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SOLUTIONS TO A CLASS OF POLYNOMIALLY GENERALIZED
BERS–VEKUA EQUATIONS USING CLIFFORD ANALYSIS

Min Ku, Uwe Kähler, and Paula Cerejeiras

Abstract. In this paper a class of polynomially generalized Vekua–type
equations and of polynomially generalized Bers–Vekua equations with variable
coefficients defined in a domain of Euclidean space are discussed. Using the
methods of Clifford analysis, first the Fischer–type decomposition theorems
for null solutions to these equations are obtained. Then we give, under some
conditions, the solutions to the polynomially generalized Bers–Vekua equation
with variable coefficients. Finally, we present the structure of the solutions to
the inhomogeneous polynomially generalized Bers–Vekua equation.

1. Introduction

As an elegant higher dimensional analogue of the classical analytic functions, Clif-
ford analysis focuses on the study of the so–called monogenic functions (see e.g. [4,
6, 7]), i.e., null solutions to the Dirac operator or the generalized Cauchy–Riemann
operator. It has been applied successfully to solve different kinds of Vekua–type
equations and the related boundary value problems in domains of higher dimensio-
nal Euclidean space (see e.g. [7]–[9, 13]–[12]). In [7, 14] Sprössig and his coauthors
studied a special generalized Vekua–type problem with quaternion parameter de-
fined in R3 and the corresponding boundary value problems. In [5]–[9], [13]–[12]
Delanghe, Brackx and others studied the polynomially generalized Cauchy–Riemann
equations in Rn+1, and obtained the solutions to the polynomially generalized
Cauchy–Riemann equations and to their Riemann boundary value problems, by
means of integral formulas and Fischer–type decomposition theorems for null so-
lutions to the polynomially generalized Cauchy–Riemann equations, respectively.
Recently, Berglez (see [1, 2]) discussed a class of iterated generalized Bers–Vekua
equations in Clifford analysis, which is a generalization of a special Vekua–type equa-
tion in the complex plane (see e.g. [3, 15]) to higher dimensions, and obtained their
solutions under some conditions. In [10], a polynomially generalized Vekua–type
equation and a polynomially generalized Bers–Vekua equation in a domain Ω of
Rn+1 are studied in the framework of Clifford analysis. In this setting, based on
ideas contained in [16, 1, 10], we will consider in this paper a class of polynomially
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generalized Vekua–type equations p(D)w = 0 and of polynomially generalized
Bers–Vekua equations p(D)w = 0 (see Section 3) with variable coefficients defined
in Ω ⊂ Rn+1 with D and D meaning the generalized Vekua–type operator and the
generalized Bers–Vekua operator (see Section 2), respectively. We will obtain the
Fischer–type decomposition theorems for the solutions to these equations including
(D − a(x))kw = 0, (D − a(x))kw = 0 (k ∈ N) (see Section 3) with a(x) ∈ Ck(Ω,C)
as special cases, which imply the Almansi–type decomposition theorems for the
iterated generalized Bers–Vekua equation of [10] and the polynomially generalized
Cauchy–Riemann equation [16, 13] defined in Ω ⊂ Rn+1. Making use of these
decomposition theorems, we will give, under some conditions, the solutions to a
class of polynomially generalized Bers–Vekua equations with variable coefficients
defined in Ω ⊂ Rn+1. Finally, we will discuss the structure of the solutions to the
inhomogeneous polynomially generalized Bers–Vekua equation p(D)w = v defined
in Ω ⊂ Rn+1.

The paper is organized as follows. In Section 2, we recall some basic facts
about Clifford analysis which will be needed in the sequel. In Section 3, we
obtain the Fischer–type decomposition theorems for the solutions to a class of
polynomially generalized Vekua–type equations p(D)f = 0 and of polynomially
generalized Bers–Vekua equations p(D)f = 0 with variable coefficients, including
(D − a(x))kw = 0, (D − a(x))kw = 0 (k ∈ N) as special cases, in domains of Rn+1.
In Section 4, under the assumption of the existence of a Bauer–type differential
operator for the solutions to the generalized Bers–Vekua equation Dw(x) = 0, we
will give the solutions to the polynomially generalized Bers–Vekua equation (i.e.,
p(D)w = 0) with variable coefficients in domains of Rn+1. In the last section we
will discuss the structure of the solutions to the equation p(D)w = v with variable
coefficients in domains of Rn+1.

2. Preliminaries and notations

In this section we recall some basic facts about Clifford algebra and Clifford
analysis which will be needed in the sequel. For more details we refer the reader to
e.g. [4]–[7], [11]–[8].

Let {e1, e2, . . . , en} be an orthogonal basis of Euclidean space Rn and let R0,n
be the 2n-dimensional real Clifford algebra with basis

{
eA : A = {h1, . . . , hr} ∈

PN
}

, where N stands for the set {1, 2, . . . , n} and PN denotes for the family
of all order-preserving subsets of N . We denote e∅ as e0 and eA as eh1...hr for
A = {h1, . . . , hr} ∈ PN . The product in R0,n is defined byeAeB = (−1)N(A∩B)(−1)P (A,B)eA∆B , if A,B ∈ PN ,

λµ =
∑

A,B∈PN
λAµBeAeB , if λ =

∑
A∈PN

λAeA, µ =
∑
B∈PN

µBeB ,

where N(A) is the cardinal number of the set A, and P (A,B) =
∑
j∈B

P (A, j), with

P (A, j) = N(Z) and Z = {i : i ∈ A, i > j}. It follows that e0 is the identity element,
now written as 1 and that in particular e2

i = −1, if i = 1, 2, . . . , n, eiej + ejei = 0,
if 1 6 i < j 6 n, eh1eh2 . . . ehr = eh1h2...hr , if 1 6 h1 < h2 < · · · < hr 6 n.
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The complex Clifford algebra Cn = C⊗ R0,n is a complex linear, associative, but
non–commutative algebra.

For k ∈ {0, 1, 2, . . . , n} fixed, we call C(k)
n =

{
a ∈ Cn : a =

∑
N(A)=k

aAeA
}

the

subspace of k-vectors. In this way we obtain the decomposition Cn =
n⊕
k=0

C(k)
n and

hence for an arbitrary a ∈ Cn, a =
n∑
k=0

[a]k, |a| = (
∑
A

∣∣aA∣∣2) 1
2 , where [a]k is the

projection of a on C(k)
n . This leads to the identification of C with the subspace

of complex scalars C(0)
n and of Rn+1 with the subspace of real Clifford vectors

R(1)
0,n =

{
a =

n∑
j=0

ejaj : aj ∈ R
}
⊂ C(1)

n . The typical element of Rn is denoted by

x = x1e1 + · · ·+ xnen, xj ∈ R (j = 1, 2, . . . , n).
Define Rn+1 = {x = x0 + x

∣∣x0 ∈ R, x ∈ R0,n ⊂ Cn}, where R0,n now is
a real subalgebra of Cn. The conjugation is defined by ā =

∑
A
āAēA, ēA =

(−1)
s(s+1)

2 eA, N(A) = s, aA ∈ C, where āA means the complex conjugate and
ab = b̄ā. The inner product (·, ·) in Cn is defined by putting for arbitrary b,
a ∈ Cn, (b, a) = [bā]0. It is easy to see that (b, a) =

∑
A∈PN

bAāA with a =∑
A∈PN

aAeA, b =
∑
A∈PN

bAeA, aA, bA ∈ C. Hence the corresponding norm on Cn

reads |a| =
(∑
A

∣∣aA∣∣2) 1
2 =

√
(a, a). In the particular case of x =

n∑
i=0

eixi ∈ Rn+1 ⊂

Cn as above, |x|2 = (
n∑
i=0

x2
i )

1
2 = (x, x).

Now we introduce the generalized Cauchy–Riemann operator ∂ =
n∑
j=0

ej
∂
∂xj

, the

generalized Vekua–type operator Dw(x) , ∂w(x) + c1(x0)w(x) + c2(x0)w(x), and
the generalized Bers–Vekua operator Dw(x) , ∂w(x) + c2(x0)w(x), where ci(x0)
(i = 1, 2) are both complex–valued functions of the variable x0. It is clear that
∂∂ = ∂∂ =

n∑
j=0

∂2
xj , which is the Laplace operator in Rn+1. For arbitrary k ∈ N,

where N denotes the set of all positive integers, Dkw(x) , D(Dk−1w(x)),Dkw(x) ,
D(Dk−1w(x)) and D0w(x) = w(x), D0w(x) = w(x).

Let Ω be a domain in Rn+1. The continuity, continuously differentiability and
the like of the function f =

∑
A
fAeA : Ω(⊂ Rn+1)→ Cn are ascribed to each of its

components fA : Ω → C. Let C(Ω,Cn), C1(Ω,Cn) and the like, denote the set of
all continuous functions, continuously differentiable functions and the like defined
in Ω, respectively. The null solutions to the operators ∂ and D, that is, functions
f such that ∂f = 0 (where f is called monogenic) and Dw = 0, are denoted by
M(Ω,Cn) and kerD respectively.
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3. Fischer–type decomposition theorems

In this section we will consider Cn–valued functions defined in Ω. We will give the
Fischer–type decomposition theorems for the solutions to a class of polynomially
generalized Vekua–type equations p(D)f = 0 and of polynomially generalized
Bers–Vekua equations p(D)f = 0 with variable coefficients in the domain Ω of
Rn+1.

Lemma 3.1 ([10]). If the complex–valued continuously differentiable function
ϕ(x0) of the variable x0 is defined in Ω, λ, di ∈ C (i = 1, 2) and w, v ∈ C1(Ω,Cn),
then

(i) D(ϕ(x0)w(x)) = ϕ′(x0)w(x) + ϕ(x0)(Dw(x)),
(ii) ker(D − λ) = eλx0 kerD,
(iii) D(d1w(x) + d2v(x)) = d1Dw(x) + d2Dv(x),

where λ stands for λI, I denoting the identity operator.

Theorem 3.1. Suppose that w ∈ Ck(Ω,Cn) is a solution to the equation (D −
a(x))kw(x) = 0 where a ∈ Ck(Ω,Cn+1) is the chosen function satisfying Dγ(x) =
a(x) with γ ∈ Ck+1(Ω,C), then there exist unique functions wj ∈ C1(Ω,Cn) satis-
fying (D − a(x))wj(x) = 0 (j = 0, 1, . . . , k − 1) such that

(1) w(x) = eγ(x)w0(x) + x0e
γ(x)w1(x) + · · ·+ xk−1

0 eγ(x)wk−1(x) ,

where

(2)



wk−1(x) = 1
(k−1)!D

k−1w(x) ,
wk−2(x) = 1

(k−2)!D
k−2(I − 1

(k−1)!x
k−1
0 Dk−1)w(x) ,

...
...

w1(x) = D(I − 1
2x

2
0D2) . . . (I − 1

(k−1)!x
k−1
0 Dk−1)w(x) ,

w0(x) = (I − x0D)(I − 1
2x

2
0D2) . . . (I − 1

(k−1)!x
k−1
0 Dk−1)w(x)

Here (D − a(x))kw(x) , (D − a(x))((D − a(x))k−1w(x)) with (D − a(x))w(x) ,
Dw(x) − a(x)Iw(x). Moreover, when a(x) ≡ λ(λ ∈ C) for arbitrary x ∈ Ω,
Dkλw(x) , Dλ(Dk−1

λ w(x)) with Dλw(x) , Dw(x)− λIw(x).

Proof. Since a ∈ Ck(Ω,Cn+1), by applying Lemma 3.1 we have

(D − a(x))w(x) = (D − a(x))eγ(x)(e−γ(x)w(x)) = eγ(x)D(e−γ(x)w(x)) ,

where a(x) satisfies Dγ(x) = a(x) with γ ∈ Ck+1(Ω,C). By direct calculations we
get

(3) (D − a(x))kw(x) = eγ(x)Dk(e−γ(x)w(x)) , i.e., ker(D − a(x))k = kerDk .

It is clear that kerD ⊂ kerD2 ⊂ kerD3 ⊂ · · · ⊂ kerDk+1.
By recurrent calculation we obtain

Dk(xk−1
0 kerD) = xk−1

0 kerDk+1 .
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Hence,

(4) kerDk−1 + xk−1
0 kerD ⊂ kerDk .

Conversely, if w ∈ kerDk, then there exists the following decomposition

(5) w(x) =
(
I − 1

(k − 1)!x
k−1
0 Dk−1

)
w(x) + xk−1

0
1

(k − 1)!D
k−1w(x) .

Moreover, we have

D
( 1

(k − 1)!D
k−1
)
w(x) = 0 and Dk−1

(
I − 1

(k − 1)!x
k−1
0 Dk−1

)
w(x) = 0 .

Therefore, we obtain

(6) kerDk ⊂ kerDk−1 + xk−1
0 kerD .

Taking into account (4) and (6), we get

kerDk = kerDk−1 + xk−1
0 kerD .

By induction, we can easily deduce that

kerDk = kerD + x0 kerD + · · ·+ xk−1
0 kerD .

Finally, for any w ∈ kerDk, suppose that ϕ ∈ kerDk−1 and ϕk−1 ∈ kerD such
that

w(x) = ϕ(x) + xk−1
0 ϕk−1(x) .(7)

Applying Dk−1 to both sides of (7), we get

Dk−1w(x) = Dk−1ϕ(x) +Dk−1(xk−1
0 ϕk−1(x)) = (k − 1)!ϕk−1(x) .

That is,

ϕk−1(x) = 1
(k − 1)!D

k−1w(x) and ϕ(x) =
(
I − 1

(k − 1)!D
k−1
)
w(x) .

It follows that decomposition (5) is unique. By induction, applying (7), we obtain
the result. �

Corollary 3.1. If c1(x0) ≡ 0, the equation (D − a(x))kw(x) = 0 where a ∈
Ck(Ω,Cn+1) is the chosen function satisfying Dγ(x) = a(x) with γ ∈ Ck+1(Ω,C)
reduces to the case (D−a(x))kw(x) = 0. If the function w ∈ Ck(Ω,Cn) is a solution
to the equation (D− a(x))kw(x) = 0 where a ∈ Ck(Ω,Cn+1) is the chosen function
satisfying Dγ(x) = a(x) with γ ∈ Ck+1(Ω,C), then there exist unique functions
wj ∈ C1(Ω,Cn) satisfying Dwj(x) = 0 (j = 0, 1, . . . , k − 1) such that

(8) w(x) = eγ(x)w0(x) + x0e
γ(x)w1(x) + · · ·+ xk−1

0 eγ(x)wk−1(x) ,
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where

(9)



llwk−1(x) = 1
(k−1)!D

k−1w(x)
wk−2(x) = 1

(k−2)!D
k−2
(
I − 1

(k−1)!x
k−1
0 Dk−1

)
w(x)

...
...

w1(x) = D
(
I − 1

2x
2
0D

2
)
. . .
(
I − 1

(k−1)!x
k−1
0 Dk−1

)
w(x)

w0(x) = (I − x0D)
(
I − 1

2x
2
0D

2
)
. . .
(
I − 1

(k−1)!x
k−1
0 Dk−1

)
w(x)

That is,

ker(D − λ)k = eγ(x) kerD ⊕ x0e
γ(x) kerD ⊕ · · · ⊕ xk−1

0 eγ(x) kerD ,

kerDk = kerD ⊕ x0 kerD ⊕ · · · ⊕ xk−1
0 kerD .

Remark 1. For an appropriately chosen function, for instance, a(x) = λx2
0 ∈ C,

there exists a function γ(x) = 1
2λx0 satisfying Dγ(x) = a(x).

When a(x) ≡ λ ∈ C, the equation (D − a(x))kw(x) = 0 reduces to the case
(D− λ)kw(x) = 0. Hence expression (1) in Theorem 3.1 gives the decomposition of
the solution to Dkw(x) = 0 as in [10]. Moreover, when a(x) ≡ 0, expression (1) in
Theorem 3.1 gives the decomposition of the solution to Dkw(x) = 0 as in reference
[2].

Remark 2. When a(x) ≡ λ ∈ C, if c1(x0) ≡ 0, the equation (D − a(x))kw(x) = 0
reduces to the case (D − λ)kw(x) = 0. If w ∈ Ck(Ω,Cn) is a solution to the
equation Dkw(x) = 0, expression (8) in Corollary 3.1 gives the decomposition for
the solution to Dkw(x) = 0 as in [10]. Further, when a(x) ≡ 0, decomposition (8)
in Corollary 3.1 corresponds exactly to that in [2].

Remark 3. When a(x) ≡ λ ∈ C, if c1(x0) ≡ c1 and c2(x0) ≡ c2 with ci ∈ C(i =
1, 2), the equation (D − λ)kw(x) = 0 reduces to the case (∂ − λ̃)kw(x) = 0(λ̃ ∈ C).
Then the decomposition (1) in Theorem 3.1 corresponds exactly to the one in
[16, 9, 13].

In what follows, we introduce the polynomials

p(λ) =
(
λ− a1(x)

)(
λ− a2(x)

)
. . .
(
λ− ak(x)

)
,

where functions aj ∈ Ck(Ω,Cn+1) are chosen such that Dγi(x) = ai(x) with
γi ∈ Ck+1(Ω,C) for arbitrary i = 1, 2, 3, . . . , k and ai(x) 6= aj(x), x ∈ Ω (i, j =
1, 2, . . . , k, i 6= j, k ∈ N). Then the associated polynomially generalized Vekua–type
operator p(D) and the polynomially generalized Bers–Vekua operator p(D) are
defined as

p(D) =
(
D − a1(x)

)(
D − a2(x)

)
. . .
(
D − ak(x)

)
,

p(D) =
(
D − a1(x)

)(
D − a2(x)

)
. . .
(
D − ak(x)

)
,
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where aj stands for ajI (j = 1, 2, 3, . . . , k). It is obvious that the operators D−aj(x)
and D−aj(x) (j = 1, 2, 3, . . . , k) are commutative. In the sequel we use the notations

ker p(D) =
{
φ : Ω ⊂ Rn+1 → Cn

∣∣p(D)φ = 0
}
,

ker p(D) =
{
φ : Ω ⊂ Rn+1 → Cn

∣∣p(D)φ = 0
}
.

Theorem 3.2. If w ∈ Ck(Ω,Cn) is a solution to the equation p(D)w(x) =
(D − a1(x))(D − a2(x)) . . . (D − ak(x))w(x) = 0 where ai ∈ Ck(Ω,Cn+1) is the
chosen function such that Dγi(x) = ai(x) with γi ∈ Ck+1(Ω,C) for arbitrary
i = 1, 2, 3, . . . , k and ai(x) 6= aj(x) for arbitrary x ∈ Ω (i, j = 1, 2, . . . , k,
i 6= j, k ∈ N), then there exist unique functions wj ∈ C1(Ω,Cn) satisfying
(D − aj(x))wj(x) = 0 (j = 1, 2, . . . , k) such that
(10) w(x) = w1(x) + w2(x) + · · ·+ wk(x) ,

where wj(x) =
k∏
i 6=j

D−ai(x)
aj(x)−ai(x)w(x)(j = 1, 2, . . . , k). That is,

ker p(D) = ker
(
D − a1(x)

)
⊕ ker

(
D − a2(x)

)
⊕ · · · ⊕ ker

(
D − ak(x)

)
= eγ1(x) kerD ⊕ eγ2(x) kerD ⊕ · · · ⊕ eγk(x) kerD .(11)

Proof. By Lagrange’s interpolation formula, under the condition ai(x) 6= aj(x)
for arbitrary x ∈ Ω (i, j = 1, 2, . . . , k, i 6= j), we have

(12) w(x) =
k∑
j=1

k∏
i 6=j

D − ai(x)
aj(x)− ai(x)w(x) , w1(x) + w2(x) + . . . wk(x) ,

where wj(x) =
k∏
i 6=j

D−ai(x)
aj(x)−ai(x)w(x) (j = 1, 2, . . . , k). Moreover, if w ∈ ker p(D),

then
k∏
i 6=j

D − ai(x)
aj − ai(x)w ∈ ker(D − aj) (j = 1, 2, . . . , k) .

Next we prove the uniqueness.
When the degree k in the variable λ of the polynomial p(λ) is equal to 1, it is

trivial.
When the degree k in the variable λ of the polynomial p(λ) is equal to 2, and if
there exist functions w̃j ∈ ker(D − aj(x))(j = 1, 2) such that 0 = w̃1(x) + w̃2(x),
then w̃2 ∈ ker(D − a1(x)). In expression (12), for the function w̃2(x) we get

w̃2(x) = D − a1(x)
a2 − a1(x) w̃2(x) + D − a2(x)

a1(x)− a2(x) w̃2(x) ≡ 0 , w̃1(x) ≡ 0 .

Then the decomposition
w(x) = w1(x) + w2(x) , wj(x) ∈ ker

(
D − aj(x)

)
(j = 1, 2)

is unique.
Suppose that the result holds for the degree of the polynomial p(λ) in the variable

λ, up to k − 1(k > 2). For degree k, if there exist functions wj ∈ ker(D − λj)
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(j = 1, 2, . . . , k) such that 0 = w1(x) +w2(x) + · · ·+wk(x) , w1(x) + W̃1(x), then
it is clear that W̃1 ∈ ker m(D) with m(λ) = p(λ)

λ−a1(x) . For the function w1(x), by
(12), we have

w1(x) =
k∑
j=1

k∏
i 6=j

D − ai(x)
aj(x)− ai(x)w1(x) ≡ 0 , W̃1(x) ≡ 0 .

Hence the decomposition

w(x) = w1(x) + W̃ (x) , w1 ∈ ker
(
D − a1(x)

)
, W̃ ∈ ker m(D)

is unique. Using the induction hypothesis, the result follows. �

Corollary 3.2. When c1(x0) ≡ 0, if the function w ∈ Ck(Ω,Cn) is a solution
to the equation p(D)w(x) = (D − a1(x))(D − a2(x)) . . . (D − ak(x))w(x) = 0
where ai ∈ Ck(Ω,Cn+1) is the chosen function satisfying Dγi(x) = ai(x) with
γi ∈ Ck+1(Ω,C) for i = 1, 2, 3, . . . , k and ai(x) 6= aj(x) for arbitrary x ∈ Ω
(i, j = 1, 2, . . . , k, i 6= j, k ∈ N), then there exist unique functions wj ∈ C1(Ω,Cn)
satisfying (D − aj(x))wj(x) = 0 (j = 1, 2, . . . , k) such that
(13) w(x) = w1(x) + w2(x) + · · ·+ wk(x) ,

where wj(x) =
k∏
i 6=j

D−ai(x)
aj(x)−ai(x)w(x) (j = 1, 2, . . . , k). That is,

ker p(D) = ker
(
D − a1(x)

)
⊕ ker

(
D − a2(x)

)
⊕ · · · ⊕ ker

(
D − ak(x)

)
= eγ1(x) kerD ⊕ eγ2(x) kerD ⊕ · · · ⊕ eγk(x) kerD(14)

Theorem 3.3. If the function w ∈ Ck(Ω,Cn) is a solution to the equation
p(D)w(x) = (D − a1(x))n1(D − a2(x))n2 . . . (D − ar(x))nrw(x) = 0 where ai ∈
Ck(Ω,Cn+1) is the chosen function such that Dγi(x) = ai(x) with γi ∈ Ck+1(Ω,C)
for i = 1, 2, 3, . . . , r and ai(x) 6= aj(x) for arbitrary x ∈ Ω (i, j = 1, 2, . . . , r,
i 6= j, n1 + n2 + · · · + nr = k, nr, r, k ∈ N), then there exist unique functions
wnj ∈ Cnj (Ω,Cn) satisfying (D − aj(x))njwnj (x) = 0 (j = 1, 2, . . . , r) such that
(15) w(x) = wn1(x) + wn2(x) + · · ·+ wnr (x) ,
where

wnj (x) =
nj∑
i=1

1
(nj − i)!

[ dnj−i
dλnj−i

(λ− aj(x))nj
l(λ)

]∣∣∣
λ=aj(x)

lj(D)w(x) ,

l(λ) =
r∏
j=1

(λ− aj(x))nj and lj(λ) = l(λ)
(λ−aj(x))nj . That is,

(16) ker p(D) = ker
(
D− a1(x)

)n1 ⊕ ker
(
D− a2(x)

)n2 ⊕ · · · ⊕ ker
(
D− ak(x)

)nr
Moreover,

(17) w(x) =
r∑
j=1

nj−1∑
i=0

xi0e
γj(x)wi,j(x) ,
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where the functions wi,j(x) satisfying Dwi,j(x) = 0 (j = 1, 2, . . . , r; i = 0, 1, . . . , nj−
1) are given similarly to (2). That is,
(18) ker p(D) = eγ1(x) kerDn1 ⊕ eγ2(x) kerDn2 ⊕ · · · ⊕ eγr(x) kerDnr

Proof. Similarly to Lemma 4 in [13] or [1], we have

(19) w(x) =
r∑
j=1

nj∑
i=1

1
(nj − i)!

[ dnj−i
dλnj−i

(λ− aj(x))nj
l(λ)

]∣∣∣
λ=aj(x)

lj(D)w(x) .

Moreover, if w(x) ∈ ker(D−a1(x)
)n1(D−a2(x))n2 . . . (D−ar(x))nr , then lj(D)w(x) ∈

ker(D−aj(x))nj (j = 1, 2, . . . , r). Applying (19) and by induction on j = 1, 2, . . . , r,
the proof is completed. �

Corollary 3.3. When c1(x0) ≡ 0, if function w ∈ Ck(Ω,Cn) is a solution to
the equation p(D)w(x) = (D − a1(x))n1(D − a2(x))n2 . . . (D − ar(x))nrw(x) = 0
where ai ∈ Ck(Ω,Cn+1) is the chosen function satisfying Dγi(x) = ai(x) with
γi ∈ Ck+1(Ω,C) for i = 1, 2, 3, . . . , r and ai(x) 6= aj(x) for arbitrary x ∈ Ω
(i, j = 1, 2, . . . , r, i 6= j, n1 +n2 + · · ·+nr = k, nr, r, k ∈ N), then there exist unique
functions wj ∈ Cnj (Ω,Cn) satisfying (D − aj(x))njwnj (x) = 0 (j = 1, 2, . . . , r)
such that
(20) w(x) = wn1(x) + wn2(x) + · · ·+ wnr (x) ,
where

wnj (x) =
nj∑
i=1

1
(nj − i)!

[ dnj−i
dλnj−i

(λ− aj(x))nj
l(λ)

]∣∣∣
λ=aj(x)

lj(D)w(x) ,

l(λ) =
r∏
j=1

(λ− aj(x))nj and lj(λ) = l(λ)
(λ−aj(x))nj . That is,

(21) ker p(D) = ker
(
D− a1(x)

)n1 ⊕ ker
(
D− a2(x)

)n2 ⊕ · · · ⊕ ker
(
D− ar(x)

)nr
Moreover,

(22) w(x) =
r∑
j=1

nj−1∑
i=0

xi0e
γj(x)wi,j(x) ,

where the functions wi,j(x) satisfying Dwi,j(x) = 0 (j = 1, 2, . . . , r, i = 0, 1, . . . , nj−
1) are given similarly to (2). That is,
(23) ker p(D) = eγ1(x) kerDn1 ⊕ eγ2(x) kerDn2 ⊕ · · · ⊕ eγr(x) kerDnr ,

Remark 4. Theorem 3.2 and Theorem 3.3 give the Fischer–type decomposition
theorems for null solutions to a class of polynomially generalized Vekua–type
operators with variable cofficients. As special cases, Corollary 3.2 and Corollary 3.3
correspond to the Fischer–type decomposition theorems for null solutions to a
class of polynomially generalized Bers–Vekua operators with variable cofficients,
which imply the corresponding results for null solutions to the iterated Bers–Vekua
operator in [10] and to the polynomially generalized Cauchy–Riemann operator in
[16, 9, 13].
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4. Solutions to polynomial generalized Bers–Vekua equation
p(D)w = 0

In this section, under the assumption of the existence of a Bauer–type differential
operator for the solutions to the generalized Bers–Vekua equation Dw(x) = 0, we
will obtain the solutions to the polynomially generalized Bers–Vekua equation (i.e.,
p(D)w = 0) with variable coefficients in the domain Ω of Rn+1.

Lemma 4.1 ([1, 2]). Under the assumption of the existence of a Bauer–type
differential operator for the solutions of generalized Bers–Vekua equation Dw(x) = 0,
the solutions to the generalized Bers–Vekua equation Dw(x) = 0 are given by

(24) w(x) =
l∑
i=0

fi(x0)(u(x)∂i) +
l−1∑
i=0

gi(x0)b(∂iu(x)) (l ∈ N) ,

where ∂u(x) = 0 and fi(x0) (i = 0, 1, 2, . . . , l), gi(x0) (i = 0, 1, 2, . . . , l − 1) are
complex–valued functions of the variable x0.

Remark 5. In Lemma 4.1, under the condition of the existence of the a Bauer–type
differential operator, the coefficients of fi(x0) (i = 0, 1, 2, . . . , l) and gi(x0) (i =
0, 1, 2, . . . , l − 1) of (24) can be explicitly given (see [2]) similarly to those of
(11) in [1]. If it exists, the Bauer–type differential operator is defined similarly
to (7) and (8) of Section 3 in [1], which is implied in [2, 10], when considering
the generalized Bers–Vekua equation. A sufficient condition for the existence of
a Bauer–type differential operator was provided in [2]; however, designing other
sufficient conditions for the existence of a Bauer–type differential operator is still
work in progress.

In the sequel we make use of the operator δ given by

δu(x) , u(x)∂ − ∂u(x), δku(x) , δ(δk−1u(x)) , δ0u(x) = u(x) .

Lemma 4.2. Under the assumption of the existence of a Bauer–type differential
operator for the solutions to the generalized Bers–Vekua equation Dw(x) = 0, if
u(x) is a solution to the equation (∂−a(x))kw(x) = 0 where a ∈ Ck(Ω,Cn+1) is the
chosen function satisfying Dγ(x) = a(x) with γ ∈ Ck+1(Ω,C), then for arbitrary
i ∈ N,

(25) δiu(x) =
k−1∑
j=0

xj0e
γ(x)(uj(x)∂i) ,

where uj(x) (j = 0, 1, 2, . . . , k−1) is a solution to the equation ∂u(x) = 0 satisfying

u(x) =
k−1∑
j=0

xj0e
γ(x)uj(x).

Proof. As u(x) is a solution to the equation (∂ − a(x))kw(x) = 0, by Remark 3,
there exist unique functions uj(x) (j = 0, 1, 2, . . . , k− 1) which are solutions to the
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equation ∂u(x) = 0, satisfying

u(x) =
k−1∑
j=0

xj0e
γ(x)uj(x) .

When i = 1, we get

(26) δu(x) =
k−1∑
j=0

(
xj0e

γ(x)uj(x)
)
∂ − ∂

(
xj0e

γ(x)uj(x)
)

=
k−1∑
j=0

xj0e
γ(x)(uj(x)∂

)
.

Letting act the operator δ (i− 1) consecutive times on both sides of (26), the result
follows. �

Theorem 4.1. Under the assumption of the existence of a Bauer–type differential
operator for the solutions of generalized Bers–Vekua equation Dw(x) = 0, if w ∈
Ck(Ω,Cn) is a solution to the equation (D−a(x))kw(x) = 0 where a ∈ Ck(Ω,Cn+1)
is the chosen function such that Dγ(x) = a(x) with γ ∈ Ck+1(Ω,C), then the
solution w(x) is expressed by

(27) w(x) =
l∑
i=0

fi(x0)
(
δiu(x)

)
+

l−1∑
i=0

gi(x0)δiu(x) ,

where u(x) is a solution to the equation ∂ku(x) = 0, called a polymonogenic
function.
Proof. The result follows from Corollary 3.1, Lemma 4.1 and Lemma 4.2. �

Theorem 4.2. Under the assumption of the existence of a Bauer–type differential
operator for the solutions of generalized Bers–Vekua equation Dw(x) = 0, if w ∈
Ck(Ω,Cn) is a solution to the equation (D−a1(x))(D−a2(x)) . . . (D−ak(x))w(x) =
0 where ai ∈ Ck(Ω,Cn+1) is the chosen function satisfying Dγi(x) = ai(x) with
γi ∈ Ck+1(Ω,C) for i = 1, 2, 3, . . . , k and ai(x) 6= aj(x) for arbitrary x ∈ Ω
(i, j = 1, 2, . . . , k, i 6= j, k ∈ N), then the solution w(x) is expressed by

(28) w(x) =
k∑
j=1

l∑
i=0

fi(x0)eγj(x)(uj(x)∂i
)

+
k∑
j=1

l−1∑
i=0

gi(x0)eγj(x)(∂iuj(x)
)
,

where uj(x) is a solution to the equation ∂uj(x) = 0 (j = 1, 2, . . . , k).
Proof. The result follows from Corollary 3.2 and Lemma 4.1. �

Theorem 4.3. Under the assumption of the existence of a Bauer–type differen-
tial operator for the solutions of generalized Bers–Vekua equation Dw(x) = 0, if
w ∈ Ck(Ω,Cn) is a solution to the equation (D − a1(x))n1(D − a2(x))n2 . . . (D −
ar(x))nrw(x) = 0 where ai ∈ Ck(Ω,Cn+1) is the chosen function satisfying
Dγi(x) = ai(x) with γi ∈ Ck+1(Ω,C) for i = 1, 2, 3, . . . , r and ai(x) 6= aj(x)
for arbitrary x ∈ Ω (i, j = 1, 2, . . . , r, i 6= j, n1 + n2 + · · ·+ nr = k, nr, r, k ∈ N),
the solution w(x) is expressed by

(29) w(x) =
r∑
j=1

l∑
t=0

at(x0)
(
δtnjuj(x)

)
+

r∑
j=1

l−1∑
t=0

bt(x0)δtnjuj(x) ,
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where uj(x) is a solution to the equation ∂nju(x) = 0 (j = 1, 2, . . . , r) and

δtnjuj(x) =
nj−1∑
i=0

xi0e
γj(x)(ui,j(x)∂t

)
where ui,j(x) is a solution to the equation ∂u(x) = 0 (j = 1, 2, . . . , r;
i = 0, 1, 2, . . . , nj − 1).

Proof. By Corollary 3.3, we get

w(x) =
r∑
j=1

nj−1∑
i=0

xi0e
γj(x)wi,j(x) ,

where Dwi,j(x) = 0 (j = 1, 2, . . . , r; i = 0, 1, . . . , nj − 1).
By means of Lemma 4.1, we have

(30) w(x) =
r∑
j=1

nj−1∑
i=0

xi0e
γj(x)

( l∑
t=0

ft(x0)
(
ui,j(x)∂t

)
+

l−1∑
t=0

gt(x0)
(
∂tui,j(x)

))
where ui,j(x) is a solution to the equation ∂u(x) = 0 (j = 1, 2, . . . , r, i =
0, 1, 2, . . . , nj − 1).
Similarly to Lemma 4.2,

(31) δtnjuj(x) =
nj−1∑
i=0

xi0e
γj(x)(ui,j(x)∂t

)
,

where uj(x) is a solution to the equation ∂nju(x) = 0 (j = 1, 2, . . . , r) and ui,j(x)
is a solution to the equation ∂u(x) = 0 (j = 1, 2, . . . , r, i = 0, 1, 2, . . . , nj − 1).
Substituting (31) into (30) completes the proof. �

Remark 6. From Theorems 4.1, 4.2, 4.3, it follows that the solutions to the class
of polynomially generalized Bers–Vekua operators with variable coefficients, can be
given in terms of polymonogenic functions and monogenic functions. As a Corollary,
Theorems 2 in [2] and 4.2, 4.3 in [10] are derived. Moreover, by Theorems 4.1, 4.2,
4.3 and [5, 16], the solutions to the class of polynomially generalized Bers–Vekua
equations with variable coefficients may be obtained in virtue of the integral
representation and of the Taylor series, respectively.

5. Solutions to the inhomogeneous equation p(D)w = v

Following the ideas of the previous sections, we will discuss the inhomoge-
neous polynomially generalized Bers–Vekua equation with variable coefficients (i.e.,
p(D)w = v) in a domain Ω of Rn+1. In particular we will establish the structure of
its solutions.

In this section p(D) =
k∏
j=1

(D − aj(x)) or p(D) =
r∏
j=1

(D − aj(x))njwith aj

(j = 1, 2, . . . , k) as in Section 4, and p(D) =
k∏
j=1

(D − aj(x)) or p(D) =
r∏
j=1

(D −



A CLASS OF POLYNOMIALLY GENERALIZED BERS-VEKUA EQUATIONS 383

aj(x))nj with aj (j = 1, 2, . . . , r) as in Section 4, which are appropriately chosen
according to the context.
Theorem 5.1. If w ∈ Ck(Ω,Cn) is a solution to the equation p(D)w(x) = v(x),
then each solution w(x) is expressed as
(32) w(x) = W0(x) +W1(x) ,
where W1 ∈ ker p(D) and W0(x) is a special solution to the equation p(D)w = v.
Proof. w(x) is a solution to the equation p(D)w(x) = v(x) and W0(x) is a special
solution to the equation p(D)w(x) = v(x), then w −W0 ∈ ker p(D).

Conversely, if W1 ∈ ker p(D) and W0(x) is a special solution to p(D)w = v, then
the function w(x) = W0(x) +W1(x) is a solution to the equation p(D)w = v. The
result follows. �

Corollary 5.1. If w ∈ Ck(Ω,Cn) is a solution to the equation (D − a1(x))(D −
a2(x)) . . . (D − ak(x))w(x) = v(x) with aj (j = 1, 2, . . . , k) as in Section 4, then
each solution w(x) is expressed as follows

(33) w(x) = W0(x) +
k∑
j=1

eγj(x) kerD ,

where W0(x) is a special solution to the equation p(D)w = v.
Corollary 5.2. If w ∈ Ck(Ω,Cn) is a solution to the equation (D − a1(x))n1(D −
a2(x))n2 . . . (D − ar(x))nrw(x) = v(x) with aj (n1 + · · · + nr = k, nj ∈ N, j =
1, 2, . . . , r) as in Section 4, then each solution w(x) is expressed as

(34) w(x) = W0(x) +
r∑
j=1

eγj(x) ker(D − aj(x))nj ,

where W0(x) is a special solution to the equation p(D)w = v.
Remark 7. Theorem 5.1 and Corollaries 5.1, 5.2 provide the structure of the
solutions of the inhomogeneous polynomially generalized Vekua–type equation
p(D)w = v with variable coefficients, and the inhomogeneous polynomially genera-
lized Bers–Vekua equation p(D)w = v with variable coefficients, respectively. In
general there is no way to obtain the special solution to the equations p(D)w = v
and p(D)w = v for an arbitrary Cn–valued function v(x).

Combining Theorems 4.1, 4.2, 4.3 with Corollaries 5.1, 5.2, we obtain
Theorem 5.2. Assume the existence of a Bauer–type differential operator for
the solutions of generalized Bers–Vekua equation Dw(x) = 0, and let W0(x) be
a special solution to p(D)w = v and l ∈ N, fi(x0) (i = 0, 1, 2, . . . , l), gj(x0)
(j = 0, 1, 2, . . . , l − 1), δi (i = 0, 1, . . . , l) as Section 4.
(i) If w ∈ Ck(Ω,Cn) is a solution to the equation (D − a(x))kw(x) = 0, then the
solution w(x) is expressed by

(35) w(x) = W0(x) +
l∑
i=0

ai(x0)
(
δiu(x)

)
+

l−1∑
i=0

bi(x0)δiu(x) ,
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where u(x) is a solution to the equation ∂ku(x) = 0.
(ii) If w ∈ Ck(Ω,Cn) is a solution to the equation (D − a1(x))(D − a2(x)) . . . (D −
ak(x))w(x) = 0 with aj (j = 1, 2, . . . , k) as in Section 4, then the solution w(x) is
expressed by

(36) w(x) = W0(x)

+
k∑
j=1

l∑
i=0

fi(x0)eγj(x)(uj(x)∂i
)

+
k∑
j=1

l−1∑
i=0

gi(x0)eγj(x)(∂iuj(x)
)
,

where uj(x) is a solution to the equation ∂u(x) = 0 (j = 1, 2, . . . , k).
(iii) If w ∈ Ck(Ω,Cn) is a solution to the equation

(D − a1(x))n1(D − a2(x))n2 . . . (D − ar(x))nrw(x) = 0
with aj (n1 + · · ·+nr = k, nj ∈ N, j = 1, 2, . . . , r) as in Section 4, then the solution
w(x) is expressed by

(37) w(x) = W0(x) +
r∑
j=1

l∑
t=0

at(x0)
(
δtnjuj(x)

)
+

r∑
j=1

l−1∑
t=0

bt(x0)δtnjuj(x) ,

where uj(x) is a solution to the equation ∂nju(x) = 0 (i = 1, 2, . . . , r) and

δtnjuj(x) =
nj−1∑
i=0

xi0e
γj(x)(ui,j(x)∂t

)
,

where ui,j(x) is a solution to the equation ∂u(x) = 0 (j = 1, 2, . . . , r; i =
0, 1, 2, . . . , nj − 1).
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