradiction. This proves that M is singular. If $Z_{\mu}(M)=0$, then M is called non- μ -singular.

Proposition 2.3. Let M be a μ -singular module and $f \in \operatorname{Hom}_R(R, M)$. Then $\operatorname{Ker} f \leq_{\mu e} R$.

Proof. By assumption, $f(R) \cong L/K$ where $K \leq_{\mu e} L$. Since R is projective, there exists a homomorphism $g \colon R \to L$ such that $\pi g = f$ where π is the natural epimorphism $L \to L/K$. Then $\ker f = g^{-1}(K) \leq_{\mu e} R$ by Lemma 2.1.

Proposition 2.4. Let P be a projective module and $X \leq P$. Then P/X is μ -singular if and only if $X \leq_{\mu e} P$.

Proof. If $I \leq R_R$ and R/I is μ -singular, then $I \leq_{\mu e} R$ by Proposition 2.3. Now let P/X be μ -singular and assume $X \nleq_{\mu e} P$. Let F be a free module such that $F = P \oplus P'$, $P' \leq F$. Then $F/(X \oplus P') \cong P/X$ is μ -singular and $X \oplus P' \nleq_{\mu e} F$. So we may assume that P is free i.e. $P = \bigoplus R_i$, each R_i is a copy of R. Then $R_i/(R_i \cap X) \cong (R_i + X)/X \leq P/X$ is μ -singular. So $R_i \cap X \leq_{\mu e} R_i$. This implies that $(\bigoplus R_i) \cap X \leq_{\mu e} \bigoplus R_i = P$, i. e. $X \leq_{\mu e} P$.

Lemma 2.5. Let M be a module. Then $Z_{\mu}(M) = \{x \in M \mid xI = 0, I \leq_{\mu e} R\}.$

Proof. Let xI=0 for some $I \leq_{\mu e} R$. Then R/I is μ -singular. Define $f \colon R/I \to xR$ by $r+I \mapsto xr$. Hence, $x \in \operatorname{Tr}(\mu-\operatorname{Sing},M)$. Conversely assume that $x=x_1+\cdots+x_n=f_1(l_1)+\cdots+f_n(l_n)$ and $x_i \in \operatorname{Im} f_i$ where $f_i \colon L_i \to M$ such that L_i is μ -singular. For each i we have $l_iR \cong R/\operatorname{ann}(l_i)$ which implies that $I_i=\operatorname{ann}(l_i) \leq_{\mu e} R$ by Proposition 2.4. Take $I=\bigcap_{i=1}^n I_i$. Then $I \leq_{\mu e} R$ by Lemma 2.1 and xI=0. This completes the proof.

Proposition 2.6. A module M is non- μ -singular if and only if $\operatorname{Hom}_R(N,M) = 0$ for all μ -singular modules N.

Proof. See [4, Proposition 1.20].

Proposition 2.7. Let M be a non- μ -singular module and $N \leq M$. Then M/N is μ -singular if and only if $N \leq_{\mu e} M$.

Proof. If M/N is μ -singular and x is a nonzero element of M. Then $\overline{x}I=0$ for some $I \leq_{\mu e} R$. So, $xI \leq N$. Since M is non- μ -singular, we have $xI \neq 0$ and thus $xR \cap N \neq 0$. Therefore, $N \leq_{\mu e} M$.

Proposition 2.8. (1) The class of all non- μ -singular modules is closed under submodules, direct products, μ -essential extension and module extension.

(2) The class of all μ-singular modules are closed under submodules, factor modules and direct sums.

Proof. It follows from Lemma 2.5 and [4, Proposition 1.22].

Proposition 2.9. Assume that R is a right non- μ -singular ring, then:

- (1) $Z_{\mu}(M/Z_{\mu}(M)) = 0$ for any R-module M.
- (2) An R-module M is μ -singular if and only if $\operatorname{Hom}_R(M,N)=0$ for all non- μ -singular modules N.
- (3) The class of all μ -singular modules is closed under module extension and μ -essential extension.
- (4) The set of all μ -essential right ideals of R denoted by $\mathcal{P}(R)$ is closed under finite products.

Proof. The proof is easy by [4, Proposition 1.23] and Lemma 2.5. \Box

Proposition 2.10. Let M be a simple module. Then M is either μ -singular or projective, but not both.

Proof. See [4, Proposition 1.24].

It is easy to see that a ring R is right non- μ -singular if and only if all projective right R-modules are non- μ -singular.

From the properties of μ -singular modules and Proposition 2.4 the following can be seen easily.

Proposition 2.11. For an R-module M the following are equivalent:

- (1) M is μ -singular:
- (2) $M \cong F/K$ with F a projective (free) module and $K \leq_{\mu e} F$;
- (3) For every $m \in M$, the right annihilator $ann_r(m)$ is μ -essential in R.

Lemma 2.12. Let M be a module. If $Z_{\mu}(M) = 0$ and $K \leq_c M$, then $Z_{\mu}(M/K) = 0$.

Theorem 2.13. Let μ be closed under factor modules. Then the following are equivalent:

- (1) Every μ -module is projective;
- (2) For every singular module N, $Rej(N, \mu) = N$;
- (3) For every μ -singular module N, $Rej(N, \mu) = N$;
- (4) For every simple singular module N, $Rej(N, \mu) = N$.

Proof. (1) \Rightarrow (2) Let N be a singular module and $g: N \to L$ where $L \in \mu$. Then $N/\ker g \in \mu$. By (1), $N/\ker g$ is projective. Since N is singular, we have that $N = \ker g$. Hence $\operatorname{Rej}(N, \mu) = N$.

- (2) \Rightarrow (3) Let N be a μ -singular module and $g: N \to L$ a homomorphism where $L \in \mu$. Then $N/\ker g \in \mu$. This implies that $\operatorname{Rej}(N/\ker g, \mu) = 0$. Since $N/\ker g$ is μ -singular and a μ -module, it is singular. Then by (2), $N = \ker g$. Hence $\operatorname{Rej}(N, \mu) = N$.
- $(3) \Rightarrow (2)$ and $(2) \Rightarrow (4)$ are clear.
- $(4) \Rightarrow (1)$ Let N be a μ -module. We claim that N is semisimple. Let $x \in N$ and K a maximal submodule of xR. Then xR/K is a simple μ -module. By (4), it cannot be singular. Hence xR/K is projective. This implies that K is a direct summand of xR. Hence N is semisimple. By above process every simple submodule of N is projective. It follows that N is projective.

П

If we consider the class \mathcal{M} of all small modules, we have a characterization of GCO-rings. A ring R is called a GCO-ring if every simple singular module is injective.

Corollary 2.14. The following are equivalent for a ring R:

- (1) Every small module is projective;
- (2) Every singular module is non-cosingular;
- (3) Every M-singular module is non-cosingular;
- (4) R is a GCO-ring;
- (5) Every δ -singular module is non-cosingular.

Proof. (1) \Leftrightarrow (4) is by [7, Theorem 1.5]. (2) \Leftrightarrow (4) is by [9, Theorem 4.1].

Simple modules are either injective or small. Hence (1)–(4) are equivalent by Theorem 2.13.

- $(5) \Rightarrow (2)$ is clear.
- (3) \Rightarrow (5) It is clear since $\mathcal{M} \subseteq \delta$, every δ -singular module is \mathcal{M} -singular. \square

For the class δ of all cosingular modules we have the following corollary.

Corollary 2.15. If the class δ is closed under the factor modules the following are equivalent:

- (1) Every cosingular module is projective;
- (2) For every singular module N, $Rej(N, \delta) = N$;
- (3) For every δ -singular module N, $\text{Rej}(N, \delta) = N$;
- (4) R is a GCO-ring.

Proof. See [9, Theorems 4.1 and 4.2] and Theorem 2.13.

A module M is called *finitely cogenerated* if Soc(M) is finitely generated and essential submodule of M. Let \mathcal{FC} be the class of all finitely cogenerated R-modules. Note that \mathcal{FC} is closed under submodules. We next give a characterization of semi-simple Artinian rings which is taken from [8]. We give the proof for completeness.

Corollary 2.16. The following statements are equivalent for a ring R:

- (1) Every finitely cogenerated R-module is projective;
- (2) For every singular module N, $Rej(N, \mathcal{FC}) = N$;
- (3) For every \mathcal{FC} -singular module N, $Rej(N, \mathcal{FC}) = N$;
- (4) R is semisimple Artinian.

Proof. $(1) \Rightarrow (2) \Leftrightarrow (3)$ By Theorem 2.13.

- $(4) \Rightarrow (1)$ is clear.
- $(2) \Rightarrow (4)$ Let E be an essential right ideal of R. Suppose that a is an element of R but $a \notin E$. Let F be a right ideal of R maximal with respect to the properties that E is contained in F and $a \notin F$. Then (aR + F)/F is simple singular. By (2), we have a contradiction. Hence R is semisimple Artinian.

A ring R is a quasi-Frobenius ring (briefly QF-ring) if and only if every right R-module is a direct sum of an injective module and a singular module. In this result we may take μ -singular modules instead of singular as the following result shows.

Theorem 2.17. The following are equivalent for a ring R:

- (1) R is a QF-ring;
- (2) Every right R-module is a direct sum of an injective module and a μ-singular module.

Proof. $(1) \Rightarrow (2)$ is clear.

 $(2) \Rightarrow (1)$ Let M be a projective R-module. Then M is a direct sum of an injective module and a μ -singular module. Since projective μ -singular modules are zero, M is injective. Then R is a QF-ring.

3. μ -extending modules

In this section μ -extending modules will be introduced. Then we define and study weakly μ -extending modules. It is proved that any factor module, any direct summand and any fully invariant submodule of a weakly μ -extending module are weakly μ -extending.

Definition 3.1. Let M be a module. Then M is called an μ -extending module if for every submodule N of M there exists a direct summand D of M such that $N \leq_{\mu e} D$.

Clearly every essential submodule is μ -essential. So μ -extending modules are a generalization of extending modules.

Note that by [5, Proposition 2.4], a module M is extending if and only if every closed submodule is direct summand. This may not be true for a μ -extending module.

Let M be a module and K a submodule of M. Then K is called a μ -closed submodule, denoted by $K \leq_{\mu c} M$, provided $K \leq_{\mu e} L \leq M$ implies K = L, i.e. K doesn't have any proper μ -essential extension. A μ -closed submodule is closed but the converse is true when M is a μ -module (see [8, Corollary 1.1]).

Proposition 3.2. The following statements hold for a module M.

- (1) If $K \leq_{\mu c} M$, then whenever $Q \leq_{\mu e} M$ such that $K \subseteq Q$, then $Q/K \leq_{\mu e} M/K$.
- (2) If $L \leq_{\mu e} M$, then $L/K \leq_{\mu e} M/K$.

Proof. (1) Suppose $K \leq_{\mu c} M$. Let $Q \leq_{\mu e} M$ such that $K \subseteq Q$. Let $P/K \leq M/K$ be a μ -module such that $(Q/K) \cap (P/K) = 0$. By Lemma 2.1(b), $K = Q \cap P \leq_{\mu e} P$ and hence K = P. Thus $Q/K \leq_{\mu e} M/K$.

(2) It is clear by Lemma 2.1(d).

The following proposition is clear by definitions.

Proposition 3.3. Let M be a μ -extending module. Then every μ -closed submodule is a direct summand.

We next give an equivalent condition for a μ -extending module.

Proposition 3.4. Let M be a module. Then M is μ -extending if and only if for each submodule A of M there exists a decomposition $M = M_1 \oplus M_2$ such that $A \leq M_1$ and $A + M_2 \leq_{\mu e} M_2$.

Proof. Let M be μ -extending and $A \leq M$. Then there exists a decomposition $M = M_1 \oplus M_2$ such that $A \leq_{\mu e} M_1$. Since $\{A, M_2\}$ is an independent family of submodules of M the result follows from Lemma 2.1.

The converse is clear. \Box

A module M is called μ -uniform if every proper nonzero submodule is μ -essential in M.

Proposition 3.5. An indecomposable module M is μ -extending if and only if M is μ -uniform.

Definition 3.6. Let M be a module. Then M is called weakly μ -extending if for every submodule N of M there exists a direct summand K of M such that $N \leq K$ and K/N is μ -singular.

The definition shows that every μ -extending module is weakly μ -extending. Also any μ -singular module is weakly μ -extending.

Let M be a μ -singular module with unique composition series $M \supset U \supset V \supset 0$. By [2], $N = M \oplus (U/V)$ is not extending. But N is weakly μ -extending.

We next give some equivalent conditions for weakly μ -extending modules.

Proposition 3.7. The following are equivalent for a module M:

- (1) M is weakly μ -extending;
- (2) For every $N \leq M$ there exists a decomposition $M = K \oplus K'$ such that $N \leq K$ and M/(K'+N) is μ -singular;
- (3) For every $N \leq M$ there exists a decomposition $M/N = K/N \oplus K'/N$ such that $K \leq_d M$ and M/K' is μ -singular;
- (4) For every $N \leq M$, there exists a direct summand K of M such that $N \leq K$ and for any $x \in K$ there is a right ideal I with $I \leq_{\mu e} R$ such that $xI \leq N$.

Proposition 3.8. Let M be a non- μ -singular or projective module. Then, M is μ -extending if and only if M is weakly μ -extending.

Proof	It is	Dagy by	Proposition	c 2.7 and	2.4	

Some special submodules of a weakly μ -extending module are weakly μ -extending. Recall that a submodule N of M is called *fully invariant* if $f(N) \subseteq N$ for each $f \in \operatorname{End}(M)$. A module M is called a *duo module*, if every submodule of M is fully invariant.

Proposition 3.9. Let $N \leq M$ be fully invariant and M a weakly μ -extending module. Then N is weakly μ -extending.

Proof. Let $L \leq N \leq M$. By assumption, there exists a decomposition $M = K \oplus K'$ such that $L \leq K$ and K/L is μ -singular. Since N is fully invariant, we have $N = (N \cap K) \oplus (N \cap K')$. Obviously, $L \leq N \cap K$ and $(N \cap K)/L \leq K/L$ is μ -singular. Hence N is weakly μ -extending.

The Proposition 3.9 shows that every submodule of a duo module or of a multiplication weakly μ -extending module is weakly μ -extending.

Proposition 3.10. Let M be a module and N a submodule of M.

- (1) If M is weakly μ -extending and the intersection of N with any direct summand of M is a direct summand of N, then N is weakly μ -extending.
- (2) If N is weakly μ -extending and D a direct summand of M such that (D + N)/D is non- μ -singular, then $D \cap N$ is a direct summand of N.
- (3) If M is weakly μ -extending and (D+N)/D is non- μ -singular for any direct summand D of M, then N is weakly μ -extending if and only if $D \cap N$ is a direct summand of N for any direct summand D of M.

Proof. (1) It is similar to the proof of Proposition 3.9.

- (2) Let $Y = D \cap N$. Since N is weakly μ -extending, there is a direct summand K of N such that K/Y is μ -singular. By assumption, $N/Y \cong (D+N)/D$ is non- μ -singular. Hence, $K/Y \leq N/Y$ is both μ -singular and non- μ -singular. It follows that K = Y is a direct summand of N.
 - (3) It is a consequence of (1) and (2).

The following proposition shows the equivalent condition of a cyclic submodule of a module to be weakly μ -extending over a right weakly μ -extending ring.

Proposition 3.11. Let R be a right weakly μ -extending ring and M a cyclic right R-module such that every nonzero direct summand of M contains a nonzero μ -module. Then the following are equivalent:

- (1) M is non- μ -singular;
- (2) Every cyclic submodule of M is projective and weakly μ -extending;
- (3) Every cyclic submodule of M is projective.

Proof. (1) \Rightarrow (2) Suppose that M is non- μ -singular and N a cyclic submodule of M. Then there is a right ideal I of R such that $N \cong R/I$. Since R is μ -extending and N is non- μ -singular, I is a μ -closed submodule of R_R , hence I is a direct summand of R_R . Thus N is isomorphic to a direct summand of R_R . Therefore, N is projective and weakly μ -extending.

- $(2) \Rightarrow (3)$ It is clear.
- $(3) \Rightarrow (1)$ For any $m \in Z_{\mu}(M)$, mR is projective and is isomorphic to $R/\operatorname{ann}_r(m)$, where $\operatorname{ann}_r(m)$ is the right annihilator of m. Since R is right weakly μ -extending and mR is μ -singular, then $\operatorname{ann}_r(m) \leq_{\mu e} R$ is a direct summand of R. Then, $R = \operatorname{ann}_r(m) \oplus L$. By assumption, if $L \neq 0$ then it contains a nonzero μ -module. Hence, $\operatorname{ann}_r(m) = R$ and m = 0. Hence, $Z_{\mu}(M) = 0$.

Any factor module of a μ -singular module is μ -singular and we show that any image of a weakly μ -extending module is weakly μ -extending. The direct summand of a μ -extending module may not be μ -extending. For weakly μ -extending modules, we first show the following proposition and then show that any direct summand of a weakly μ -extending module is weakly μ -extending.

Proposition 3.12. Let M be a weakly μ -extending module. Then any homomorphic image of M is weakly μ -extending.

Proof. Let $f: M \to N$ be an epimorphism and L a submodule of N. Then there is a submodule H of M such that $L \cong H/\operatorname{Ker} f$. Since M is weakly μ -extending,

there are direct summands K, K' of M such that $M = K \oplus K'$, $H \leq K$ and that K/H is μ -singular. So $N \cong M/\operatorname{Ker} f = (K/\operatorname{Ker} f) \oplus (K' + \operatorname{Ker} f)/\operatorname{Ker} f$ and $L \cong H/\operatorname{Ker} f \leq K/\operatorname{Ker} f$. Since $(K/\operatorname{Ker} f)/(H/\operatorname{Ker} f) \cong K/H$ is μ -singular, N is weakly μ -extending.

Corollary 3.13. (1) Let M be a weakly μ -extending module. Then any direct summand of M is weakly μ -extending.

(2) Let M be a μ -extending module. Then any non- μ -singular homomorphic image of M is μ -extending.

Corollary 3.14. The following are equivalent:

- (1) Every (resp., finitely generated) module is weakly μ -extending;
- (2) Every (resp., finitely generated) projective module is weakly μ -extending.

Proposition 3.15. Let R be a right non- μ -singular ring and $f: M \to M'$ an epimorphism. Suppose that M' is weakly μ -extending and Ker f is μ -singular injective, then M is weakly μ -extending.

Proof. Let N be a submodule of M. First, we assume that $\operatorname{Ker} f \subseteq N \leq M$, then $f(N) \leq M'$. Since M' is weakly μ -extending, there is a decomposition, $M' = K \oplus H$ such that K/f(N) is μ -singular. So $M = f^{-1}(K) + f^{-1}(H)$. Since $\operatorname{Ker} f \leq f^{-1}(H)$ and $\operatorname{Ker} f$ is injective, then $f^{-1}(H) = T \oplus \operatorname{Ker} f$ for some submodule T of $f^{-1}(H)$. Thus $M = f^{-1}(K) + T$. Since $f^{-1}(K) \cap T \leq f^{-1}(K) \cap f^{-1}(H) = \operatorname{Ker} f$ and $f^{-1}(K) \cap T \leq \operatorname{Ker} f \cap T = 0$, we have $M = f^{-1}(K) \oplus T$ and $N \leq f^{-1}(K)$.

For any $x \in f^{-1}(K)$, $f(x) \in K$ and there is an μ -essential right ideal I of R such that $f(x)I \leq f(N)$. It is easy to see that $xI \leq N$ and that $f^{-1}(K)/N$ is μ -singular.

Now we assume that N does not contain $\operatorname{Ker} f$. Set $L=N+\operatorname{Ker} f$, then f(L)=f(N). As the case above, there is a decomposition $M=f^{-1}(K)\oplus T$ such that $f^{-1}(K)/L$ is μ -singular. Since $\operatorname{Ker} f$ is μ -singular, we have that $(N+\operatorname{Ker} f)/N\cong \operatorname{Ker} f/(N\cap\operatorname{Ker} f)$ is μ -singular. Since R is right non- μ -singular, by Proposition 2.9 we have that $f^{-1}(K)/N$ is μ -singular. In either case, M is weakly μ -extending.

Proposition 3.16. Let R be a right non- μ -singular ring and M a weakly μ -extending module. Then $M = Z_{\mu}(M) \oplus T$ for some μ -extending submodule T of M and T is $Z_{\mu}(M)$ -injective.

Proof. If $Z_{\mu}(M) = 0$ or $Z_{\mu}(M) = M$, it is clear.

Suppose that $0 < Z_{\mu}(M) < M$. Since M is weakly μ -extending, there are direct summands K, T of M such that $M = K \oplus T$, $Z_{\mu}(M) \le K$ and that $K/Z_{\mu}(M)$ is μ -singular. So K is μ -singular. Since $Z_{\mu}(M) = Z_{\mu}(K) \oplus Z_{\mu}(T) = K \oplus Z_{\mu}(T)$, so $Z_{\mu}(M) = K$ and T is non- μ -singular. By Proposition 3.12, T is μ -extending.

Since for any submodule N of $Z_{\mu}(M)$, $\operatorname{Hom}_{R}(N,T)=0$, so T is $Z_{\mu}(M)$ -injective, as required. \square

Corollary 3.17. Let R be a right non- μ -singular ring and M an injective module. Then $Z_{\mu}(M)$ is injective. Corollary 3.18. Let R be a right non- μ -singular ring and M an indecomposable weakly μ -extending module. Then M is either a μ -singular module or a non- μ -singular μ -uniform module.

Proposition 3.19. Let M be a weakly μ -extending module which contains maximal submodules. Then for any maximal submodule N of M, either M/N is μ -singular or $M=N\oplus S$ for some simple submodule S of M.

Proof. Let N be a maximal submodule of M and suppose that M/N is not μ -singular. Then N is a direct summand of M, i.e., $M = N \oplus S$ for some submodule S of M. Since $S \cong M/N$, so S is simple.

A module M is called *local* if it has a largest submodule, i.e., a proper submodule which contains all other proper submodules. For a local module M, Rad(M), the Jacobson radical of M is small in M.

Corollary 3.20. Let M be a local weakly μ -extending module. Then $M/\operatorname{Rad}(M)$ is μ -singular.

Proposition 3.21. Let R be a right hereditary ring and M an injective module. Then any factor module of M is a direct sum of an injective module and a μ -singular injective module.

Proof. Let L be any factor module of M, then there is a submodule N of M such that $L \cong M/N$. Since any injective module is weakly μ -extending, there are direct summands K, K' of M such that $M = K \oplus K'$, $N \leq K$ and that K/N is μ -singular. So $L \cong M/N = K/N \oplus (K'+N)/N$. Since R is hereditary and M is injective, so M/N is injective. Thus K/N is a μ -singular injective module and (K'+N)/N is injective.

4. Direct sum of weakly μ -extending modules

A direct sum of μ -singular modules is also μ -singular. But a direct sum of μ -extending modules may not be μ -extending. Also a direct sum of weakly μ -extending modules need not be weakly μ -extending (see [1, Example 2.4]).

It may be interesting to see when a direct sum of weakly μ -extending modules is weakly μ -extending.

Proposition 4.1. Let $M = \bigoplus_{i \in I} M_i$ be a distributive module. Then M is weakly μ -extending if and only if each M_i is weakly μ -extending for $i \in I$.

Proof. Let N be any submodule of M, then $N = \bigoplus_{i \in I} (N \cap M_i)$. Since M_i is weakly μ -extending, there is direct summand $H_i \leq_d M_i$, such that $M_i = H_i \oplus H_i'$ and $(N \cap M_i) \leq H_i$ and that $H_i/(N \cap M_i)$ is μ -singular for $i \in I$. Hence $M = (\bigoplus_{i \in I} H_i) \oplus (\bigoplus_{i \in I} H_i')$ and $(N = \bigoplus_{i \in I} (N \cap M_i)) \leq (H = \bigoplus_{i \in I} H_i)$. Since $\frac{H}{N} = \bigoplus_{i \in I} H_i \cong \bigoplus_{i \in I} H_i$ is μ -singular, so M is weakly μ -extending. \square

Theorem 4.2. Let $M = M_1 \oplus M_2$ with M_1 being μ -singular (μ -uniform) and M_2 semisimple. Then M is weakly μ -extending.

Proof. Let N be any submodule of M. Then $N + M_1 = M_1 \oplus [(N + M_1) \cap M_2]$. Since M_2 is semisimple, then $(N + M_1) \cap M_2$ is a direct summand of M_2 and therefore $N + M_1$ is a direct summand of M. Note that $(N + M_1)/N \cong M_1/(N \cap M_1)$ is μ -singular, since M_1 is μ -singular (μ -uniform). So M is weakly μ -extending. \square

Proposition 4.3. Let $M = M_1 \oplus M_2$ with M_1 being weakly μ -extending and M_2 semisimple. Suppose that for any submodule N of M, $N \cap M_1$ is a direct summand of N. Then M is weakly μ -extending.

Proof. Let N be any submodule of M. As in Theorem 4.2, $N+M_1$ is a direct summand of M. By the hypothesis, $N=(N\cap M_1)\oplus K$ for some submodule K of N. Since M_1 is weakly μ -extending, there is a direct summand T of M_1 such that $T/(N\cap M_1)$ is μ -singular. But $N+M_1=(N\cap M_1)+K+M_1=M_1\oplus K$, so $(T\oplus K)/N=(T\oplus K)/[(N\cap M_1)\oplus K]\cong T/(N\cap M_1)\oplus K/K$ is μ -singular. Since $T\oplus K$ is a direct summand of $N+M_1$ and hence a direct summand of M, then M is weakly μ -extending.

Proposition 4.4. Let $M = M_1 \oplus M_2$ with M_1 being weakly μ -extending and M_2 injective. Suppose that for any submodule N of M, we have $N \cap M_2$ is a direct summand of N, then M is weakly μ -extending.

Proof. Let $N \leq M$. By the hypothesis, there is a submodule N' of N such that $N = (N \cap M_2) \oplus N'$. Note that $N' \cap M_2 = 0$ and hence $(M_2 + N')/N' \cong M_2$ is an injective module, so there is a submodule M' of M containing N' such that $M/N' = [(M_2 + N')/N'] \oplus (M'/N')$. Thus it is easy to see that $M = M_2 \oplus M'$ and that $M' \cong M/M_2 \cong M_1$. Hence M' is weakly μ -extending. There are direct summands K, K' of M' such that $M' = K \oplus K'$ and that K/N' is μ -singular. Since $N \cap M_2$ is a submodule of an injective module M_2 , so there is a direct summand M of M_2 such that $M/(N \cap M_2)$ is μ -singular. Following from the fact that $(H \oplus K)/[(N \cap M_2) \oplus N'] \cong [H/(N \cap M_2)] \oplus (K/N')$ and that $H \oplus K \leq_d M$, then M is weakly μ -extending.

Proposition 4.5. Let $M = M_1 \oplus M_2$ such that M_1 is weakly μ -extending and M_2 is an injective module. Then M is weakly μ -extending if and only if for every submodule N of M such that $N \cap M_2 \neq 0$, there is a direct summand K of M such that K/N is μ -singular.

Proof. Suppose that for every submodule N of M such that $N \cap M_2 \neq 0$, there is a direct summand K of M such that K/N is μ -singular. Let N be a submodule of M such that $N \cap M_2 = 0$. Then, since $(M_2 + N)/N \cong M_2$ is an injective module, there is a submodule M' of M containing N such that $M/N = (M'/N) \oplus ((M_2 + N)/N)$. It is easy to see that $M = M' \oplus M_2$. Since $M' \cong M/M_2 \cong M_1$ is weakly μ -extending, there is a direct summand K of M', hence of M, such that K/N is μ -singular. So M is weakly μ -extending. The converse is obvious.

5. Rings whose projective modules are μ -extending

In [6], a ring R is called a *right co-H-ring* if every projective right R-module is extending. It is known that a ring R is a right co-H-ring if and only if R is right

 \sum -extending (i.e., any direct sum of R_R is extending). In this section we introduce rings in which all projective right modules are μ -extending. We call such rings μ -co-H-rings. It is easy to check that a ring R is μ -co-H-ring if and only if any direct sum of R_R is μ -extending.

Lemma 5.1. Let R be a ring. A projective R-module M is weakly μ -extending if and only if every factor module of M is a direct sum of a μ -singular module and a projective module.

Proof. Suppose that M is weakly μ -extending. Let M' be any factor module of M, then there is a submodule N of M such that $M/N \cong M'$. Since M is weakly μ -extending, then there are direct summands K, K' of M such that $M = K \oplus K'$ and K/N is μ -singular. Thus $M/N = (K/N) \oplus ((K'+N)/N)$. As M is projective, $K' \cong (K'+N)/N$ is projective. Conversely, let N be any submodule of M, then M/N is a direct sum of a μ -singular module and a projective module. We may assume that $M/N = S/N \oplus T/N$, where S/N is μ -singular and T/N is projective. Then M = S + T and as $M/S \cong T/N$ is projective, S is a direct summand of M. Thus M is weakly μ -extending.

Lemma 5.2. Let R be any right non- μ -singular ring. Then the following are equivalent:

- (1) All modules are weakly μ -extending;
- (2) All projective modules are weakly μ -extending;
- (3) All non- μ -singular modules are μ -extending.

Proof. $(1) \Leftrightarrow (2)$ By Corollary 3.14.

(1) \Leftrightarrow (3) This is a consequence of Propositions 3.8 and 3.12 and the fact that over a right non- μ -singular ring all projective modules are non- μ -singular.

As an immediate consequence of Lemmas 5.1, 5.2 and Proposition 3.8, we have:

Theorem 5.3. Let R be any ring, then the following are equivalent:

- (1) R is a right μ -co-H-ring;
- (2) All right R-modules are weakly μ -extending;
- (3) All projective right R-modules are μ -extending;
- (4) All projective right R-modules are weakly μ-extending:
- (5) Every factor module of any projective module is a direct sum of a μ -singular module and a projective module.

Theorem 5.4. Let R be a right non- μ -singular ring, consider the following:

- (1) R is a right μ -co-H-ring;
- (2) Every non- μ -singular module is projective;
- (3) Every module is weakly μ -extending;
- (4) Every non- μ -singular module is μ -extending.
- Then $(1) \Leftrightarrow (3) \Leftrightarrow (4)$ and $(1) \Rightarrow (2)$.

Proof. (1) \Rightarrow (2) Suppose that R is a right μ -co-H-ring and M a non- μ -singular module. Then there is a projective module P and an epimorphism $f: P \to M$. Set K = Kerf, then K is a μ -closed submodule of P. Since P is μ -extending, then K

is a direct summand of P and hence M is isomorphic to a direct summand of P. Thus M is projective.

- $(1) \Leftrightarrow (3)$ By Theorem 5.3.
- $(1) \Rightarrow (4)$ It is clear by Propositions 3.8 and 3.12.
- $(4) \Rightarrow (1)$ Since a ring R is right non- μ -singular if and only if all projective modules are non- μ -singular, by (4), all projective modules are μ -extending and R is a right μ -co-H-ring.

Corollary 5.5. Let R be a ring such that all μ -singular modules are projective, then R is a right μ -co-H-ring if and only if R is semisimple.

Proof. Suppose that R is a right μ -co-H-ring. Let M be an R-module module and N a submodule of M, then by Theorem 5.3, M is weakly μ -extending, i.e., there is a direct summand K of M such that $N \leq K$ and K/N is μ -singular. By hypothesis, K/N is projective, so N is a direct summand of K and hence a direct summand of M. Thus M is semisimple and R is semisimple.

The converse is obvious. \Box

It is known from [3, Theorem 24.20] that a ring R is a QF-ring if and only if all projective modules are injective if and only if all injective modules are projective. Obviously every QF-ring R is a left and right μ -co-H-ring. As an immediate consequence of Theorem 5.4, we have:

Corollary 5.6. Let R be a right non- μ -singular ring such that all injective modules are non- μ -singular. Then R is a right μ -co-H-ring if and only if R is a QF-ring.

References

- Chatters, A. W., Khuri, S. M., Endomorphism rings of modules over nonsingular CS rings, J. London Math. Soc. 21 (2) (1980), 434–444.
- [2] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R., Extending Modules, Pitman, London, 1994.
- [3] Faith, C., Algebra II: Ring Theory, Springer-Verlag Berlin-Heidelberg-New York, 1976.
- [4] Goodearl, K. R., Ring Theory, Marcel Dekker, New York Basel, 1976.
- [5] Mohamed, S. H., Müller, B. J., Continuous and Discrete Modules, London Math. Soc. 147 (1990).
- [6] Oshiro, K., Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), 310–338.
- [7] Özcan, A. Ç., On GCO-modules and M-small modules, Comm. Fac. Sci. Univ. Ankara Ser. A1 51 (2) (2002), 25–36.
- [8] Özcan, A. Ç., On μ -essential and μ -M-singular modules, Proceedings of the Fifth China-Japan-Korea Conference, Tokyo, Japan, 2007, pp. 272–283.
- [9] Özcan, A. Ç., The torsion theory cogenerated by δ-M-small modules and GCO-modules, Comm. Algebra 35 (2007), 623-633.
- [10] Talebi, Y., Vanaja, N., The torsion theory cogenerated by M-small modules, Comm. Algebra 30 (3) (2002), 1449–1460.

Department of Mathematics, Faculty of Mathematical Science, University of Mazandaran, Babolsar, Iran

E-mail: talebi@umz.ac.ir a.monirih@umz.ac.ir