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A CANONICAL CONNECTION ON SUB-RIEMANNIAN
CONTACT MANIFOLDS

Michael Eastwood and Katharina Neusser

Abstract. We construct a canonically defined affine connection in sub-
-Riemannian contact geometry. Our method mimics that of the Levi-Civita
connection in Riemannian geometry. We compare it with the Tanaka-Webster
connection in the three-dimensional case.

1. Introduction

Let M be a contact manifold with contact distribution H. Necessarily, the
dimension of M is odd. The 3-dimensional case is special and we shall often
concentrate our discussion on this case. For example, as observed in [7], the notion
of a sub-Riemannian structure in this case coincides with Webster’s notion of a
pseudo-Hermitian structure [11]. From this point of view, there is the well-known
Tanaka-Webster connection [10, 11], a canonically defined affine connection on
pseudo-Hermitian manifolds in all dimensions but, in particular, on sub-Riemannian
manifolds in dimension 3. We shall discuss this connection in detail §5 and compare
it with what we constructed earlier in §4. There is yet another natural connection
for sub-Riemannian contact structures due to Morimoto [8]. In contrast to the
canonical connection we construct in §4, this one requires ‘constant symbol,’ which
is however a vacuous condition in dimension 3.

We admit right away that our aim here is not to discuss ‘the equivalence problem’
for sub-Riemannian contact structures in the sense of Cartan nor study ‘Jacobi
curves’ in sub-Riemannian geometry in the sense of Agrachev and Zelenko [2].
Instead, our more modest aim is to discuss and construct connections and partial
connections (where, in the first instance, one differentiates only in the H-directions)
as an invariant calculus in sub-Riemannian contact geometry, closely mimicking
the construction of the Levi-Civita connection in the Riemannian setting.
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2. Generalities on contact manifolds

Let M be a smooth manifold with tangent bundle TM → M and suppose
H ⊂ TM is a codimension 1 smooth subbundle. Equivalently, and this is our
preferred point of view, we are given a smooth line subbundle L ⊂ ∧1, where
∧1 = T ∗M is the bundle of 1-forms on M . Thus, we have dual exact sequences

0→ H → TM → L∗ → 0

and

(1) 0→ L→ ∧1 → ∧1
H → 0 .

2.1. The Levi form. The sequence (1) induces a short exact sequence

0→ ∧1
H ⊗ L→ ∧2 → ∧2

H → 0 ,

where ∧2
H = ∧2(∧1

H) and we may now consider the diagram

0 → L → ∧1 → ∧1
H → 0

d↓
0 → ∧1

H ⊗ L → ∧2 → ∧2
H → 0,

where d : ∧1 → ∧2 is the exterior derivative. From the Leibniz rule, it follows that
the composition

L→ ∧1 d−→ ∧2 → ∧2
H

is a homomorphism of vector bundles.

Definition 2.1. This composition L ∈ Γ(∧2
H ⊗ L∗) is called the Levi form of H.

(It is the obstruction to the integrability of H.)

Definition 2.2. If L is non-degenerate, then (M,H) is said to be a contact
manifold. (It follows that M is odd-dimensional.)

If θ ∈ Γ(L) ⊂ Γ(∧1) is nowhere vanishing, non-degeneracy of the Levi form is
equivalent to

θ ∧ (dθ)n ≡ θ ∧ dθ ∧ · · · ∧ dθ︸ ︷︷ ︸
n

being nowhere vanishing ,

where 2n + 1 is the dimension of M . Of course, locally there is no problem in
choosing θ and such a choice is often useful. For global existence, the line bundle L
should be orientable.

Definition 2.3. On a smooth manifold of dimension 2n+ 1, a contact form is a
smooth 1-form θ such that θ ∧ (dθ)n is nowhere vanishing.

Remark 2.1. Some authors (e.g. [1]) define a contact manifold as a smooth
manifold equipped with a contact form. In this article, however, a contact form is
an extra (local) choice.
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2.2. Partial connections. On a contact manifold it is natural to consider diffe-
rentiation in the contact directions, i.e. along H. According to (1), this is equivalent
to considering the composition

∧0 d−→ ∧1 → ∧1
H ,

which we denote by dH : ∧0 → ∧1
H . A consequence of the contact condition is

that H is bracket generating, namely that repeated Lie brackets of fields from H
eventually fill up all of TM (indeed, for a contact manifold, already [H,H] = TM
as regards sections of these bundles). A consequence of this is that the kernel of
dH consists of locally constant functions.

Remark 2.2. In [9] it is shown that dH : ∧0 → ∧1
H , is the first operator in an

invariantly defined locally exact complex, known as the Rumin complex. It is an
effective replacement for the de Rham complex (see also [4]).

Definition 2.4. Suppose M is a smooth contact manifold and V is a smooth
vector bundle on M . A partial connection on V is a differential operator

∇H : V → ∧1
H ⊗ V s.t. ∇H(fσ) = f∇Hσ + dHf ⊗ σ ,

for all f ∈ Γ(∧0) and σ ∈ Γ(E).

Remark 2.3. A partial connection determines a differential operator
∇H : ∧1 ⊗ V → ∧2

H ⊗ V
characterised by

∇H(ω ⊗ σ) = dHω ⊗ σ − ωH ∧∇Hσ ,

where dH : ∧1 → ∧2
H is the composition ∧1 d−→ ∧2 → ∧2

H and ωH the image of ω
under the projection ∧1 → ∧1

H .

In fact, a partial connection on any bundle on any contact manifold may be pro-
moted to a full connection as follows. The Levi form L : L→ ∧2

H is non-degenerate
and so has an invariantly defined pointwise left inverse L−1 : ∧2

H → L.

Proposition 2.1. A partial connection ∇H on V uniquely determines a connection
∇ on V with the following two properties.

– the composition V
∇−−→ ∧1 ⊗ V → ∧1

H ⊗ V agrees with ∇H ,
– the composition V

∇−−→ ∧1 ⊗ V ∇H−−→ ∧2
H ⊗ V

L−1⊗Id−−−−−→ L⊗ V vanishes.

Proof. See [6, Proposition 3.5]. �

2.3. Partial torsion. Suppose ∇H : ∧1 → ∧1
H ⊗∧1 is a partial connection on the

cotangent bundle. Then we have two linear differential operators between the same
bundles, namely

(2)
– dH : ∧1 → ∧2

H ,

– the composition ∧1 ∇H−−−→ ∧1
H ⊗∧1 → ∧1

H ⊗∧1
H → ∧2

H ,

both of which satisfy a Leibniz rule, e.g.
dH(fω) = fdHω + dHf ∧ ωH .
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Definition 2.5. The difference between the two differential operators in (2) is called
the partial torsion τH of ∇H . The Leibniz rule implies that it is a homomorphism
of bundles, equivalently τH ∈ Γ(∧2

H ⊗ TM).
Remark 2.4. If ∇H preserves L, then the projection of τH to ∧2

H ⊗L∗ is the Levi
form L of H.
Lemma 2.1. On any smooth contact manifold, there are partial connections on
∧1 with vanishing partial torsion.
Proof. By partition of unity one can choose a partial connection ∇H on ∧1 and
then the general such partial connection is of the form ∇H − ΓH for an arbitrary
homomorphism ΓH : ∧1 → ∧1

H⊗∧1. The partial torsion τH of ∇H is then modified
by the composition ∧1 ΓH−−→ ∧1

H ⊗∧1 → ∧2
H and so we may always adopt such a

modification to ensure that ∇H is partially torsion-free, as required. �

Remark 2.5. The remaining freedom in choosing a partially torsion-free connection
on ∧1 is ∇H 7→ ∇H − ΓH , where

ΓH : ∧1 → ker : ∧1
H ⊗∧1 → ∧2

H

is arbitrary.
Now let us suppose that θ ∈ Γ(L) is nowhere vanishing. Such a contact form may

be used to effect a number of normalisations. Firstly, the line bundle L is trivialised.
Secondly, a vector field T , called the Reeb field, may be uniquely characterised by
(3) T θ = 1 T dθ = 0 .
Consequently, the short exact sequence (1) splits and we may write

(4) ∧1 =
∧1
H

⊕
∧0

by means of ω 7→
[

ωH
T ω

]
.

Equivalently, we may identify ∧1
H as a subbundle of ∧1 by means of

∧1
H = ker: ∧1 T−−−−→ ∧0

and ∧2
H as a subbundle of ∧2 by means of

∧2
H = ker: ∧2 T−−−−→ ∧1 .

In particular, the 2-form dθ may be viewed as a section of ∧2
H . It coincides with

the image of θ under the Levi form L : L → ∧2
H . Thus, in the presence of a

contact form θ, we obtain a non-degenerate 2-form Ω ≡ dθ ∈ Γ(∧2
H) on the contact

distribution H. In any case, we may use the splitting (4) to insist that a partial
connection on ∧1 have the form

(5) ∧1 =
∧1
H

⊕
∧0

3
[
σ
ρ

]
∇H7−→

[
DHσ + Ωρ

dHρ

]
∈

∧1
H ⊗∧1

H

⊕
∧1
H

,

where DH : ∧1
H → ∧1

H ⊗ ∧1
H is a partial connection on ∧1

H . The form of ∇H
ensures that its partial torsion lies in ∧2

H ⊗H. Therefore, if we argue as in the
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proof of Lemma 2.1 to remove the remaining partial torsion, then we have shown
the following:

Proposition 2.2. If a contact form θ is used to split the 1-forms as
∧1 = ∧1

H ⊕∧0,

then we may find partial connections on ∧1 of the form (5) and free from partial
torsion. The remaining freedom in choosing such connections is

DH 7→ DH − ΓH for ΓH : ∧1
H →

⊙2
∧1
H

an arbitrary homomorphism.

Remark 2.6. The partial connection dual to (5) has the form

(6) TM =
∧0

⊕
H
3
[
λ
X

]
∇H7−→

[
dHλ+X Ω

DHX

]
(where the otherwise expected minus sign in front of X Ω is taken care of by Ω
being skew (and the convention that X Ω ∈ Γ(∧1

H) inserts X into the first slot
of Ω)). In particular, it follows that

∧0

⊕
H
3
[

1
0

]
∇H7−→

[
0
0

]
and

∧1
H

⊕
∧0

3
[

0
1

]
∇H7−→

[
Ω
0

]
.

Evidently, these two conditions are sufficient to guarantee that a partial connection
on ∧1 have the form (5) and Proposition 2.2 may be invariantly reformulated as
follows.

Theorem 2.1. If θ is a contact form with associated Reeb field T , then we may
find partial connections on the (co-)tangent bundle such that

– ∇HT = 0,
– ∇Hθ = (dθ)H ,
– ∇H is free from partial torsion,

where (dθ)H is the image of dθ under the composition
∧2 ↪→ ∧1 ⊗∧1 → ∧1

H ⊗∧1.

The freedom in choosing such a partial connection lies in Γ(
⊙2

∧1
H ⊗H).

Remark 2.7. Theorem 2.1 bears a striking similarity to the usual story for
connections on the (co-)tangent bundle in which torsion-free connections are free
up to Γ(

⊙2
∧1 ⊗ TM). This appealing feature is one of our reasons for advocating

the construction in this article.

3. Sub-Riemannian contact geometry

A sub-Riemannian contact structure on a smooth manifold M is a contact
distribution H ⊂ TM equipped with a positive-definite symmetric form g :

⊙2
H →

R. We do not suppose any particular compatibility between g and the Levi form.
For any chosen contact form θ ∈ Γ(L) ⊂ Γ(∧1), however, we can pointwise choose
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a co-frame for H in which g ∈ Γ(
⊙2

∧1
H) and Ω = dθ ∈ Γ(∧2

H) are simultaneously
represented by the matrices

(7)


1 0 · · · 0 0
0 1 · · · 0 0
...

... Id ...
...

0 0 · · · 1 0
0 0 · · · 0 1

 and


0 λ1 · · · 0 0
−λ1 0 · · · 0 0

...
...

. . . ...
...

0 0 · · · 0 λn
0 0 · · · −λn 0

 ,
respectively.

Proposition 3.1. Locally, we can always choose a contact form θ so that
‖Ω‖2 = 2n , equivalently λ1

2 + · · ·+ λn
2 = n .

With this normalisation θ is then determined up to sign.

Proof. Replacing θ by θ̂ = λθ, for λ a nowhere vanishing smooth function, gives
dθ̂ = λdθ + dλ ∧ θ but, since θ vanishes on H, as far as ∧2

H is concerned we find
that Ω̂ = λΩ. The stated normalisation and freedom are clear. �

Remark 3.1. If M is three-dimensional, this normalisation asserts that λ1 = ±1
and a choice of sign corresponds to a choice of orientation for H. In this case, we
may define an endomorphism J : H → H by

g(JX, Y ) = Ω(X,Y ), ∀ X,Y ∈ H
and our normalisation asserts that J2 = −Id. Thus, we have obtained a CR
structure. Conversely, every pseudo-Hermitian structure in the sense of Webster [11]
arises in this way. More precisely, we have shown the following (as already noted
in [7]).

Proposition 3.2. In three dimensions, an oriented sub-Riemannian contact struc-
ture is equivalent to a CR structure with a choice of contact form.

Remark 3.2. Without the contact form, a three-dimensional CR structure coin-
cides with an oriented ‘sub-conformal’ contact structure (as in [7]).

4. Construction of the partial connection

The existence and uniqueness of the Levi-Civita connection in Riemannian
geometry is based on the algebraic fact that, for any finite-dimensional vector
space V , the composition

(8)
⊙2

V ⊗ V ↪→ V ⊗ V ⊗ V ⊗ �−−−−−→ V ⊗
⊙2

V

is an isomorphism. The same algebra underlies the following construction.

Theorem 4.1. On any sub-Riemannian contact manifold, there is a unique partial
connection ∇H : ∧1 → ∧1

H ⊗∧1 with the following properties.
– ∇HT = 0,
– ∇Hθ = (dθ)H ,
– ∇H is free from partial torsion,
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– ∇Hg = 0,
where θ is any local contact form normalised as in Proposition 3.1 and T is its
associated Reeb field.

Proof. The only freedom in θ is to change its sign. Evidently, such a change
respects the characterising properties of ∇H so it suffices to work locally, choose θ,
and employ Theorem 2.1 to find a global connection with the first three of our
required properties and with remaining freedom

∇H 7→ ∇̂H = ∇H − ΓH ,
for ΓH ∈ Γ(

⊙2
∧1
H ⊗H). If we use the sub-Riemannian metric g to identify H with

its dual ∧1
H , and write σ :

⊙2
∧1
H ⊗∧1

H
'−→ ∧1

H ⊗
⊙2

∧1
H for the isomorphism (8),

then
∇̂Hg = ∇Hg − 2σΓH

and so ∇̂Hg = 0 if and only if ΓH = 1
2σ
−1∇Hg, which shows both existence and

uniqueness from our final requirement. �

5. Other constructions

As noted in [7] and echoed in Proposition 3.2, sub-Riemannian geometry in
dimension 3 coincides with Webster’s pseudo-Hermitian geometry [11]. For comple-
teness, we briefly recount the story in higher dimensions as follows.

Definition 5.1. Suppose M is a smooth manifold of dimension 2n + 1. An al-
most CR structure on M is a vector sub-bundle H ⊂ TM of rank 2n with an
endomorphism J : H → H such that J2 = −Id.

Definition 5.2. An almost CR structure is said to be non-degenerate if H is a
contact distribution.

Definition 5.3. An almost CR structure is said to be partially integrable if and
only if the L∗-valued form L(X, JY ) on H is symmetric. Equivalently, for any
contact form, the C-valued form

Ω(X,JY )− iΩ(X,Y )
on H is Hermitian (and, in this case, non-degeneracy of the CR structure is
equivalent to non-degeneracy of this Hermitian form).

It is observed in [5, p. 414] that partial integrability is implied by the more usual
condition of integrability, which may be defined as follows.

Definition 5.4. An almost CR structure is said to be integrable if and only if
[H0,1, H0,1] ⊆ H0,1 where H0,1 = {X ∈ CH s.t. JX + iX = 0}. Evidently, this
condition is vacuous in three dimensions (for then H0,1 is a line bundle). A CR
structure is an integrable almost CR structure.

Definition 5.5. A pseudo-Hermitian structure is a CR structure equipped with a
choice of contact form. Such a structure is said to be strictly pseudo-convex if and
only if the corresponding symmetric form Ω(X, JY ) on H is positive-definite.
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Proposition 5.1. Always,
{strictly pseudo-convex pseudo-Hermitian structures}

⊆ {oriented sub-Riemannian contact structures}
with equality in 3 dimensions.

Proof. Using Ω(X,JY ) as a sub-Riemannian metric and using J to orient H, it
is clear in the co-frames (7) that CR geometry corresponds exactly to the case
λ1 = · · · = λn = 1. �

5.1. The Tanaka-Webster connection. Since it is only in 3 dimensions that
pseudo-Hermitian geometry coincides with sub-Riemannian geometry, we shall
confine our discussion to this case. The construction [10, 11] of this canonical
connection, written from the sub-Riemannian point of view, is as follows. Choose,
a local co-frame θ, e1, e2 on M such that
(9) dθ = e1 ∧ e2 and Je2 = e1 .

Notice that such a co-frame is determined up to

(10)
[
e1
e2

]
7−→

[
ê1
ê2

]
=
[

cosφ − sinφ
sinφ cosφ

] [
e1
e2

]
for an arbitrary smooth function φ.

Lemma 5.1. There is a smooth 1-form ω and smooth functions A and B uniquely
characterised by

(11) de1 = ω ∧ e2 +Aθ ∧ e1 +Bθ ∧ e2
de2 = −ω ∧ e1 +Bθ ∧ e1 −Aθ ∧ e2

Proof. At each point, there are seemingly 6 equations here for 5 unknowns, namely
the 3 coefficients of ω together with A and B. However, there is one relation namely

0 = d2θ = d(e1 ∧ e2) = de1 ∧ e2 − de2 ∧ e1 ,

which is exactly as required by the right hand side of (11). �

Notice that if we change our co-frame according to (10), then

dê1 = ω̂ ∧ ê2 + Âθ ∧ ê1 + B̂θ ∧ ê2

dê2 = −ω̂ ∧ ê1 + B̂θ ∧ ê1 − Âθ ∧ ê2 ,

where

(12) ω̂ = ω − dφ and
[
Â

B̂

]
=
[

cos 2φ − sin 2φ
sin 2φ cos 2φ

] [
A
B

]
.

Theorem 5.1 (Tanaka-Webster). The connection on ∧1 given by
(13) ∇θ = 0, ∇e1 = ω ⊗ e2, ∇e2 = −ω ⊗ e1

in any chosen co-frame, does not depend on this choice.

Proof. There is no choice in θ. Otherwise, the required invariance follows by
straightforward computation from ω̂ = ω − dφ. �
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We shall now use the co-frame θ, e1, e2 and its structure equations (11) to
• compute the torsion of the Tanaka-Webster connection,
• compute the curvature of the Tanaka-Webster connection,
• compute the partial connection of Theorem 4.1,
• promote it to a full connection via Proposition 2.1,
• and compare these two connections.

5.1.1. Tanaka-Webster torsion. The torsion of any connection on ∧1 is the differ-
ence between d : ∧1 → ∧2 and the composition ∧1 ∇−−→ ∧1 ⊗∧1 → ∧2. According
to (11), for the Tanaka-Webster connection, this is

θ 7→ e1 ∧ e2 , e1 7→ Aθ ∧ e1 +Bθ ∧ e2 , e2 7→ Bθ ∧ e1 −Aθ ∧ e2 ,

the first of which is just the Levi form and the rest may be written as

(14)
[
e1
e2

]
7−→ θ ∧

[
A B
B −A

] [
e1
e2

]
.

Its invariance under change of co-frame (10) is equivalent to the second part of (12),
which, for these purposes may be better rewritten as[

Â B̂

B̂ −Â

] [
cosφ − sinφ
sinφ cosφ

]
=
[

cosφ − sinφ
sinφ cosφ

] [
A B
B −A

]
.

In the standard expositions, the torsion is usually presented as a complex-valued
quantity, equivalent to A+ iB.

5.1.2. Tanaka-Webster curvature. The curvature of a general connection E →
∧1 ⊗ E is the composition E

∇−−→ ∧1 ⊗ E ∇−−→ ∧2 ⊗ E where

∇(α⊗ σ) = dα⊗ σ − α ∧∇σ characterises ∇ : ∧1 ⊗ E → ∧2 ⊗ E .

Therefore, we may compute, according to (13), that

θ
∇−−→ 0

e1
∇−−→ ω ⊗ e2

∇−−→ dω ⊗ e2 − ω ∧ (−ω ⊗ e1) = dω ⊗ e2

e2
∇−−→ −ω ⊗ e1

∇−−→ −dω ⊗ e1 + ω ∧ (ω ⊗ e2) = −dω ⊗ e1 .

In other words, the curvature is determined by dω. Its invariance is clear from the
first equation of (12). In fact, the curvature provides only one new scalar quantity,
namely dω∧ θ, since dω∧ e1 and dω∧ e2 may be determined in terms of the torsion
by differentiating the structure equations (11). It is traditionally captured by the
real-valued function R determined by

(15) dω ∧ θ = Rθ ∧ e1 ∧ e2 .
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5.2. The partial connection. The same co-frame (9) may also be used to com-
pute the partial connection. The characterising properties (3) of the Reeb field T
show that it is, equivalently, determined by

T θ = 1 T e1 = 0 T e2 = 0
whence the co-frame {θ, e1, e2} is compatible with the splitting (4). More specifically
{e1, e2} spans ∧1

H ↪→ Λ1 and θ trivialises L ⊂ ∧1. Therefore, if we consider the
partial connection ∇H on ∧1 defined by
(16) ∇Hθ = e1 ⊗ e2 − e2 ⊗ e1 ∇He1 = ωH ⊗ e2 ∇He2 = −ωH ⊗ e1 ,

where ω is defined by (11) and ωH is its image in ∧1
H , then we ensure that it has

the form (5) and is free from partial torsion, as required by Theorem 4.1. Finally,
∇H(e1 ⊗ e1 + e2 ⊗ e2)

= ωH ⊗ e2 ⊗ e1 + ωH ⊗ e1 ⊗ e2 − ωH ⊗ e1 ⊗ e2 − ωH ⊗ e2 ⊗ e1 = 0
and all characterising properties of Theorem 4.1 are satisfied. Thus, apart from a
minor modification whereby ∇Hθ = dθ replaces ∇θ = 0, the partial connection of
Theorem 4.1 is induced by the Tanaka-Webster connection.

5.2.1. Promotion of the partial connection. We shall now take the partial connection
defined by (16) and promote it to a full connection on ∧1 in line with Proposition 2.1.
The general lift of (16) to a full connection is defined by

∇θ = θ ⊗ α+ e1 ⊗ e2 − e2 ⊗ e1

∇e1 = θ ⊗ β + ω ⊗ e2

∇e2 = θ ⊗ γ − ω ⊗ e1

for 1-forms α, β, γ and if we now compute the composition

∧1 ∇−−→ ∧1 ⊗∧1 ∇−−→ ∧2 ⊗∧1 −→ ∧2
H ⊗∧1

for this lift, we find that
θ 7→ e1 ∧ e2 ⊗ α+ (de1 + e2 ∧ ω)H ⊗ e2 − (de2 − e1 ∧ ω)H ⊗ e1 = e1 ∧ e2 ⊗ α

in accordance with (11), and then
e1 7→ e1 ∧ e2 ⊗ β + (dω)H ⊗ e2

e2 7→ e1 ∧ e2 ⊗ γ − (dω)H ⊗ e1 .

Therefore, we are obliged to take α = 0 and
β = −Re2 and γ = Re1 ,

where (dω)H = Re1 ∧ e2. In summary, our promoted connection is given by

(17)

∇θ = e1 ⊗ e2 − e2 ⊗ e1

∇e1 = (ω −Rθ)⊗ e2

∇e2 = (Rθ − ω)⊗ e1

where R is the Tanaka-Webster curvature determined by (15).
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5.3. Comparison. We may compare the promoted connection (17) with Tanaka-
-Webster. From (13) and (9) we find that their difference tensor, as a homomorphism
∧1 → ∧1 ⊗∧1, is given by

∧1 =
Λ1
H

⊕
∧0

3
[
σ
ρ

]
7→
[
Rθ ⊗ Jσ + Ωρ

0

]
,

where R is the Webster-Tanaka curvature (15) and the 1-forms are split by the
Reeb field corresponding to θ.

Remark 5.1. Recall that the two basic invariants of pseudo-Hermitian geometry
are the torsion (14) and curvature (15). Finally, we remark that if we compute the
full torsion of our promoted connection (17), then we find θ 7→ 0 and[

e1
e2

]
7−→ θ ∧

[
A B +R

B −R −A

] [
e1
e2

]
.

In this formula we see the basic invariants appearing together.

Remark 5.2. For any strictly pseudo-convex pseudo-Hermitian structure (in
any dimension) there is, apart from the Tanaka–Webster connection, yet another
canonical affine connection, namely the associated Weyl connection defined as in
[5]. As partial connections on ∧1 they coincide, but as full connections they differ
as computed in [5, Theorem 5.2.13]. In dimension 3 their difference tensor is simply
a constant multiple of [

σ
ρ

]
7→
[
Rθ ⊗ Jσ

0

]
.

6. Outlook

It would be interesting to determine how our connection fits with other recent
constructions in sub-Riemannian geometry. In particular, Agrachev, Barilari, and
Rizzi [1] lament the lack of a canonical connection ‘à la Levi-Civita,’ instead
deriving curvature invariants by other means, especially via Jacobi fields. These
authors are working on contact manifolds but the approach via Jacobi fields is
quite general, as shown by Barilari and Rizzi [3], following earlier work of Zelenko
and Li [12].

A sub-Riemannian metric may be regarded as a Hamiltonian T ∗M → R defined
as the composition

T ∗M → H∗ 3 ωH 7→ 1
2‖ωH‖

2 .

The integral curves of the corresponding Hamiltonian vector field are called extre-
mals and, for contact manifolds, their images down on M are precisely the geodesics
for the sub-Riemannian distance.

In Riemannian geometry, perturbations of a given geodesic γ are controlled by
Jacobi fields Ja satisfying the Jacobi equation

(Xa∇a)2Jc +Rab
c
dJ
aXbXd = 0



288 M. EASTWOOD AND K. NEUSSER

along γ, where Xa is the unit velocity vector and ∇a is the Levi-Civita connection
with curvature tensor Rabcd. The Bianchi symmetry says that

Rab
c
d = 2

3 [Ra(bcd) −Rb(acd)]

so the curvature tensor may, in some sense, be read off from the Jacobi equation,
better so from the perturbation of extremals up on T ∗M (more usually called
the geodesic spray). In the sub-Riemannian case, the upshot is that ‘curvature
invariants’ may be similarly read off from a ‘Jacobi equation’ on T ∗M as in [1, 3, 12].
In [3] it is shown that these curvature invariants may also be derived from the
(necessarily non-linear) Ehresmann connection introduced in [12].

We should emphasise that the connection we introduce does not preserve the
contact distribution H ⊂ TM . Indeed, it is clear by design (6), that H is fed into
∧0 by the Levi form. In this regard, our connection more resembles the tractor
connections from parabolic geometry [5].
Acknowledgement. We should like to thank the referee for drawing our attention
to [1, 3, 12] and for suggesting various corrections.
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