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EFFECTIVE CHAIN COMPLEXES FOR TWISTED PRODUCTS

Marek Filakovský

Abstract. In the paper weak sufficient conditions for the reduction of the
chain complex of a twisted cartesian product F ×τ B to a chain complex of
free finitely generated abelian groups are found.

1. Introduction

When making algorithmic calculations with simplicial sets in algebraic topology
on the level of chain complexes, it is often useful to replace the chain complex
C∗(X) associated to a simplicial set X with another chain complex EC∗ where
all the groups ECn are finitely generated free abelian. Such chain complexes are
called effective. This replacement is usually obtained using a reduction or a strong
equivallence.

It is therefore natural to ask if standard topological constructions with simplicial
sets are reflected by our replacements. For example by the theorem of Eilenberg
and Zilber we know that given simplicial sets X,Y and their effective chain
complexes EC∗(X), EC∗(Y ), the simplicial set X × Y has an effective chain
complex EC∗(X)⊗ EC∗(Y ).

Let F → E → B be a Kan fibration of simplicial sets. By [6] we may think of
the total space E as E = F ×τ B, i.e. a twisted cartesian product. We want to find
an effective chain complex of the total space E from the knowledge of effective
chain complexes of F and B and the twisting operator τ .

In [9] (Theorem 132) the solution of this problem was given in the case when the
space B is 1–reduced, which means that the 1–skeleton of B is a point. However,
this condition seems to be too restrictive and not necessary. For example if we aim
to generalize the results in the paper [2] and construct an equivariant version of the
Postnikov tower one cannot assume the base spaces are even 0–reduced (see [1]). In
Theorem 10 and Corollary 12 we give weaker conditions under which an effective
chain complex for the twisted cartesian product can be found. Our approach is
based on the results by Shih as presented in [10] and on the approach from the
paper [5].
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2. Basic notions

Let (C∗, ∂), (D∗, ∂) be chain complexes. The triple of maps ρ = (f, g, h) where
f : C∗ → D∗, g : D∗ → C∗ are chain homomorphisms and h : C∗ → C∗+1 is a chain
homotopy such that

gf − idC∗ = ∂h+ h∂ , hh = 0 ,
gh = 0 , fh = 0

is called a reduction. The chain complex D∗ is said to be a reduct of C∗. We will
denote this by C∗ ⇒ D∗.

This definition of reduction coincides with the one given in [9, Definition 42],
or [5, 2.1]. It is easy to observe that a composition of reductions is a reduction.
We say, there is a strong equivalence between chain complexes C∗ and C ′∗ if there
exists a chain complex D∗ together with two reductions ρ1 = (f1, g1, h1) : D∗ ⇒ C∗
and ρ2 = (f2, g2, h2) : D∗ ⇒ C ′∗. We denote this by C∗ ⇐ D∗ ⇒ C ′∗ or C∗ ⇔ C ′∗.
The following lemma shows that strong equivalences are in some sense composable.

Lemma 1 ([9, Proposition 125]). Let A∗ ⇔ B∗ and B∗ ⇔ C∗ be strong equivalnces
of chain complexes. Then there is a strong equivalence A∗ ⇔ C∗.

We omit the proof, it can be found in [9]. We will make use of the following
“tensor product” of reductions.

Lemma 2. Let ρC = (fC , gC , hC) : C∗ ⇒ C ′∗ and ρD = (fD, gD, hD) : D∗ ⇒ D′∗
be reductions. Then there is a reduction

ρC⊗D = (fC⊗D, gC⊗D, hC⊗D) : C∗ ⊗D∗ ⇒ C ′∗ ⊗D′∗ .

Proof. The new reduction is defined by fC⊗D = fC ⊗ fD, gC⊗D = gC ⊗ gD,
hC⊗D = hC ⊗ idD +gCfC ⊗ hD, or hC⊗D = hC ⊗ gDfD + idC ⊗hD. �

Further we will deal only with chain complexes which are formed by free abelian
groups. For any simplicial set X there is a canonically associated chain complex
C∗(X) where the group Cn(X) is freely generated by nondegenerate n–simplices of
X and the boundary homomorphism ∂n is induced by face maps in Xn as follows

∂n =
n∑
i=0

(−1)ndi .

Let (C∗, ∂) be a chain complex. A collection of maps δn : Cn → Cn−1 is called
a perturbation if (∂n + δn)2 = 0 for all n ∈ N. We will now introduce the Basic
Perturbation Lemma. It is a powerful tool that enables us to construct new
reductions.

Proposition 3 (Basic Perturbation Lemma, [10]). Let ρ = (f, g, h) : (C∗, ∂) ⇒
(D∗, ∂′) be a reduction and let δ be a perturbation of the differential ∂. If for every
c ∈ Cn there exists an α ∈ N such that (hδ)α(c) = 0, then there is a reduction

ρ′ = (f ′, g′, h′) : (C∗, ∂ + δ)⇒ (D∗, ∂′ + δ′) ,
where δ′ is a perturbation of the differential ∂′.
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Proof. The maps involved in the reduction ρ′ are given explicitly as follows:
f ′ = f ◦ (1 + (δh) + (δh)2 + (δh)3 + . . . ) ,
g′ = (1 + (hδ) + (hδ)2 + (hδ)3 + . . . ) ◦ g ,
h′ = (1 + (hδ) + (hδ)2 + (hδ)3 + . . . ) ◦ h = h ◦ (1 + (δh) + (δh)2 + (δh)3 + . . . ) ,
δ′ = f ◦ δ ◦ (1 + (hδ) + (hδ)2 + (hδ)3 + . . . ) ◦ g .

The proof can be found in [9, Theorem 50]. �

On the other hand, if we add a perturbation to the differential of the other chain
complex, we easily get the following result:

Lemma 4 (Easy Perturbation Lemma). Let ρ = (f, g, h) : (C∗, ∂)⇒ (D∗, ∂′) be a
reduction and let δ′ be a perturbation of the differential ∂′. Then there is a reducion
ρ = (f, g, h) : (C∗, ∂ + δ)⇒ (D∗, ∂′ + δ′), where δ = gδ′f .

The difficulty with the BPL consists in the fact that it is sometimes difficult to
verify the nilpotency assumption. Instead of looking for a description of (hδ) we
can find a filtration and check how how the perturbation δ changes the filtration.

Definition 5. Let B and F be simplicial sets and let E = F ×B. Let (y, b) ∈ E.
We may assume b = s∗b

′ ∈ B, where s∗ is a composition of degeneracy operators
and b′ is nondegenerate. The filtration degree of (y, b) is the dimension of b′. The
filtration degree of an nonzero element y ⊗ b ∈ C∗(F ) ⊗ C∗(B) is the dimension
of b.

3. Twisting cochains

The twisted cartesian product (TCP) is defined as follows:

Definition 6. Let B, F be simplicial sets and G a simplicial group with a right
action · : F ×G→ F . A function τn : Bn → Gn−1, n ≥ 1, is said to be a twisting
operator, if it satisfies the following properties:

(1) d0τ(b) = τ(d1b) · τ(d0b)−1,
(2) diτ(b) = τ(di+1b), i > 0,
(3) siτ(b) = τ(si+1b), i ≥ 0,
(4) τ(s0b) = em, if b ∈ Bm+1 where em is the unit element of Gm.

The twisted cartesian product with the base B, the fiber F and the group G is a
simplicial set denoted E or F ×τ B where En = Fn × Bn has the following face
and degeneracy operators:

(1) d0(y, b) = (d0(y) · τ(b), d0(b)),
(2) di(y, b) = (di(y), di(b)), i > 0,
(3) si(y, b) = (si(y), si(b)), i ≥ 0.

The face and degeneracy operations on E naturally define a differential ∂τ on
the chain complex C∗(E). Note that ∂τ (y0, b0) = 0 for (y0, b0) ∈ F0 ×τ B0 since
d0(y0, b0) is not defined.
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We now introduce the following notation: If X is a simplicial set and x ∈ Xn

we put d̃n−ix = di+1 · · · dnx and d̃0x = x. Given (x, y) ∈ (X × Y )n we define the
Alexander-Whitney operator:

AW(x, y) =
n∑
i=0

d̃n−ix⊗ d0
iy .

For a non-twisted product F ×B, there exists a reduction
(AW,EML,SH):

(
C(F ×B), ∂

)
⇒
(
C∗(F )⊗ C∗(B), ∂F⊗

)
,

known as the Eilenberg–Zilber reduction. For the full description of the reduction
see [3].

The only difference between the chain complexes (C∗(F ×τ B), ∂τ ) and
(C∗(F ×B), ∂) is in their differentials and it is easy to see that

∂τ = ∂ +
(
d0(y) · τ(b), d0(b)

)
−
(
d0(y), d0(b)

)
.

So the differential ∂τ of C∗(E) is just the ∂ with the added perturbation
δτ =

(
d0(y) · τ(b), d0(b)

)
−
(
d0(y), d0(b)

)
.

Proposition 7 ([9], Theorem 131). Let F ×τ B be a twisted product of simplicial
sets. Then the Basic Perturbation Lemma can be applied to the reduction data
(AW,EML,SH): C∗(F ×B, ∂)⇒ (C∗(F )⊗ C∗(B), ∂F⊗) to obtain the reduction

(f, g, h) :
(
C∗(F ×τ B), ∂τ

)
⇒
(
C∗(F ) ⊗̂ C∗(B), ∂Fτ

)
,

where C∗(F ) ⊗̂ C∗(B) is just C∗(F )⊗ C∗(B) with a new differential ∂Fτ .

According to [10], the perturbation ∂Fτ − ∂F⊗ can be seen as a cap product with
so called twisting cochain, which is induced by τ . We will now give definitions of
those notions.

Let t : C∗(B) → C∗−1(G) be a sequence of abelian group homomorphisms
tn : C(B)n → C(G)n−1. We define a few operators that will be used within the
construction:

D = AW ◦ C∗(∆): C∗(B)→ C∗(B)⊗ C∗(B),
where C∗(∆) is induced by the diagonal map ∆: B → B ×B and

σ = C(·) ◦ EML: C∗(F )⊗ C∗(G)→ C∗(F ) .
Finally, we define the cap product (t∩ ) : C∗(F )⊗ C∗(B)→ C∗(F )⊗ C∗(B) as a
composition

(σ ⊗ 1)(1⊗ t⊗ 1)(1⊗D) .
Observe, that the cap product is a homomorphism of graded abelian groups and
not of chain complexes. We say that t is a twisting cochain if(

∂F⊗ + (t∩)
)2 = ∂F⊗(t∩) + (t∩)∂F⊗ + (t∩)(t∩) = 0 .

We saw that the twisting operator τ induces via the BPL a new differential ∂Fτ
on the chain complex C∗(F )⊗C∗(B). Then the same twisting operator τ (this time
seen as a part of the twisted cartesian product G×τ B) also induces a differential
∂Gτ on the chain complex C∗(G)⊗ C∗(B).
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According to [10], the twisting operator induces a twisting cochain t : C∗(B)→
C∗−1(G) as follows:

tn : Cn(B) e0⊗1−−−→ C0(G)⊗ Cn(B)
λ0(∂Gτ −∂

G
⊗)

−−−−−−−→ Cn−1(G)⊗ C0(B) p−→ Cn−1(G) ,

where e0 is the unit element of G0, λ0 is a projection on the summand Cn−1(G)⊗
C0(B) of the sum

(
C∗(G)⊗ C∗(B)

)
n−1 =

n−1∑
i=0

Cn−1−i(G)⊗ Ci(B)

and p(x⊗ b) = (εb)x where the map ε : C0(B)→ Z is the augmentation.
The following proposition was formulated and proved by Shih in [10] and

describes the relation between t and ∂Fτ .

Proposition 8 ([10], Theorem 2). Let F ×τ B be a TCP and let t be the twisting
cochain induced by the differential ∂Gτ of the chain complex C∗(G) ⊗̂ C∗(B). Then
∂Fτ − ∂F⊗ = t∩.

Let E = F ×τ B be a twisted product of simplicial sets, t be a twisting cochain
induced by the differential ∂Gτ on the chain complex C∗(G) ⊗̂ C∗(B) and b ∈ Bn,
y ∈ Fk. Then using the definition of AW and t∩ together with the fact that
t(d̃nb) = 0 we obtain the following formula:

(1) t ∩ (y ⊗ b) = (−1)kσ
(
y ⊗ t(d̃n−1b)

)
⊗ d0b+

n∑
i=2

(−1)kσ
(
y ⊗ t(d̃n−ib)

)
⊗ d0

ib .

Using this formula we can summarize some properties of t∩.

Corollary 9 ([5], Lemma 3.4). Let E = F ×τ B be a twisted product of simplicial
sets and let t be a twisting cochain induced by the differential ∂Gτ on the chain
complex C∗(G) ⊗̂ C∗(B). Then the following holds:

(1) The perturbation (t∩) : C∗(F )⊗ C∗(B) → C∗(F )⊗ C∗(B) lowers the fil-
tration degree by at least one.

(2) If for all b ∈ B1, t(b) = 0, then the perturbation (t∩) lowers the filtration
degree by at least two.

Proof. The first part is clear by the formula (1). If t(d̃n−1b) = 0 for all b ∈ Bn,
then

t ∩ (y ⊗ b) =
n∑
i=2

(−1)kσ
(
y ⊗ t(d̃n−ib)

)
⊗ d0

ib.

which proves the second part. �

4. Effective chain complex for twisted product

We would like to find an answer to the following problem: Let B and F be
simplicial sets, G a simplicial group, E = F ×τ B a TCP, and ρB : C∗(B) ⇒
EC∗(B), ρF : C∗(F )⇒ EC∗(F ) be reductions to effective chain complexes. Is there
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a reduction of the chain complex C∗(E) to an effective chain complex which can be
obtained from ρB , ρF and τ by the application of the Basic Perturbation Lemma?

Our aim is to find an answer using the composition of given reductions. Having
reductions ρB , ρF we can by the Lemma 2 construct the reduction

ρF⊗B : C∗(F )⊗ C∗(B)⇒ EC∗(F )⊗ EC∗(B) .
We know that the chain homotopy hF⊗B from the reduction ρF⊗B raises the
filtration degree by at most 1. This follows from the fact that hB raises the
filtration degree by at most 1 and the proof of Lemma 2. We can use the BPL to
construct a reduction ρE = (f, g, h) : C∗(E)⇒ C∗(F ) ⊗̂ C∗(B). From Corollary 9,
the perturbation operator ∂Fτ − ∂F⊗ = t∩ lowers the filtration degree by at least one.
If the composition hF⊗B ◦ (∂Fτ − ∂F⊗) decreased the filtration, it would be nilpotent
and hence we could use the BPL on the reduction data ρF⊗B and the perturbation
∂Fτ − ∂F⊗ to get a reduction

ρt : C∗(F ) ⊗̂ C∗(B)⇒ EC∗(F ) ⊗̂ EC∗(B)
to an effective chain complex EC∗(F ) ⊗̂EC∗(B) which is EC∗(F )⊗EC∗(B) with
a new differential obtained from the BPL. However, in full generality hF⊗B ◦ (∂Fτ −
∂F⊗) = hF⊗B ◦ (t∩) preserves the filtration degree.

From (1) we see that in the composition hF⊗B ◦ (t∩)(y⊗ b), where b ∈ Bn, there
is only one element with the filtration degree n, namely
(2) gF fFσ

(
y ⊗ t(d̃n−1b)

)
⊗ hBd0b

and the degree n element in (hF⊗B ◦ (t∩))i(y ⊗ b) is yi ⊗ bi where

b0 = b , bi+1 = hBd0bi = (hBd0)ib ,
y0 = y , yi+1 = gF fFσ

(
yi ⊗ t(d̃n−1bi)

)
.

Now we can establish conditions for (hF⊗B ◦ (t∩))i to decrease the filtration and
prove the following theorem.

Theorem 10. Let B and F be simplicial sets, G a simplicial group with an action
on F , E = F ×τ B a TCP, and ρB : C∗(B)⇒ EC∗(B), ρF : C∗(F )⇒ EC∗(F ) be
reductions to effective chain complexes.

If for all n ∈ N, b ∈ Bn, y ⊗ b ∈ C∗(F ) ⊗ C∗(B), there exists i ∈ N such that
(hBd0)ib = 0 (thus hB d0 is nilpotent ) or yi = 0, then there is a reduction from
the chain complex C∗(E) to an effective chain complex EC∗(F ) ⊗̂EC∗(B) which
can be obtained from ρB, ρF and τ by the application of the Basic Perturbation
Lemma.

Corollary 11. If G is 0-reduced or ρB is trivial (i.e. fB = gB = id, hB = 0),
C∗(E) can be reduced to an effective chain complex using the BPL.

Proof. If the reduction ρB is trivial, then the chain homotopy hB is trivial, so
hB = 0 and hence b1 = hBd0 = 0. To prove the case when G is 0-reduced we
compute t(b) where b ∈ B1. According to the definition we get

t(b) = t1(b) = pλ0(∂Gτ − ∂G⊗)(e0 ⊗ b) .
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From the Basic Perturbation Lemma we get

(∂Gτ − ∂G⊗)(e0 ⊗ b) = AW
(
1 + δτSH + (δτSH)2 + (δτSH)3 + . . .

)
δτEML(e0 ⊗ b)

= AW
(
1 + δτSH + (δτSH)2 + (δτSH)3 + . . .

)
δτ
(
s0(e0), b

)
= AW

(
1 + δτSH + (δτSH)2 + (δτSH)3 + . . .

)(
d0s0(e0) · τ(b), d0(b)

)
−
(
d0s0(e0), d0(b)

)
= AW

(
1 + δτSH + (δτSH)2 + (δτSH)3 + . . .

)(
τ(b), d0(b)

)
−
(
e0, d0(b)

)
.

As the operator SH = 0 on (F ×B)0 the only nonzero term of (∂Gτ − ∂G⊗)(e0 ⊗ b) is

AW
(
τ(b), d0(b)

)
−
(
e0, d0(b)

)
=
(
τ(b)⊗ d0(b)

)
−
(
e0 ⊗ d0(b)

)
,

so we have

t(b) = t1(b) = pλ0
(
τ(b)⊗ d0(b)

)
−
(
e0 ⊗ d0(b)

)
= τ(b)− e0 .

If the group G is 0-reduced, τ(b) = e0 as e0 is the only element in G0 and we have
t(b) = 0 for b ∈ B1. That is why y1 = gF fFσ(y ⊗ t(d̃n−1b)) = 0 and we can apply
the previous theorem. �

Now we turn to strong equivalences.

Corollary 12. Let B and F be simplicial sets, G a simplicial group, E = F ×τ B a
TCP, and C∗(B)⇔ EC∗(B), C∗(F )⇔ EC∗(F ) strong equivalences with effective
chain complexes. If G is 0-reduced or ρB is trivial (i.e. EC∗(B) = C∗(B) and all
reductions are trivial ) then C∗(F ×τ B) is strongly equivalent to an effective chain
complex EC∗(F ) ⊗̂EC∗(B) which can be obtained from the strong equivalences for
C∗(B) and C∗(F ) representing C∗(E) and an effective chain complex using the
Basic and Easy Perturbation Lemmas.

Proof. By Proposition 7 we have a reduction C∗(F ×τ B) ⇒ C∗(F ) ⊗̂ C∗(B).
Since strong equivalences are composable, it remains to show that there is a strong
equivalence C∗(F ) ⊗̂ C∗(B)⇔ EC∗(F ) ⊗̂ EC∗(B).

Having strong equivalences C∗(B)⇐ D∗(B)⇒ EC∗(B) and C∗(F )⇐ D∗(F )⇒
EC∗(F ) then by Lemma 2 there is a strong equivalence

C∗(F )⊗ C∗(B)⇐ D∗(F )⊗D∗(B)⇒ EC∗(F )⊗ EC∗(B)

consisting of two reductions:

ρ1 = (f1, g1, h1) : C∗(F )⊗ C∗(B)⇐ D∗(F )⊗D∗(B) ,

ρ2 = (f2, g2, h2) : D∗(F )⊗D∗(B)⇒ EC∗(F )⊗ EC∗(B) .

Given the perturbation (t∩) on the chain complex C∗(F )⊗ C∗(B), we can use the
Easy Perturbation Lemma on the reduction ρ1 = (f1, g1, h1) : C∗(F )⊗ C∗(B)⇐
D∗(F )⊗D∗(B) to get a new reduction

ρ1 = (f1, g1, h1) : C∗(F ) ⊗̂ C∗(B)⇐ D∗(F ) ⊗̂D∗(B) ,
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where we introduce a perturbation g1(t∩)f1 to the differential of the chain complex
D∗(F ) ⊗ D∗(B) and the reduction data remains unchanged. If the nilpotency
condition of the composition (g1(t∩)f1) ◦h2 was satisfied, we could apply the Basic
Perturbation Lemma on the reduction data ρ2 = (f2, g2, h2) : D∗(F )⊗D∗(B)⇒
EC∗(F ) ⊗EC∗(B) to obtain a reduction

ρ′2 : D∗(F ) ⊗̂D∗(B)⇒ EC∗(F ) ⊗̂ EC∗(B) .
If G is 0-reduced, then the filtration degree of the perturbation g1(t∩)f1 is −2

by Corollaries 9 and 11 and as the the filtration degree of h2 is +1, the nilpotency
condition is satisfied. For ρB trivial, h2 is 0 and the nilpotency condition is trivially
satisfied.

The reductions ρ1, ρ
′
2 therefore establish a strong equivalence
C∗(F ) ⊗̂ C∗(B)⇔ EC∗(F ) ⊗̂ EC∗(B)

and, as the strong equivalences are composable, we get C∗(F ×τ B)⇔ EC∗(F ) ⊗̂
EC∗(B). �

5. Vector fields

We will now deal with the case in which we have more information about the
reduction ρB : C∗(B)⇒ EC∗(B). In particular, ρB is obtained via a discrete vector
field. A discrete vector field V on a simplicial set X is a set of ordered pairs (σ, τ),
where σ, τ are nondegenerate simplices of X, σ = diτ for exactly one index i and
for every two distinct pairs (σ, τ), (σ′, τ ′) we have σ′ 6= σ, τ ′ 6= τ , σ′ 6= τ and
τ ′ 6= σ. By writing V (σ) = τ , we mean (σ, τ) ∈ V . Given a dicrete vector field V ,
the nondegenerate simplices of X are divided into three subsets S, T , C as follows:
• S is the set of source simplices i.e. the simplices σ such that (σ, τ) ∈ V ,
• T is the set of target simplices i.e. the simplices τ such that (σ, τ) ∈ V ,
• C is the set of critical simplices i.e the remaining ones, not occuring in any

edge of V .
A discrete vector field V on a simplicial set X induces a reduction ρX =

(hX , fX , gX) : C∗(X)⇒ D∗(X) (see [7],[4]). We will concentrate on the properties
of the induced chain homotopy hX . It turns out that hX(σ) ∈ ZT for any σ and
more importantly hX(σ) = 0 whenever σ ∈ C ∪ T .

Definition 13. Let X be a simplicial set. For any nondegenerate simplex σ ∈ Xn

we will consider the following condition:
(∗) d0σ ∈ S implies σ ∈ S .

We say that a discrete vector field V on a simplicial set satisfies (∗) if all
nondegenerate simplices of X satisfy (∗).

Corollary 14. Let B and F be simplicial sets, G a simplicial group, E = F ×τ B a
TCP and ρB : C∗(B)⇒ EC∗(B), ρF : C∗(F )⇒ EC∗(F ) be reductions to effective
chain complexes. If the reduction ρB is induced by a vector field satisfying (∗), then
there exists a reduction from the chain complex C∗(E) to an effective chain complex
which can be obtained from ρB, ρF and τ .
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Proof. We show that (hBd0)2 = 0. Under our conditions for any b ∈ Bn we
have b1 = hB(d0b) ∈ ZT . As hB satisfies (∗), we see that d0b1 ∈ Z(C ∪ T ) and
consequently, b2 = hBd0b1 = 0 and we can apply Theorem 10. �

Example 15. An example of a vector field satisfying (∗) is so called Eilenberg–Mac-
Lane vector field. Let us have X = K(Z, 1). In the standart model which is
infinite (see [6]), the simplex σ ∈ Xn can be represented as an n-tuple [a1| . . . |an],
where a1, . . . , an ∈ Z (see [4], page 5). The face operators are d0σ = [a2| . . . |an],
dnσ = [a1| . . . |an−1], diσ = [a1| . . . |ai−1|ai + ai+1|ai+2| . . . |an], where 1 < i < n.

For any σ = [a1| . . . |an] ∈ Xn, where an 6= 1, we define the Eilenberg-MacLane
vector field VEML in the following way:

VEML(σ) =
{

[a1| . . . |an−1|an − 1|1] for an > 1 ,
[a1| . . . |an−1|1] for an < 0 .

Now we can classify the simplices:
• σ ∈ S has the form [a1| . . . |an], where an 6= 1 and n > 0.
• σ ∈ T has the form [a1| . . . |an−1|1], where n > 1.
• σ ∈ C is [] and [1].

It is easy to check that the vector field VEML satisfies (∗). Note that Corollary 14
implies that for any E = F ×τ K(Z, 1) there is a reduction C∗(E)⇒ EC∗(E) to
an effective chain complex if there is a reduction C∗(F )⇒ EC∗(F ) to an effective
chain complex.
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