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NOTES ON SYMMETRIC CONFORMAL GEOMETRIES

Jan Gregorovič and Lenka Zalabová

Abstract. In this article, we summarize the results on symmetric confor-
mal geometries. We review the results following from the general theory of
symmetric parabolic geometries and prove several new results for symmetric
conformal geometries. In particular, we show that each symmetric conformal
geometry is either locally flat or covered by a pseudo-Riemannian symmetric
space, where the covering is a conformal map. We construct examples of
locally flat symmetric conformal geometries that are not pseudo-Riemannian
symmetric spaces.

1. Symmetric conformal geometries

Assume p+q ≥ 3 and p ≥ q ≥ 0 and let M be a connected manifold of dimension
p+ q. Two pseudo-Riemannian metrics g and ĝ of the signature (p, q) on a manifold
M are known to be conformally equivalent, if there is a positive smooth function f
such that ĝ = f2g. An equivalence class [g] of pseudo-Riemannian metrics that are
conformally equivalent to g is then called a conformal structure on M . A (local)
conformal transformation is then a (local) diffeomorphism of M that preserves the
conformal structure on M .

Each conformal structure on M can be described as a first order G-structure
corresponding to CO(p, q) ⊂ GL(p+ q,R). The well known prolongation procedure
allows to construct a parabolic geometry (G →M,ω) of type (PO(p+ 1, q + 1), P )
from each such CO(p, q)-structure M , see [2, Section 1.6]. Here PO(p+ 1, q + 1) is
the projectivized pseudo-orthogonal group of signature (p+ 1, q + 1) and P is the
stabilizer of a null line in Rp+q+2.

In fact, there is a correspondence between conformal structures of signature (p, q)
on M and parabolic geometries (G →M,ω) of type (PO(p+ 1, q + 1), P ), which
can be made bijective using the normalization condition on the curvature κ of the
parabolic geometry, see [2, Section 3.1]. Moreover, for a normal parabolic geometry
of type (PO(p+ 1, q + 1), P ), the vanishing of κ is equivalent to the vanishing of
the Weyl tensor W in the case p+ q > 3, and the vanishing of the Cotton-York
tensor C in the case p + q = 3, of the corresponding conformal structure. This
leads to the description of conformal geometries as normal |1|–graded parabolic
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geometries, which is well understood, see [2, Section 1.6]. We use this description
to study conformal symmetries on conformal geometries.
Definition 1. A (local) conformal symmetry at x ∈M on a conformal manifold
M is a (local) conformal transformation Sx on M such that:

(1) Sx(x) = x,
(2) TxSx = −id on TxM .

We call the geometry conformally symmetric, if there exists a conformal symmetry
at each point x ∈M . We describe each system of conformal symmetries on M by
a map S : M ×M →M given by S(x, y) = Sx(y) for the chosen symmetries Sx at
x, and we call the system smooth, if the map S is smooth in both variables.

The simplest example of a symmetric conformal geometry is the flat model
PO(p+1, q+1)/P , which is the Möbius space of signature (p, q). It is a homogeneous
space of dimension p+ q with the transitive action of PO(p+ 1, q + 1) and there
is the natural PO(p + 1, q + 1)–invariant conformal structure of signature (p, q)
induced from the standard metric in Rp+q+2 of signature (p+ 1, q + 1).

Let us follow the notation from [2, Section 1.6.3]. Thus we consider the standard
metric in Rp+q+2 given by the block matrix of the block form

m =

0 0 1
0 J 0
1 0 0


with blocks of sizes 1, p+ q and 1, where J is the diagonal matrix with p ones and q
minus ones on the diagonal. In particular, if e0, . . . , ep+q+1 is the canonical basis of
Rp+q+2, then P is the stabilizer of the line 〈e0〉 generated by the first basis vector.
Then we write elements of so(p+ 1, q + 1) as block matrices of the block form a Z 0

X A −JZT
0 −XTJ −a


with blocks of sizes 1, p+q and 1, where X ∈ Rp+q, Z ∈ Rp+q∗ and (a,A) ∈ co(p, q).
One can verify that all conformal symmetries at the origin eP are exactly left
multiplications by elements of PO(p+ 1, q+ 1) represented by matrices of the form

sZ =

−1 −Z 1
2ZJZ

T

0 E −JZT
0 0 −1

 ,

where E is the identity matrix of rank p+ q, and Z ∈ Rp+q∗ can be arbitrary. In
particular, all conformal symmetries sZ are involutive and there exists an infinite
number of symmetries at each point hP of PO(p+ 1, q + 1)/P given by matrices
of the form hsZh

−1 for all Z ∈ Rp+q∗.
The conformal geometry is called (conformally) locally flat, if p + q > 3 and

W = 0, or p+ q = 3 and C = 0. In particular, it is locally flat if and only if it is
locally isomorphic to the flat model.

We will see that conformal symmetries on conformal geometries such that W 6= 0
have very different properties from the symmetries on flat models.
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2. Distinguished connections

Suppose we have a conformal structure (M, [g]) and suppose there is a conformal
symmetry Sx at x. It is well known that there always is a class of torsion-free affine
connections preserving the conformal structure [g], the so-called Weyl connections,
see [2, Section 1.6]. Arbitrary two Weyl connections ∇ and ∇̂ belonging to one
class of Weyl connections are related by

(1) ∇̂ξ(η) = ∇ξ(η) + Υ(ξ)η + Υ(η)ξ − g(ξ, η)g−1(Υ)

for suitable Υ ∈ Ω1(M), where g is an arbitrary metric from the conformal class and
g−1 : T ∗M → TM is an inverse of g viewed as a map TM → T ∗M . In particular,
if Sx is a conformal symmetry and ∇ is a Weyl connection, then S∗x∇ is a Weyl
connection, too. In other words, there exists Υ ∈ Ω1(M) such that

(S∗x∇)ξ(η) = ∇ξ(η) + Υ(ξ)η + Υ(η)ξ − g(ξ, η)g−1(Υ),(2)

and this holds locally in the case of local symmetries. In fact, the linear map
TxM → TxM given by

ν 7→
(
Υ(ξ)ν + Υ(ν)ξ − g(ξ, ν)g−1(Υ)

)
(x)(3)

naturally provides an element ξ(Υ)(x) of co(p, q) with the same action on TxM =
Rp+q for each x and each ξ ∈ TxM . In particular, the evaluation of the formula in
ξ is a linear map ξ(−)(x) : T ∗xM → co(p, q) at each x. We recall that ξ(Υ)(x) = 0
for all ξ ∈ TxM if and only if Υ(x) = 0 holds.

Suppose there is a (local) conformal symmetry Sx at x on M . It is proved in
[7] that there always is a Weyl connection ∇Sx satisfying S∗x∇Sx = ∇Sx . The
‘difference’ Υ between ∇Sx and any other Weyl connection ∇ satisfying S∗x∇ = ∇
given by the formula (1) vanishes at x, because Υ(x) is Sx-invariant tensor of type
(0, 1) and thus vanishes at x. Moreover, this implies for the Weyl tensor W that
∇W vanishes at x for any Weyl connection satisfying S∗x∇ = ∇, because (∇W )(x)
is a tensor of type (1, 4) invariant with respect to Sx.

Let us remark that in the case p+q = 3, the Weyl tensor vanishes identically and
the Cotton–York tensor C vanishes at the points with conformal symmetries, since
it is an invariant tensor of type (1, 2). In particular, if the geometry is conformally
symmetric, then the geometry is locally flat.

Assume there is a smooth system of conformal symmetries S on the conformal
manifold M . For each such system S, there exists at most one connection ∇S which
is invariant with respect to S, i.e. such that S∗x∇S = ∇S for all x ∈ M . To get
this uniquely given candidate for the invariant connection ∇S , one simply glues
pointwise the above connections ∇Sx for all x, see [8] for details. The connection
∇S always satisfies ∇SW = 0 on M . However, ∇S need not to be invariant and it
is proved in [8] that this is the case if and only if Sx ◦ Sy ◦ Sx = SSx(y) holds for
each x, y ∈M . In such situation, (M,S) is a symmetric space.

Let us now focus on the question, when the condition Sx ◦ Sy ◦ Sx = SSx(y)
is satisfied? There are some partial results in [7]. We present here a particular
improvement of the results, which includes the answer to our question.



290 J. GREGOROVIČ AND L. ZALABOVÁ

Proposition 1. Suppose there are two different symmetries at x on the conformal
structure (M, [g]). Then the Weyl tensor W vanishes at x.

Proof. We follow here [7, Theorem 4.5.]. Consider two different symmetries Sx and
S′x at x. Then there are two different Weyl connections such that (Sx)∗∇Sx = ∇Sx
and (S′x)∗∇S′x = ∇S′x hold on a neighborhood of x, and thus ∇SxW = 0 and
∇S′xW = 0 at x. Moreover, there is Υ 6= 0 given by (1) that relates directly the two
derivatives ∇Sx and ∇S′x . If we apply this on the Weyl tensor W , we get that the
element ξ(Υ)(x) of co(p, q) given by (3) has to act trivially on W (x) for all vectors
ξ. We show in the following lemma that this always implies vanishing of W (x). �

Let us denote by ann(Wx) the set of all A ∈ co(p, q) such that A acts trivially
on W (x). We need to show that the set

ann(Wx)(1) = {Υ : ξ(Υ)(x) ∈ ann(Wx) for all ξ ∈ TxM}

is trivial if ann(Wx) 6= co(p, q).

Lemma 1. If W (x) is non-trivial, then ann(Wx)(1) = 0.

Proof. The statement follows from the general theory of [6]. One can also use the
ideas of [1, Section 3.2], where the authors compute directly the actions of suitable
elements ξ(Υ)(x) ∈ co(p, q) to get vanishing of the Weyl tensor as a consequence of
the existence of automorphisms with higher order fixed points, which in our case
correspond to the elements Υ. �

There is the following direct consequence of the Proposition 1.

Corollary 1. Let (M, [g]) be a conformal structure and assume W (x) 6= 0.
(1) There exist at most one conformal symmetry at x on M .
(2) If there is a conformal symmetry Sz at z and Sz(y) = x, then the condition

Sz ◦ Sy ◦ Sz = SSz(y) is trivially satisfied for z and arbitrary conformal
symmetry Sy at y.

The corollary implies that if W (x) 6= 0, then W 6= 0 on a neighborhood of x and
if there are conformal symmetries, then they are unique, too. We can prove that
the corresponding system of conformal symmetries is smooth.

Lemma 2. Let (M, [g]) be a conformal structure, let U be an open subset of M
with non-trivial W and suppose there is a conformal symmetry at each x ∈ U .
Then the system S assigning to x the unique symmetry at x is smooth map from U
to the automorphism group.

Proof. Let us fix a Weyl connection ∇Sx such that (Sx)∗∇Sx = ∇Sx for some
x ∈ U . Then for each y ∈ U , there is Υ(y) describing the ‘difference’ between ∇Sy
and ∇Sx at y by (1). Thus ∇SxW (y) is given by the algebraic action (3) of Υ(y) on
W for each ξ ∈ TyM . To prove the claim, it is enough to show that Υ(y) depends
smoothly on y. But ∇SxW (y) is smooth and thus the image of ξ(Υ(y)) ∈ co(p, q)
depends smoothly on y for each ξ ∈ TyM . Since the kernel of the action coincides
with ann(Wy)(1), we conclude that Υ(y) depends smoothly on y. �
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The lemma particularly implies, that if U consists of all points with non-trivial
W and there is a conformal symmetry at each x ∈ U , then U is closed in M ,
because the group generated by symmetries at points in U acts transitively on U .
Since U is open and M connected, it holds U = M . We know from Corollary 1
that conformal symmetries on U satisfy the condition Sx ◦ Sy ◦ Sx = SSx(y) and
we can summarize the above results in the following theorem.

Theorem 1. Suppose (M, [g]) is a conformally symmetric conformal structure
with the Weyl tensor W . Then either

(1) W = 0, or
(2) W 6= 0 and (M,S) is a symmetric space.

In particular, each conformally symmetric conformal structure is either confor-
mally homogeneous or locally flat.

Since each non-flat conformal symmetric geometry is conformally homogeneous,
the group K of conformal transformations generated by the corresponding smooth
system of symmetries S acts transitively on M , and we get M = K/H, where
H ⊂ K is the stabilizer of a point. As usual, there is the canonical AdH -invariant
decomposition k = h⊕m, and s ∈ H such that h is 1-eigenspace of Ads, and m is
−1-eigenspace of Ads. In other words, we have the homogeneous symmetric space
(K,H, s) = (M,S) for the group K generated by all symmetries.

3. Symmetries of homogeneous conformal geometries

Let (G →M,ω) be a normal homogeneous conformal geometry. For an arbitrary
transitive group K of conformal transformations and a stabilizer H ⊂ K, the choice
of u ∈ G from the fiber over eH ∈ K/H ' M provides an inclusion j : K → G
of the form j(k) = k(u), and Lie group homomorphism i : H → P of the form
h(u) = u·i(h). Then ω(u)◦Tej defines a linear map α : k→ so(p+1, q+1) satisfying
the following conditions:

(1) α : k→ so(p+ 1, q + 1) is linear map extending Tei : h→ p,
(2) α induces an isomorphism α : k/h→ so(p+ 1, q + 1)/p of vector spaces,
(3) Ad(i(h)) ◦ α = α ◦Ad(h) holds for all h ∈ H.

Then there is P -bundle isomorphism G ' K×i(H)P such that u = [[e, e]], and the
Cartan connection ω can be described as ω(j(k))(X,A) = α◦ωK(k)(X)+ωP (e)(A)
for X ∈ so(p+ 1, q + 1) and A ∈ p, where ωG denotes the Maurer–Cartan form on
the Lie group G. Let us recall that such pair of maps (α, i) is called an extension of
(K,H) to (PO(p+1, q+1), P ), see [2, Section 1.5.15]. The curvature κ is completely
determined by κ(u)(α(X), α(Y )) = [α(X), α(Y )]− α([X,Y ]) for X,Y ∈ k/h.

Let us recall results on (local) existence of symmetries on a homogeneous
conformal geometry following from [5, Section 2].

Proposition 2. Let (α, i) be an extension of (K,H) to (PO(p + 1, q + 1), P )
describing the normal homogeneous conformal geometry (G →M,ω).

(1) If κ = 0, then there is locally defined symmetry at each point.
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(2) If κ 6= 0, then there is a (unique) local symmetry at each point preserving k
if and only if there is Z ∈ Rp+q∗ such that AdexpZα(k) is preserved by Ads0 ,
where s0 is the symmetry of the flat model as described in the Section 1
for Z = 0.

In particular, if k coincides with the algebra of all complete conformal
Killing fields, then there is a (unique) local symmetry at each point if and
only if there is Z ∈ Rp+q∗ such that AdexpZα(k) is preserved by Ads0 .

Suppose that (G → M,ω) is a normal K-homogeneous conformal geometry
on homogeneous symmetric space (K,H, s), where K is the group generated by
all symmetries. Then it is proved in [4, Proposition 2.3] that the geometry can
be described by the extension (α, i) of (K,H) to (PO(p + 1, q + 1), P ) which
particularly satisfies i(H) ⊂ CO(p, q) and i(s) = s0. Precisely, it is proved in [4,
Proposition 2.5] that there is a bijection between:

– extensions of (K,H) to a conformal structure (PO(p+ 1, q + 1), P ) such that
i(s) = s0, and

– couples (β, b), where β is a frame of m such that the inclusion iβ : H →
GL(Rp+q) induced by the frame β is contained in CO(p, q), and b is an
endomorphism of Rp+q∗ commuting with iβ(Ad(H)).

In fact, iβ is Ad: H → GL(m) written in the frame β and the b-part plays no
important role for now.

Such a pair (α, i) determines a reduction with respect to CO(p, q)→ P of the
homogeneous geometry (G → M,ω) to K-invariant CO(p, q)-structure over M .
The reduction can be viewed as a (K,CO(p, q))-orbit of a suitable u ∈ G.

Moreover, there is a reduction with respect to i(H)→ P of the homogeneous
geometry (G →M,ω) to K-invariant i(H)-structure over M , which can be viewed
as (K, i(H))-orbit of a suitable u. It follows from the reductivity of the pair
(K,H) that this reduction corresponds to the canonical invariant connection
on the symmetric space. In the language of the bundle isomorphisms, we get
K ×i(H) i(H) ⊂ K ×i(H) CO(p, q) ⊂ K ×i(H) P ' G.

Clearly, the connection is the Levi–Civita connection of a metric from the
conformal class if and only if i(H) ⊂ O(p, q), i.e. if the above reduction is a
reduction to O(p, q)-structure on M .

Theorem 2. Let (α, i) be the extension of (K,H) to (PO(p+ 1, q + 1), P ) for the
homogeneous symmetric space (K,H, s). Then there is K-invariant metric g of
signature (p, q) on K/H0, where H0 is the component of identity of H.

In particular, each conformally symmetric conformal structure such that W 6= 0
is covered by a pseudo-Riemannian symmetric space, where the coving is a conformal
map.

Proof. Let (α, i) be the extension of (K,H) to (PO(p + 1, q + 1), P ) described
above. We need to show that i(H0) ⊂ O(p, q), because (α, i) naturally restricts to a
extension of (K,H0) to (G,P ). This implies that the corresponding connection on
K/H0 is metric, and then the symmetric space (K,H0, s) is pseudo-Riemannian
and the projection K/H0 → K/H is clearly a conformal map.
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Consider the canonical decomposition k = h ⊕ m. Then [m,m] ⊂ h holds, and
thus exp([X,Y ]) ∈ H0 holds for each X,Y ∈ m. Then the elements

i(exp([X,Y ])) = exp(i′([X,Y ]))
for all X,Y ∈ m generate H0. Thus i = Ad for the right choice of the base, and so
we will study elements of the form exp(ad([X,Y ])) for all X,Y ∈ m.

The element exp(ad([X,Y ])) belongs to so(p, q) if and only if its determinant
equals to 1, i.e. if and only if the trace of ad([X,Y ]) equals to 0. But we have
ad([X,Y ]) = adX ◦ adY − adY ◦ adX and the trace equals to

tr(ad([X,Y ])) = tr(adX ◦ adY − adY ◦ adX) = B(X,Y )−B(Y,X),
where B denotes the Killing form, which is symmetric. Then i(H0) ⊂ O(p, q) and
the statement follows. �

4. Locally flat conformal symmetric spaces

On the locally flat geometries, there exist many systems of conformal symmetries,
because there can be many conformal symmetries at one point. However, there are
symmetric locally flat geometries that cannot form pseudo-Riemannian symmetric
spaces. We follow [9] to construct such an example, where any system of conformal
symmetries is not smooth.

Example 1. Let us start with the flat model PO(p + 1, q + 1)/P , where P
is the stabilizer of the line 〈e0〉 generated by the first basis vector e0 of the
canonical basis. Assume p, q > 0 and consider the locally flat manifold M :=
PO(p+ 1, q + 1)/P − {〈u〉, 〈v〉}, where u, v ∈ Rp+q+2 are arbitrary non-zero null
vectors isotropic for m, i.e. m(u, v) = 0. Then M clearly is a conformal manifold
and its group of conformal transformations K(u, v) consists of those elements of
PO(p+ 1, q+ 1) that preserve 〈u〉, 〈v〉 or that swap them. Clearly, K(u, v) has two
connected components and the connected component of identity is the intersection
of two parabolic subgroups of PO(p + 1, q + 1) first of them preserving 〈u〉 and
second of them preserving 〈v〉.

The group K(u, v) does not act transitively on M , because the parabolic sub-
group preserving arbitrary point 〈w〉 has three orbits in PO(p + 1, q + 1)/P
characterized by the isotropy and linear dependence with respect to w. Thus each
orbit of K(u, v) is determined according to the isotropy of u, v and according to
the relative position to the line 〈u, v〉.

We show that there exist symmetries at points of each orbit of K(u, v). Instead
of fixing 〈u〉, 〈v〉 and discussing symmetries at various points 〈w〉, we fix the point
〈e0〉 and we choose admissible 〈u〉 and 〈v〉 such that 〈e0〉 lies in the right orbit.
Then we find a symmetry at 〈e0〉, and there are symmetries of the same behavior
on the whole orbit given by 〈e0〉 due to transitivity. Let us remind the description
of all symmetries at the origin 〈e0〉:

sZ =

−1 −Z 1
2ZJZ

T

0 E −JZT
0 0 −1

 ,
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where Z = (z1, . . . , zp+q) ∈ Rp+q∗ is arbitrary.
Let us start with the orbit corresponding to the situation m(e0, u) 6= 0 and

m(e0, v) 6= 0. We can choose u = e0 +
√

2e1−ep+q+1 and v = e0−
√

2ep+q+ep+q+1.
There is exactly one symmetry sZ for Z of the form z1 = −

√
2 and zp+q =

√
2 and

zi = 0 for the remaining indexes. This symmetry swaps 〈u〉 and 〈v〉 and there is no
symmetry preserving them.

Let us now consider the orbit for m(e0, u) = 0 and m(e0, v) 6= 0 (which is the
same orbit as the situation m(e0, u) 6= 0 and m(e0, v) = 0). We choose u = e1 +ep+q
and v = ep+q+1. If there is a symmetry, then it has to preserve 〈u〉 and 〈v〉 due to
the isotropy, and it turns out that there is exactly one symmetry sZ for Z = 0.

The next possibility is the orbit for the situation m(e0, u) = m(e0, v) = 0 and
e0 ∈ 〈u, v〉. We can choose u = e1 + ep+q and v = e0 + e1 + ep+q, and there are
(generally many) symmetries sZ for Z satisfying z1 + zp+q + 1 = 0, which swap 〈u〉
and 〈v〉. There are no symmetries preserving them.

In fact, this covers all possible orbits for the case p = 1 or q = 1, i.e. the
Lorentzian signature. In other cases, there is the remaining orbit for the case
m(u, e0) = m(v, e0) = 0 and e0 /∈ 〈u, v〉. We can choose u = e1 + ep+q and
v = e2 + ep+q−1. There are (generally many) symmetries sZ for Z satisfying
z1 + zp+q = 0 and z2 + zp+q−1 = 0. These symmetries preserve 〈u〉 and 〈v〉 and
there are no symmetries swapping them.

Altogether, there is no smooth system of symmetries, although there exist
infinite amount of symmetries at the points. In particular, it does not form a
pseudo-Riemannian symmetric space.

Let us point out that this principle does not work in the case p, q > 0, if
we remove two points corresponding to non–isotropic vectors. This also gives a
counter-example for the existence of global symmetries in the case κ = 0, see
Proposition 2. In fact, the global existence of symmetries is the question of topology
of the manifold.

Example 2. Assume p, q > 0 and consider the locally flat manifold M := PO(p+
1, q + 1)/P − {〈u〉, 〈v〉}, where u, v ∈ Rp+q+2 are arbitrary non-zero null vectors
non-isotropic for m, i.e. m(u, v) 6= 0. Choose u = ep+q+1 and v = e0 + e1 + ep+q,
thus m(e0, u) 6= 0, m(e0, v) = 0 and m(u, v) 6= 0. There cannot exist a symmetry
at 〈e0〉 swapping 〈u〉 and 〈v〉 due to isotropy. It turns out that there is also no
symmetry preserving them. Indeed, one can see from the previous example that
each symmetry preserving 〈u〉 is of the form sZ for Z = 0, while each symmetry
sZ preserving 〈v〉 has to satisfy z1 + zp+q + 2 = 0.

Let us finally show that the case p = 0 or q = 0, i.e. the Riemannian signature,
behaves differently. Clearly, we cannot remove points corresponding to two isotropic
vectors, because there are no two such vectors available. However, we can remove
points 〈u〉 and 〈v〉 corresponding to two non-isotropic vectors u, v. Consider
q = 0. The manifold M := PO(1, p + 1)/P − {〈u〉, 〈v〉} is still homogeneous for
the subgroup of PO(1, p + 1) consisting of elements preserving or swapping 〈u〉
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and 〈v〉, and M consists of points 〈w〉 for vectors w satisfying m(w, u) 6= 0 and
m(w, v) 6= 0. Let us choose u = −e0 +

√
2ep + ep+1 and v = e0 +

√
2ep − ep+1, and

find the symmetry at 〈e0〉. It turns out that there is exactly one symmetry sZ for
Z = 0 and this symmetry swaps 〈u〉 and 〈v〉. There is no symmetry preserving
〈u〉 and 〈v〉. Altogether, M is a Riemmanian symmetric space with a smooth
system of symmetries given by the above symmetry s0. In fact, it is just cylinder
M ∼= R× SO(p)/SO(p− 1).

5. Remark on manifolds with parallel Weyl tensor

There is a different definition of conformally symmetric spaces available. In [3],
the authors define a conformally symmetric manifold as a manifold M together
with a pseudo-Riemannian metric g such that the Weyl tensor is parallel for the
Levi–Civita connection of g. They call the conformally symmetric manifold (M, g)
essential, if it is not flat and it is not a locally symmetric space. There is a natural
question on relations between this concept and our concept of conformal symmetries
and conformal symmetric geometries. However, it turns out that this relation is
not significant.

Let (M, g) be a pseudo-Riemannian manifold with a non-zero parallel Weyl
tensor for the Levi-Civita connection ∇ of g. Suppose there is a conformal symmetry
Sx at x. Then there is a connection ∇̂ which is invariant with respect to Sx on a
neighborhood of x, and in particular, ∇̂W vanishes at x. It follows directly from
the proof of the Proposition 1 that the existence of such ∇̂ implies vanishing of W
at x. Thus if there is a conformal symmetry Sx at each point x, then the unique
corresponding system has to have the Levi–Civita connection ∇ as its invariant
connection, and (M, g) is a pseudo-Riemmanian symmetric space.

Altogether, essential conformally symmetric spaces in the sense of [3] cannot
carry a conformal symmetry at each point. The same holds for each open subset.
However, we know nothing about the existence of an isolated symmetry at some
point, yet.
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