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STABILITIES OF F-YANG-MILLS FIELDS ON SUBMANIFOLDS

Gao-Yang Jia and Zhen-Rong Zhou

Abstract. In this paper, we define an F -Yang-Mills functional, and hence
F -Yang-Mills fields. The first and the second variational formulas are calcu-
lated, and the stabilities of F -Yang-Mills fields on some submanifolds of the
Euclidean spaces and the spheres are investigated, and hence the theories of
Yang-Mills fields are generalized in this paper.

1. Introduction

Let P (M,G) be a principal bundle over a compact Riemannian manifold M
with structure group G (a Lie group), and let E = P ×ρ V be a vector bundle
associated with P (M,G), whose standard fibre is some vector space V , where
ρ : G → GL(V ) is a representation of G. Denote the space of E-valued p-forms
by Ωp(E) = Γ(∧pT ∗M ⊗ E), and the space of connections of E by CE . Let
gE = P ×AdG g be the adjoint vector bundle where g is the Lie algebra of G. It is
known that, for any ∇,∇′ ∈ CE , we have ∇−∇′ ∈ Ω1(gE). For each ∇ ∈ CE , the
curvature 2-form R∇ ∈ Ω2(gE) is defined by R∇X,Y = [∇X ,∇Y ]−∇[X,Y ]. If G is a
semisimple Lie group, there is a natural invariant metric on gE which is defined by
the Killing form, and this metric induces a one on Ω2(gE). With respect to this
induced metric, the Yang-Mills functional is defined as follows:

(1) S(∇) = 1
2

∫
M

‖R∇‖2 .

If a connection ∇ of E is a critical point of the Yang-Mills functional, we call it a
Yang-Mills connection, the associated curvature tensor is called a Yang-Mills field.

For a connection ∇, its variation is a family ∇t of connections with |t| < ε (a
small positive number) and ∇0 = ∇. If

(2) d2

dt2

∣∣∣∣
t=0
S(∇t) ≥ 0

holds for any variations of a Yang-Mills connection ∇, then we call the Yang-Mills
connection (and the corresponding Yang-Mills field) to be stable. Otherwise, we
call it unstable.
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In the paper [2, 1], J. P. Bourguignon and H. B. Lawson obtained a well known
result on stabilities of Yang-Mills fields as follows:

Theorem 1 ([1]). For n > 4, any nonzero Yang-Mills fields on Sn are unstable.

When n = 4, we have S(∇) ≥ 4π2|p1(E)| for any connection ∇ (where, p1(E) is
the pontryagin number of E, a topological invariant), and the equality holds if and
only if the connection ∇ is self-dual or anti-self-dual (in this case, the connection
is called an instanton). Hence any self-dual or anti-self-dual connection is stable.
Conversely, any stable Yang-Mills connection (or field) on S4 with G = SU2,SU3,U2
is either self-dual or anti-self-dual (see [1]). On the other hand, an infinite number of
unstable Yang-Mills fields on S2 with G = SU(2) are constructed by L. M. Sibner,
R. J. Sibner and K. Uhlenbeck in [4].

Y. L. Xin in [5] discussed the stabilities of Yang-Mills fields on submanifolds of
the Euclidean space, and obtained the following

Theorem 2 ([5]). Let Mn be a compact submanifold of Rn+k, and satisfy the
following condition:

(3) 2hµtih
µ
tjδkl − h

µ
tth

µ
ijδkl + 2hµijh

µ
kl ≤ bδijδkl ,

where hµij is the second fundamental tensor with respect to a local orthonormal
frame of M , 1 ≤ i, j, k, l ≤ n, n + 1 ≤ µ ≤ n + k, and b < 0. Then any nonzero
Yang-Mills fields on M are unstable.

On Sn ⊆ Rn+1, we can choose a local orthonormal field of frame of Rn+1, such
that hn+1

ij = δij . Then the condition in Theorem 2 becomes as n > 4. Therefore,
Theorem 2 is a generalization of Theorem 1.

Remark 3. The condition (3) means that for any tensor Aij , we have(
2hµtih

µ
tjδkl − h

µ
tth

µ
ijδkl + 2hµijh

µ
kl

)
AikAjl ≤ bδijδklAikAjl .

If the integrand of the Yang-Mills functional is replaced by ‖R∇‖p, then we
can obtain a p-Yang-Mills functional, whose critical points are called p-Yang-Mills
connections, and the associated curvature tensors are called p-Yang-Mills fields.
The paper [3] investigated the stabilities of p-Yang-Mills fields of Euclidean and
sphere submanifolds, and generalized the related results of [1] and [5].

Let Mn be a submanifold of Rn+k or Sn+k, and h(·, ·) the second fundamental
form. Let 1 ≤ i, j ≤ n; n + 1 ≤ µ ≤ n + k. Choose a local orthonormal frame
{ei|i = 1, · · · , n+ k} of Rn+k or Sn+k, such that, restrict to Mn, {e1, · · · , en} are
tangent to M and {eµ|µ = n+ 1, · · · , n+k} are normal to M . Set h(ei, ej) = hµijeµ
and Hµ =

∑
hµii. Define

Cijklsr ≡
(
−Hµhµjl + 2hµjmh

µ
ml

)
δkiδsr + 2hµikh

µ
jlδsr + 2(p− 2)hµikh

µ
srδjl .

For example, if Mn = Sn, as a hypersurface of Rn+1, then we can choose an
adapted local normal frame such that hij = hn+1

ij = δij . In this case, Cijklsr =
(2p− n)δjlδkiδsr.

The paper [3] proved the following theorems:
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Theorem 4 ([3]). Let Mn be a submanifold of Rn+k, satisfying Cijklsr ≤ bδikδjlδsr,
where b < 0. Then any nonzero p-Yang-Mills fields on M are unstable.
Theorem 5 ([3]). Let Mn be a submanifold of Sn+k, satisfying Cijklsr < (n −
2p)δikδjlδsr. Then any nonzero p-Yang-Mills fields on M are unstable.

When p = 2, the condition in Theorem 4 is the same as that in Theorem 2.
So, Theorem 4 is a generalization of Theorem 2. If we consider Sn as a totally
geodesic submanifold of Sn+p, then the condition in Theorem 5 is n > 2p. Therefore
Theorem 5 is another generalization of Theorem 1.
Remark 6. Inequality Cijklsr ≤ (or <)aδikδjlδsr means that∑

CijklsrAijAklBstBrt ≤ (or <)a
∑

δikδjlδsrAijAklBstBrt

for any tensor Aij and Bij .

Replacing the integrand of the Yang-Mills functional by F
(‖R∇‖2

2
)
, where

F is a non-negative function, we define an F -Yang-Mills functional, and hence
F -Yang-Mills fields. These generalize theories of p-Yang-Mills fields. In this paper,
we investigate the stabilities of F -Yang-Mills fields on submanifolds of the Euclidean
space and the spheres, and our main results are in the following:
Theorem 7. Let Mn be a submanifold of Rn+k, which satisfies
(4) Cijklsr ≤ bδikδjl ,
where b < 0. Suppose that for t > 0, we have
(5) (p− 2)F ′(t) ≥ 2tF ′′(t) , F ′(t) > 0 , F (t) > 0 .
Then any nonzero F -Yang-Mills field R∇ on Mn is unstable.
Theorem 8. Let Mn be a submanifold of Sn+k, which satisfies
(6) Cijklsr < (n− 2p)δikδjl .
Suppose that for t > 0, we have
(7) (p− 2)F ′(t) ≥ 2tF ′′(t) , F ′(t) > 0 , F (t) > 0 .
Then any nonzero F -Yang-Mills field R∇ on Mn is unstable.

Theorem 7 generalizes Theorem 4 and Theorem 8 generalizes Theorem 5.
Remark 9.

(1) The condition (p− 2)F ′(t) ≥ 2tF ′′(t) is equivalent to
(F ′(t)
t
p−2

2

)′ ≤ 0, i.e. F ′(t)

t
p−2

2

is differential and non-increasing.

(2) For p ≥ 2, the following functions satisfy the condition 7: 1
p (2t)

p
2 , ln(1 + t

p
2 ),

ln(t
p
2 +
√

1 + tp), t
p
2√

1+tp , arctan(t
p
2 ),
∫ t p2

0 e−x
2
dx, etc.

(3) In general, if f : [0,∞)→ (0,∞) is differential and non-increasing, F (t) =∫ t p2
0 f(x) dx, then F ′(t)

t
p−2

2
is differential and non-increasing for p ≥ 2, and hence

condition (7) is satisfied by such an F .
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2. Variational formulas of F-Yang-Mills fields

Definition 10. Let F : [0,+∞)→ [0,+∞) be a C∞ function. Define SF : CE → R
as following: For any ∇ ∈ CE , set

(8) SF (∇) =
∫
M

F
(‖R∇‖2

2

)
,

which is called an F -Yang-Mills functional. The critical points of SF are cal-
led F -Yang-Mills connections, and the associated curvature tensors are called
F -Yang-Mills fields.

Let ∇t = ∇ + At be a variation of ∇ ∈ CE , where At ∈ Ω1(gE) with A0 = 0.
Then the curvature of ∇t is given by

(9) R∇
t

= R∇ + d∇At + 1
2[At ∧At] ,

where, the compound operation [· ∧ ·] is defined as follows: For ϕ,ψ ∈ Ω(gE),
[ϕ ∧ ψ]X,Y = [ϕX , ψY ]− [ϕY , ψX ]. Here, d∇ is the wedge covariant differentiation.
By a straightforward calculation, we have

(10)

d

dt
SF (∇t) =

∫
M

d

dt
F
(‖R∇t‖2

2

)
=
∫
M

F ′
(‖R∇t‖2

2

)〈 d
dt
R∇

t

, R∇
t
〉

=
∫
M

F ′
(‖R∇t‖2

2

)〈
d∇

d

dt
At +

[ d
dt
At ∧At

]
, R∇

t
〉
.

Let D = d
dtA

t |t=0 and let δ∇ be the adjoint operator of d∇ with respect to the
inner product. The above equality becomes as

(11)

d

dt
SF (∇t)

∣∣∣∣
t=0

=
∫
M

F ′
(‖R∇‖2

2

)
〈d∇D,R∇〉

=
∫
M

〈
D, δ∇F ′

(‖R∇‖2

2

)
R∇
〉
.

Hence the Euler-Lagrange equation of SF (·) is

(12) δ∇F ′
(‖R∇‖2

2

)
R∇ = 0 .

In order to discuss the stabilities of F -Yang-Mills fields, we need the second
variational formula. A direct calculation yields

d

dt
R∇

t

= d∇
dAt

dt
+ 1

2
d

dt

[
At ∧At

]
(13)

and

d2

dt2
R∇

t

= d∇
( d2

dt2
At
)

+
[ d2

dt2
At ∧At

]
+
[dAt
dt
∧ dA

t

dt

]
.(14)
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Hence we have

(15) d

dt

∣∣∣∣
t=0

R∇
t

= d∇D ,
d2

dt2

∣∣∣∣
t=0

R∇
t

= d∇C + [D ∧D] .

where C = d2

dt2 |t=0 A
t. Taking derivatives of (10), we have

d2

dt2
SF (∇t) =

∫
M

d

dt

[
F ′
(‖R∇t‖2

2

)〈 d
dt
R∇

t

, R∇
t
〉]

=
∫
M

F ′′
(‖R∇t‖2

2

)〈 d
dt
R∇

t

, R∇
t
〉2

+
∫
M

F ′
(‖R∇t‖2

2

)〈
d∇( d

2

dt2
At), R∇

t
〉

+
∫
M

F ′
(‖R∇t‖2

2

)〈 d2

dt2
R∇

t

, R∇
t
〉

+
∫
M

F ′
(‖R∇t‖2

2

)〈 d
dt
R∇

t

,
d

dt
R∇

t
〉
.(16)

Letting t = 0, the above formula becomes as:
d2

dt2
SF (∇t)

∣∣∣
t=0

=
∫
M

F ′′
(‖R∇‖2

2

)〈
d∇D,R∇

〉2 +
∫
M

F ′
(‖R∇‖2

2

)〈
d∇C,R∇

〉
+
∫
M

F ′
(‖R∇‖2

2

)〈
d∇C + [D ∧D] , R∇

〉
+
∫
M

F ′
(‖R∇‖2

2

)
‖d∇D‖2 .(17)

By (12), we have:

(18)
∫
M

F ′
(‖R∇‖2

2

)〈
d∇C,R∇

〉
=
∫
M

〈
C, δ∇F ′

(‖R∇‖2

2

)
R∇
〉

= 0 .

Therefore, we obtain
d2

dt2
SF (∇t)

∣∣∣
t=0

=
∫
M

F ′′
(‖R∇‖2

2

)〈
d∇D,R∇

〉2

+ F ′
(‖R∇‖2

2

) 〈
[D ∧D] , R∇

〉
+ F ′

(‖R∇‖2

2

)
‖d∇D‖2 .(19)

Definition 11. For D ∈ Ω1(gE), the index of an F -Yang-Mills field R∇ is defined
as

I(D) =
∫
M

F ′′
(‖R∇‖2

2

) 〈
d∇D,R∇

〉2

+
∫
M

F ′
(‖R∇‖2

2

) 〈
[D ∧D] , R∇

〉
+
∫
M

F ′
(‖R∇‖2

2

)
‖d∇D‖2 .(20)

If for any D ∈ Ω1(gE), there holds I(D) ≥ 0, then we call R∇ stable. Otherwise, it
is unstable.



130 GAO-YANG JIA AND ZHEN-RONG ZHOU

3. Lemmas

For ϕ ∈ Ω2(gE), ω ∈ Ω2(M)⊗Hom (X(M),X(M)), let

(21) (ϕ ◦ ω)X,Y = 1
2
∑

ϕej ,ωX,Y ej .

We use R to express the Riemannian curvature tensor of M , Ric for the Ricci
operator. On M , we take a local orthonormal frame field {ei}i=1,··· ,n, and adopt
the Einstein convention of summation. The range of the indices i, j, k, l, m is
{1, . . . , n}. Let

(22) (Ric ∧ I)X,Y = Ric(X) ∧ Y +X ∧ Ric(Y )

and

(23) R∇(ϕ)X,Y =
∑{

[R∇ej ,X , ϕej ,Y ]− [R∇ej ,Y , ϕej ,X ]
}
.

Here, Ric ∧ I ∈ Ω2(M)⊗Hom (X(M),X(M)), and X ∧ Y is defined as:

(24) (X ∧ Y ) (Z) = 〈X,Z〉Y − 〈Y,Z〉X .

For any ϕ ∈ Ω2(gE), we have (see [1])

(25) ∆ϕ = ∇∗∇ϕ− ϕ ◦ (Ric ∧ I + 2R) + <∇(ϕ) .

Hence we have

(26) 1
2∆‖ϕ‖2 =

〈
∆∇ϕ,ϕ

〉
− ‖∇ϕ‖2 − 〈ϕ ◦ (Ric ∧ I + 2R), ϕ〉 −

〈
<∇(ϕ), ϕ

〉
.

Lemma 12. For an F-Yang-Mills field R∇, we have∫
M

F ′′
(‖R∇‖2

2

)
‖R∇‖2‖∇‖R∇‖‖2

+
∫
M

F ′
(‖R∇‖2

2

)
‖R∇‖2 +

∫
M

F ′
(‖R∇‖2

2

) 〈
<∇(R∇), R∇

〉
+
∫
M

F ′
(‖R∇‖2

2

) 〈
R∇ ◦ (Ric ∧ I + 2R), R∇

〉
= 0 .(27)

Proof. By a straightforward calculation, we get

∆F
(‖R∇‖2

2

)
= −

∑
∇ei∇eiF

(‖R∇‖2

2

)
= −

∑
∇ei
(
F ′
(‖R∇‖2

2

)
∇ei
‖R∇‖2

2

)
= −F ′′

(‖R∇‖2

2

)
‖R∇‖2‖∇‖R∇‖ ‖2 − 1

2F
′
(‖R∇‖2

2

)
∆‖R∇‖2 .(28)
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In (26), taking ϕ = R∇, and then substituting the result into (28), we get

∆F
(‖R∇‖2

2

)
= −F ′′

(‖R∇‖2

2

)
‖R∇‖2‖∇‖R∇‖ ‖2

− F ′
(‖R∇‖2

2

) 〈
<∇(R∇), R∇

〉
+ F ′

(‖R∇‖2

2

) 〈
∆∇R∇, R∇

〉
− F ′

(‖R∇‖2

2

)
‖∇R∇‖2 − F ′

(‖R∇‖2

2

) 〈
R∇ ◦ (Ric ∧ I + 2R), R∇

〉
.(29)

Integrating (29) shows that it is sufficient to prove
∫
M
F ′
(‖R∇‖2

2
)
〈∆∇R∇, R∇〉 = 0.

By (12) and the Bianchi equality d∇R∇ = 0, we have∫
M

F ′
(‖R∇‖2

2

)
〈∆∇R∇, R∇〉

=
∫
M

〈
d∇ ◦ δ∇R∇, F ′

(‖R∇‖2

2

)
R∇
〉

+
∫
M

〈
δ∇ ◦ d∇R∇, F ′

(‖R∇‖2

2

)
R∇
〉

=
∫
M

〈
δ∇R∇, δ∇F ′

(‖R∇‖2

2

)
R∇
〉

+
∫
M

〈
δ∇ ◦ d∇R∇, F ′

(‖R∇‖2

2

)
R∇
〉

= 0 .(30)
�

Let {Xa} be an orthonormal frame of gE , and {ei} on M . Let

(31) R∇ei,ej = faijXa ,
(
∇ekR∇

)
ei,ej

= faijkXa .

Then we have faij = −faji, faijk = −fajik, ‖R∇‖2 = 1
2f

a
ijf

a
ij , ‖∇R∇‖2 = 1

2f
a
ijkf

a
ijk.

Lemma 13 ([3]). We have
(i) If Mn is a submanifold of Rn+k, then

(32)
〈
R∇ ◦ (Ric ∧ I + 2R), R∇

〉
=
[
(Hµhµjl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl

]
faijf

a
kl;

(ii) If Mn is a submanifold of Sn+k, then

(33)
〈
R∇ ◦ (Ric ∧ I + 2R), R∇

〉
=
[
(Hµhµjl − h

µ
jmh

µ
ml)δki − h

µ
ikh

µ
jl

]
faijf

a
kl + 2(n− 2)‖R∇‖2 .

4. Stabilities of F-Yang-Mills fields

Theorem 14. Let Mn be a submanifold of Rn+k, which satisfies the following
condition:
(34)

[
(−Hµhµjl + 2hµjmh

µ
ml)δki + 2hµikh

µ
jl

]
δsr + 2(p− 2)hµikh

µ
srδjl ≤ bδikδjlδsr,

where b < 0. If R∇ is a nonzero F -Yang-Mills field on Mn, then it is unstable,
where for t > 0 we have
(35) (p− 2)F ′(t) ≥ 2tF ′′(t) , F ′(t) > 0 , F (t) > 0 .



132 GAO-YANG JIA AND ZHEN-RONG ZHOU

Proof. Let X and V be two tangent vectors to Mn, and let D = iVR
∇, then we

have DX = (iVR∇)X = R∇V,X and

(d∇D)ei,ej = (∇eiD)ej − (∇ejD)ei
=
(
∇ei(iVR∇)

)
ej
−
(
∇ej (iVR∇)

)
ei

= ∇ei(iVR∇)ej − (iVR∇)∇eiej −∇ej (iVR
∇)ei + (iVR∇)∇ej ei

= ∇ei(iVR∇)ej −∇ej (iVR∇)ei −R∇V,∇eiej +R∇V,∇ej ei
.

Because
∇ej (iVR∇)ei = ∇ei

(
R∇V,ej

)
= (∇ejR∇)V,ei +R∇∇ejV,ei

+R∇V,∇ej ei
,

we have
(36) (d∇D)ei,ej = (∇eiR∇)V,ej − (∇ejR∇)V,ei +R∇∇eiV,ej

−R∇∇ejV,ei .

Let {EA | A = 1, 2, . . . , n + k} be the canonical orthonormal base of Rn+k, and
write VA = viAei as the tangent part of EA. Let the indices A, B, C run from 1 to
n+ k, the indices i, j from 1 to n, and the indice µ from n+ 1 to n+ k. Then we
have
(37) vBAv

C
A = δBC , ∇eiVA = vµAh

µ
ijej .

For DA = iVAR
∇, A = 1, 2, . . . , n+ k, according to (20) we get∑
A

IF (DA) =
∑
A

∫
M

F ′′
(‖R∇‖2

2

) 〈
d∇DA, R

∇〉2

+
∑
A

∫
M

F ′
(‖R∇‖2

2

) 〈
DA ∧DA, R

∇〉
+
∑
A

∫
M

F ′
(‖R∇‖2

2

) 〈
d∇DA, d

∇DA

〉
.(38)

By (36) and (37), we have
(d∇DA)ei,ej = (∇eiR∇)VA,ej − (∇ejR∇)VA,ei +R∇∇eiVA,ej

−R∇∇ejVA,ei

= vlA(∇eiR∇)el,ej − vlA(∇ejR∇)el,ei + vµAh
µ
ilR
∇
el,ej
− vµAh

µ
jlR
∇
el,ei

,(39)
from which, we have

〈d∇DA, R
∇〉 = 1

2
〈
R∇ei,ej , (d

∇DA)ei,ej
〉

= 1
2v

l
A

〈
R∇ei,ej , (∇eiR

∇)el,ej
〉
− 1

2v
l
A

〈
R∇ei,ej , (∇ejR

∇)el,ei
〉

+ 1
2v

µ
Ah

µ
il

〈
R∇ei,ej , R

∇
el,ej

〉
− 1

2v
µ
Ah

µ
jl〈R

∇
ei,ej , R

∇
el,ei
〉

= vlA
〈
R∇ei,ej , (∇eiR

∇)el,ej
〉

+ vµAh
µ
il〈R

∇
ei,ej , R

∇
el,ej
〉 .
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According to (37) one has∑
A

〈d∇DA, R
∇〉2 =

(
vlA〈R∇ei,ej , (∇eiR

∇)el,ej 〉+ vµAh
µ
il〈R

∇
ei,ej , R

∇
el,ej
〉
)

×
(
vkA〈R∇es,et , (∇esR

∇)ek,et〉+ vλAh
λ
sk〈R∇es,et , R

∇
ek,et
〉
)

= δlk
〈
R∇ei,ej , (∇eiR

∇)el,ej
〉〈
R∇es,et , (∇esR

∇)ek,et
〉

+ δµλh
µ
ilh

λ
sk〈R∇ei,ej , R

∇
el,ej
〉〈R∇es,et , R

∇
ek,et
〉

=
〈
R∇ei,ej , (∇eiR

∇)el,ej
〉〈
R∇es,et , (∇esR

∇)el,et
〉

+ hµilh
µ
sk〈R

∇
ei,ej , R

∇
el,ej
〉〈R∇es,et , R

∇
ek,et
〉 .(40)

Taking use of the Bianchi identity, we reach〈
R∇ei,ej , (∇eiR

∇)el,ej
〉

= −
〈
R∇ei,ej , (∇elR

∇)ej ,ei
〉
−
〈
R∇ei,ej , (∇ejR

∇)ei,el
〉

=
〈
R∇ei,ej , (∇elR

∇)ei,ej
〉
−
〈
R∇ej ,ei , (∇ejR

∇)el,ei
〉
,

from which we obtain

(41)
∑
i,j

〈
R∇ei,ej , (∇eiR

∇)el,ej
〉

= 1
2
∑
i,j

〈
R∇ei,ej , (∇elR

∇)ei,ej
〉

= 〈R∇,∇elR∇〉 .

Substituting (41) into (40), we have∑
A

〈d∇DA, R
∇〉2 =

∑
l

〈R∇,∇elR∇〉2 + hµilh
µ
tm〈R∇ei,ej , R

∇
el,ej
〉〈R∇et,es , R

∇
em,es〉

= ‖R∇‖2 ∥∥∇‖R∇‖∥∥2 + hµilh
µ
tm〈R∇ei,ej , R

∇
el,ej
〉〈R∇et,es , R

∇
em,es〉 .(42)

Therefore∑
A

∫
M

F ′′
(‖R∇‖2

2

)
〈d∇DA, R

∇〉2 =
∫
M

F ′′
(‖R∇‖2

2

)
‖R∇‖2∥∥∇‖R∇‖∥∥2

+
∫
M

F ′′
(‖R∇‖2

2

)
hµilh

µ
tm〈R∇ei,ej , R

∇
el,ej
〉〈R∇et,es , R

∇
em,es〉

=
∫
M

F ′′
(‖R∇‖2

2

)
‖R∇‖2∥∥∇‖R∇‖∥∥2

+
∫
M

F ′′
(‖R∇‖2

2

)
hµilh

µ
tmf

a
ijf

a
ljf

b
tsf

b
ms ,(43)

where faij ’s are the components of R∇ei,ej . Because

hµilh
µ
tmf

a
ijf

a
ljf

b
tsf

b
ms = hµikh

µ
srf

a
ijf

a
kjf

b
stf

b
rt = hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt ,
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we have

(44)
∫
M

F ′′
(‖R∇‖2

2

)
hµilh

µ
tmf

a
ijf

a
ljf

b
tsf

b
ms

=
∫
M

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt .

Substituting (44) into (43), we have∑
A

∫
M

F ′′
(‖R∇‖2

2

)
〈d∇DA, R

∇〉2 =
∫
M

F ′′
(‖R∇‖2

2

)
‖R∇‖2∥∥∇‖R∇‖∥∥2

+
∫
M

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt .(45)

Now, we calculate the third term at the right hand side of (38). By (39), we get∑
A

‖d∇DA‖2 = 1
2
∑
A

〈
(d∇DA)ei,ej , (d∇DA)ei,ej

〉
= faijkf

a
ijk − fakjifakij + hµikh

µ
ilf

a
kjf

a
lj − h

µ
ikh

µ
jlf

a
kjf

a
li ,

where, faijk’s are the components of ∇ekR∇ei,ej . From the Bianchi identity, we have
fakjif

a
kij = 1

2f
a
ijkf

a
ijk = ‖∇R∇‖2. Hence we have

(46)
∑
A

‖d∇DA‖2 = ‖∇R∇‖2 + (hµikh
µ
ilf

a
kjf

a
lj − h

µ
ikh

µ
jlf

a
kjf

a
li) ,

from which we arrive at∑
A

∫
M

F ′
(‖R∇‖2

2

)
〈d∇DA, d

∇DA〉 =
∫
M

F ′
(‖R∇‖2

2

)
‖∇R∇‖2

+
∫
M

F ′
(‖R∇‖2

2

)(
hµikh

µ
ilf

a
kjf

a
lj − h

µ
ikh

µ
jlf

a
kjf

a
li

)
.(47)

Then we calculate the second term at the right hand side of (38). By a direct
computation, we have

〈DA ∧DA, R
∇〉 = 1

2
〈
[DA ∧DA]ej ,ek , R∇ej ,ek

〉
=
〈
[DA,ej , DA,ek ], R∇ej ,ek

〉
= −

〈
[DA,ek , DA,ej ], R∇ej ,ek

〉
= −

〈
[RVA,ek , RVA,ej ], R∇ej ,ek

〉
= −viAvlA

〈
[Rei,ek , Rel,ej ], R∇ej ,ek

〉
= −

〈
[Rei,ek , Rei,ej ], R∇ej ,ek

〉
≡ 〈<∇(R∇), R∇〉 ,
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from which, we get

(48)
∑
A

∫
M

F ′
(‖R∇‖2

2

)
〈DA ∧DA, R

∇〉 =
∫
M

F ′
(‖R∇‖2

2

)〈
<∇(R∇), R∇

〉
.

Inserting (45), (47) and (48) into (38) yields

∑
A

IF (DA) =
∫
M

F ′′
(‖R∇‖2

2

)
‖R∇‖2‖∇‖R∇‖ ‖2

+
∫
M

F ′
(‖R∇‖2

2

)
‖∇R∇‖2 +

∫
M

F ′
(‖R∇‖2

2

)〈
<∇(R∇), R∇

〉
+
∫
M

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt

+
∫
M

F ′
(‖R∇‖2

2

)(
hµikh

µ
ilf

a
kjf

a
lj − h

µ
ikh

µ
jlf

a
kjf

a
li

)
.

Applying Lemma 12, we can get

∑
A

IF (DA) =−
∫
M

F ′
(‖R∇‖2

2

)〈
R∇ ◦ (Ric ∧ I + 2R∇), R∇

〉
+
∫
M

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt

+
∫
M

F ′
(‖R∇‖2

2

)
(hµikh

µ
ilf

a
kjf

a
lj − h

µ
ikh

µ
jlf

a
kjf

a
li) .(49)

Then use Lemma 13(i) and (44), and we obtain

∑
A

IF (DA) =
∫
M

F ′
(‖R∇‖2

2

)[
− (Hµhµjl − h

µ
jmh

µ
ml)δki + hµikh

µ
jl

]
faijf

a
kl

+
∫
M

F ′
(‖R∇‖2

2

)(
hµikh

µ
ilf

a
kjf

a
lj − h

µ
ikh

µ
jlf

a
kjf

a
li

)
+
∫
M

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt .(50)

Since

hµikh
µ
ilf

a
kjf

a
lj = hµkih

µ
ilf

a
jkf

a
jl = hµkmh

µ
mlf

a
jkf

a
jl = hµjmh

µ
mlf

a
kjf

a
kl

= hµjmh
µ
mlδkif

a
ijf

a
kl, ,(51)

−hµikh
µ
jlf

a
kjf

a
li = −hµikh

µ
ljf

a
klf

a
ji = hµikh

µ
ljf

a
klf

a
ij ,(52)
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the inequality (50) becomes as

∑
A

IF (DA) =
∫
M

F ′
(‖R∇‖2

2

)[
(−Hµhµjl + 2hµjmh

µ
ml)δki + 2hµikh

µ
jl

]
faijf

a
kl

+
∫
M

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt .

Let M0 = {x ∈ M : R∇(x) = 0}. Apparently, M\M0 is an open set of M and
M0 = M is equivalent to R∇ ≡ 0. If R∇ 6= 0, and note that 2‖R∇‖2 = f brqf

b
rq =

δsrf
b
stf

b
rt, then we have

∑
A

IF (DA) =
∫
M\M0

1
2‖R∇‖2F

′
(‖R∇‖2

2

)
2‖R∇‖2

×
[
(−Hµhµjl + 2hµjmh

µ
ml)δki + 2hµikh

µ
jl

]
faijf

a
kl

+
∫
M\M0

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt

=
∫
M\M0

1
2‖R∇‖2F

′
(‖R∇‖2

2

)
×
[
(−Hµhµjl + 2hµjmh

µ
ml)δki + 2hµikh

µ
jl

]
δsrf

a
ijf

a
klf

b
stf

b
rt

+
∫
M\M0

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt .

In order to make
∑
IF (DA) negative, we must assume that F ′ and F ′′ have some

relations. Because
∑
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt =

∑
hµikf

a
kjf

a
ji

∑
hµsrf

b
rtf

b
ts ≥ 0, we can

assume that F ′′(t) ≤ (p−2)F ′(t)
2t . In this case we have

∑
A

IF (DA) ≤
∫
M\M0

1
2‖R∇‖2F

′
(‖R∇‖2

2

)
×
[
(−Hµhµjl + 2hµjmh

µ
ml)δki + 2hµikh

µ
jl

]
δsrf

a
ijf

a
klf

b
stf

b
rt

+
∫
M\M0

p− 2
‖R∇‖2F

′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt

=
∫
M\M0

1
2‖R∇‖2F

′
(‖R∇‖2

2

)
×
{[

(−Hµhµjl+2hµjmh
µ
ml)δkiδsr+2hµikh

µ
jlδsr

]
+ 2(p− 2)hµikh

µ
srδjl

}
faijf

a
klf

b
stf

b
rt .
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Let Cijklrs =
[
(−Hµhµjl + 2hµjmh

µ
ml)δkiδsr + 2hµikh

µ
jlδsr

]
+ 2(p− 2)hµikhµsrδjl, then

by the assumption of the theorem we have∑
A

IF (DA) ≤
∫
M\M0

1
2‖R∇‖2F

′
(‖R∇‖2

2

)
Cijklsrf

a
ijf

a
klf

b
stf

b
rt

≤
∫
M\M0

1
2‖R∇‖2F

′
(‖R∇‖2

2

)
bδikδjlδsrf

a
ijf

a
klf

b
stf

b
rt

≤
∫
M\M0

b

2‖R∇‖2F
′
(‖R∇‖2

2

)
faijf

a
ijf

b
stf

b
st

=
∫
M\M0

2bF ′
(‖R∇‖2

2

)
‖R∇‖2 < 0 ,

which is a contradiction to the stability of R∇. Therefore we have R∇ ≡ 0. �

Remark 15. We have used the condition (5) in the above proof, which is a
technical assumption. This condition covers many important cases, but don’t covers
the exponential Yang-Mills fields. We plan to discuss the exponential Yang-Mills
fields elsewhere.

Corollary 16. Let Mn be a hypersurface of Rn+1, the principal curvatures
λ1, λ2, · · · , λn of which satisfies the following condition:

(53) Hλi > 2λiλj + 2λ2
j + 2(p− 2)λiλs ,

where H =
∑
i λi. If for t > 0 we have

(p− 2)F ′(t) ≥ 2tF ′′(t) , F ′(t) > 0 , F (t) > 0 ,

then any nonzero F -Yang-Mills field R∇ on M must be unstable.

Especially, if Mn = Sn ⊂ Rn+1 and n > 2p, then any nonzero F -Yang-Mills
field R∇ on Sn must be unstable.

Proof. Let hn+1
ij = λiδij and H = Hn+1 =

∑
i λi, then for fixed i, j, k, s, r, t, q we

have
Cijklsr =

[(
−Hλj + 2λjλl + 2λiλj

)
+ 2(p− 2)λiλs

]
δikδjlδsr ,

from which we get∑
A

IF (DA) ≤
∫
M\M0

1
2‖R∇‖2F

′
(‖R∇‖2

2

)
Cijklsrf

a
ijf

a
klf

b
stf

b
rt

=
∫
M\M0

1
2‖R∇‖2F

′
(‖R∇‖2

2

)
×
[(
−Hλj + 2λjλl + 2λiλj

)
+ 2(p− 2)λiλs

]
δikδjlδsrf

a
ijf

a
klf

b
stf

b
rt

= 2
∫
M\M0

F ′
(‖R∇‖2

2

)[(
−Hλj+2λ2

j+2λiλj
)
+2(p−2)λiλs

]
‖R∇‖2 < 0 .
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This is impossible because of the stability unless M = M0 i.e. R∇ ≡ 0. The theorem
follows.

Especially, for Mn = Sn ⊂ Rn+1 we have λi = 1. The condition (53) becomes
as n > 2p. �

Theorem 17. Let Mn be a submanifold of Sn+k, satisfying that[
(−Hµhµjl + 2hµjmh

µ
ml)δki + 2hµikh

µ
jl

]
δsr + 2(p− 2)hµikh

µ
srδjl < (n− 2p)δikδjlδsr ,

where p > 2 and hµij is the components of the second fundamental form h of Mn in
Sn+k. Then, any nonzero F -Yang-Mills field R∇ on M is unstable if

(p− 2)F ′(t) ≥ 2tF ′′(t) , F ′(t) ≥ 0 , F (t) > 0 .

Proof. The proof is similar to that of Theorem 14, but Lemma 13(ii) instead of
(i) is used to calculate the curvature.

By Lemma 13 (ii), we can get the first term of (48) as follows:

−
∫
M

F ′
(‖R∇‖2

2

)
〈R∇ ◦ (Ric ∧ I + 2R∇), R∇〉

=
∫
M

F ′
(‖R∇‖2

2

)[
− (Hµhµjl − h

µ
jmh

µ
ml)δki + hµikh

µ
jl

]
faijf

a
kl

− 2(n− 2)
∫
M

F ′
(‖R∇‖2

2

)
‖R∇‖2 .

Note that in the second and the third terms of (48), hµij is the second fundamental
tensor of M in Rn+k. But in Theorem 17, hµij is the second fundamental tensor
of M in Sn+k. Because Sn+k is a hypersurface of Rn+k+1, M can be view as a
submanifold of Rn+k+1, whose second fundamental tensor has two parts: one is
that of M in Sn+k which is also denoted by hµij , another is that of Sn+k in Rn+k+1

which is hn+k+1
ij = δij in an appropriate local frame field. Hence the second and

the third terms of (48) become respectively as∫
M

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt + 4

∫
M

F ′′
(‖R∇‖2

2

)
‖R∇‖4

and ∫
M

F ′
(‖R∇‖2

2

)(
hµikh

µ
ilf

a
kjf

a
lj − h

µ
ikh

µ
jlf

a
kjf

a
li

)
+ 4

∫
M

F ′
(‖R∇‖2

2

)
‖R∇‖2 .

Therefore we have∑
A

IF (DA) =
∫
M

F ′
(‖R∇‖2

2

)[
− (Hµhµjl − h

µ
jmh

µ
ml)δki + hµikh

µ
jl

]
faijf

a
kl

− 2(n− 2)
∫
M

F ′
(‖R∇‖2

2

)
‖R∇‖2
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+
∫
M

F ′′
(‖R∇‖2

2

)
hµikh

µ
srδjlf

a
ijf

a
klf

b
stf

b
rt + 4

∫
M

F ′′
(‖R∇‖2

2

)
‖R∇‖4

+
∫
M

F ′
(‖R∇‖2

2

)
(hµikh

µ
ilf

a
kjf

a
lj − h

µ
ikh

µ
jlf

a
kjf

a
li) + 4

∫
M

F ′
(‖R∇‖2

2

)
‖R∇‖2 .(54)

The rest discuss is similar to the proof of Theorem 14, so we omit the details. �

Similar to Corollary 16, we have

Corollary 18. Let Mn be a hypersurface of Sn+1, the principal curvatures λ1, λ2,
. . . , λn of which satisfies the following condition:
(55) Hλi > 2λiλj + 2λjλl + 2(p− 2)λiλs − (n− 2p),
where H =

∑
i λi. If for t > 0 we have

(p− 2)F ′(t) ≥ 2tF ′′(t) , F ′(t) > 0 , F (t) > 0 ,
then any nonzero F -Yang-Mills field R∇ on M must be unstable.

References
[1] Bourguignon, J.-P., Lawson, H. B., Stability and isolation phenomena for Yang–Mills fields,

Comm. Math. Phys. 79 (2) (1981), 189–230.
[2] Bourguignon, J.-P., Lawson, H. B., Simons, J., Stability and gap phenomena for Yang-Mills

fields, Proc. Acad. Sci. U.S.A. 76 (1979), 1550–1553.
[3] Chen, Q., Zhou, Z.-R., On gap properties and instabilities of p-Yang-Mills fields, Canad. J.

Math. 59 (6) (2007), 1245–1259.
[4] Sibner, L. M., Sibner, R. J., Uhlenbeck, K., [solutions to yang–mills equations that are not

self–dual], Proc. Natl. Acad. Sci. USA 86 (1989), 8610–8613.
[5] Xin, Y. L., Instability theorems of Yang-Mills fields, Acta Math. Sci. 3 (1) (1983), 103–112.

Corresponding author:
Zhen-Rong Zhou,
Department of Mathematics,
Central China Normal University,
430079, Wuhan, P.R.China
E-mail: zrzhou@mail.ccnu.edu.cn

mailto:zrzhou@mail.ccnu.edu.cn

	1. Introduction
	2. Variational formulas of F-Yang-Mills fields
	3. Lemmas
	4. Stabilities of F-Yang-Mills fields
	References

