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KILLING SPINOR-VALUED FORMS AND THE CONE
CONSTRUCTION

Petr Somberg and Petr Zima

Abstract. On a pseudo-Riemannian manifold M we introduce a system of
partial differential Killing type equations for spinor-valued differential forms,
and study their basic properties. We discuss the relationship between solutions
of Killing equations on M and parallel fields on the metric cone over M for
spinor-valued forms.

1. Introduction

The subject of the present article are the systems of over-determined partial
differential equations for spinor-valued differential forms, classified as a type of
Killing equations. The solution spaces of these systems of PDE’s are termed
Killing spinor-valued differential forms. A central question in geometry asks for
pseudo-Riemannian manifolds admitting non-trivial solutions of Killing type equa-
tions, namely how the properties of Killing spinor-valued forms relate to the
underlying geometric structure for which they can occur.

Killing spinor-valued forms are closely related to Killing spinors and Killing
forms with Killing vectors as a special example. Killing spinors are both twistor
spinors and eigenspinors for the Dirac operator, and real Killing spinors realize the
limit case in the eigenvalue estimates for the Dirac operator on compact Riemannian
spin manifolds of positive scalar curvature. There is a classification of complete
simply connected Riemannian manifolds equipped with real Killing spinors, leading
to the construction of manifolds with the exceptional holonomy groups G2 and
Spin(7), see [8], [1]. Killing vector fields on a pseudo-Riemannian manifold are
the infinitesimal generators of isometries, hence they influence its geometrical
properties. In particular, on compact manifolds of negative Ricci curvature there
are no non-trivial Killing vector fields, while on manifolds of non-positive Ricci
curvature are all Killing vector fields parallel. A generalization of Killing vector
fields are Killing forms, characterized by the fact that their covariant derivative is
totally skew-symmetric tensor field.
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There is rather convenient tool allowing to describe invariant systems of partial
differential equations. It is based on Stein-Weiss gradient operators constructed by
decomposing the covariant derivative into individual invariant components, see [13].
Among prominent examples of Stein-Weiss gradients are the twistor-like operators,
which are overdetermined operators corresponding to the highest weight gradient
component. It can be shown that the solution spaces of Killing type equations
are always in the kernel of corresponding twistor operators. On the other hand,
equations given by vanishing of twistor operators are equivalent to weaker systems
called conformal Killing equations.

The main result of the present article establishes a correspondence between
special solutions of Killing equations for spinor-valued forms on the base pseudo-Rie-
mannian manifold M and certain parallel spinor-valued forms on the metric cone
M over M. Since the existence of parallel spinor-valued forms can be reduced to
a holonomy problem, one can at least partially classify the manifolds admitting
these special solutions by enumerating all possible holonomy groups. In particular,
for compact irreducible Riemannian manifolds one can exploit the Berger-Simmons
classification, cf. [3] and [10]. This was already done by Bär in [1] for real Killing
spinors and by Semmelmann in [9] for ordinary Killing forms.

Let us briefly describe the content of our article. After general introduction
in Section 1, we employ in Section 2 the representation theory of Spin(n+, n−)
and produce invariant decompositions which offer a deeper insight into subsequent
treatment of spinor-valued forms. We show that the space of spinor-valued forms is
highly reducible and as a special case we discuss the primitive spinor-valued forms.
We also introduce the so called generalized twistor modules as distinguished com-
ponents in the decomposition of tensor products with the dual of the fundamental
vector representation. Then we give rather straightforward definition of Killing
equations on spinor-valued p-form fields in Section 3 and prove a basic property
characterizing its relationship to other types of Killing equations. In Section 4,
we introduce the metric cone over the base pseudo-Riemannian manifold M, and
discuss the lifts of both spinor-valued form fields and Killing equations onM to its
metric cone M. The conclusion is that for any degree p, there is an injection from
special Killing spinor-valued p-forms on M to parallel spinor-valued (p+ 1)-forms
on M for the Levi-Civita connection on the metric cone. The variance ε in the
signature (n+, n−) forM and (n+, n−) forM is built into the definition of Killing
number of special Killing spinor-valued forms onM, and at the same time appears
in the formulas for the connection on the metric cone M.

2. Spinor-valued forms

Spinors and form representations. The spinor-valued forms originate in the
tensor product of forms (i.e., the alternating tensors) and spinors. We recall the
Clifford algebra Cl(n+, n−), constructed from the n-dimensional pseudo-Euclidean
space V = Rn+,n− = (Rn, g) equipped with the standard symmetric bilinear form g
of signature (n+, n−). The complex spinor space S arises as an irreducible complex
Cl(n+, n−)-module. We denote by Ap =

∧p V∗ the space of ordinary forms of degree
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p ∈ {0, . . . , n}, namely V∗ = A1 denotes the dual of V. The space of spinor-valued
forms of degree p is defined as the tensor product SAp = Ap ⊗ S.

Since V is naturally embedded into Cl(n+, n−) as its subspace of generators,
the module structure of S is realized by the Clifford multiplication ‘·’ of spinors
by vectors. Equivalently, the multiplication can be viewed as a Cl(n+, n−)-valued
1-form denoted γ·. A convenient way to write the defining relations of the Clifford
algebra Cl(n+, n−) is

(1) sym(γ· ⊗ γ·) = −2g ,

where sym denotes the symmetrization over form indices. To complete our notation,
we recall the usual exterior product ‘∧’ of two forms, the interior product ‘y’ of a
vector and a form and finally the orthogonal dual ‘∗’ mapping vectors to 1-forms
via the isomorphism induced by g .

It is straightforward to verify a few basic relations useful in the computations
with spinor-valued forms:

(2)

X · (γ· ∧ Φ) + γ· ∧ (X · Φ) = −2X∗ ∧ Φ ,

X · (γ∗· y Φ) + γ∗· y (X · Φ) = −2X y Φ ,

X y (γ· ∧ Φ) + γ· ∧ (X y Φ) = X · Φ ,

X∗ ∧ (γ∗· y Φ) + γ∗· y (X∗ ∧ Φ) = X · Φ ,

for all Φ ∈ SAp and X ∈ V. Note that γ· in the formulas acts simultaneously on
the spinor part by the Clifford multiplication and on the form part by the exterior
or interior product, respectively.

Spin-invariant decompositions. Let us briefly recall the case of ordinary forms
as discussed in, cf. [9]. The space V∗⊗Ap decomposes with respect to the orthogonal
group O(n+, n−) as

(3) V∗ ⊗ Ap ∼= Ap−1 ⊕ Ap+1 ⊕ Ap,1 .

For any α ∈ Ap and X ∈ V, the projections on the first two components are given
simply by the interior and exterior products,

p1(X∗ ⊗ α) = X y α , p2(X∗ ⊗ α) = X∗ ∧ α .(4)

Consequently, the remaining component called the twistor module for Ap is the
common kernel of p1,p2

Ap,1 = Ker(p1) ∩Ker(p2) .(5)

The situation is more complicated for the spinor-valued forms SAp. Firstly, SAp
is reducible with respect to the spin group Spin(n+, n−). Its decomposition can
be obtained using the technique of the Howe dual pairs, for details see [11]. The
algebraic operators

X = γ·∧ , Y = −γ∗·y , H = [X,Y ] ,(6)
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commute with the action of Spin(n+, n−) and span a Lie algebra isomorphic to the
Lie algebra sl(2). In particular, we have

H(Φ) = (n− 2p) Φ for all Φ ∈ SAp ,(7)

and further analysis shows that SAp decomposes as1

SAp ∼= SA0
0 ⊕ · · · ⊕ SAl0, l = min{p, n− p}.(8)

The component defined as the kernel of Y ,

SAq0 = {Φ ∈ SAq | γ∗· y Φ = 0}(9)

for q ∈ {0, . . . , [n/2]} is called the space of primitive spinor-valued forms.
In order to decompose the space V∗⊗SAp, we first consider projections analogous

to (4) and in addition one given by the Clifford multiplication,

p1(X∗ ⊗ Φ) = X y Φ , p2(X∗ ⊗ Φ) = X∗ ∧ Φ , p3(X∗ ⊗ Φ) = X · Φ ,(10)

for Φ ∈ SAp and X ∈ V. In the case p = 0 the decomposition degenerates:

V∗ ⊗ S = SA1 ∼= S⊕ SA1
0 .(11)

The (classical) twistor module for S is just the kernel of Clifford multiplication,

SA1
0 = Ker(p3) ,(12)

the first two projections being trivial. The same applies also to the case p = n,
SAn ∼= SA0 = S.

If p ∈ {1, . . . , n − 1}, the twistor module for SAp is once again defined as the
common kernel of all projections,

SAp,1 = Ker(p1) ∩Ker(p2) ∩Ker(p3) .(13)

However, it turns out that the three projections are not independent, in fact, the
decomposition looks like

V∗ ⊗ SAp ∼= (SAp−1 ⊕ SAp+1 ⊕ SAp) / S⊕ SAp,1 .(14)

In other words, the first three components share just two copies of the spinor space
SA0

0 = S. Hence we need to modify the projections to make them independent and
such a modification is rather complicated. Moreover, due to the reducibility of SAp
there are multiplicities in the full decomposition of V∗⊗SAp to irreducible summands
and the choice of said modification is not unique. However, the multiplicities
disappear in the restriction to the subspace of primitive spinor-valued forms and all
projections are essentially unique. For more details and explicit formulas, see [17].

1More precisely, the decomposition is irreducible only for n odd. For n even, each of the
summands further decomposes into two irreducible components analogously to the decomposition
of the spinor space into half-spinors S = S+ ⊕ S−.
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3. Killing equations

We assume (M, g) is an oriented and spin pseudo-Riemannian manifold of
dimension n and signature (n+, n−), and ∇ is the Levi-Civita covariant derivative.
As usual we denote the tangent bundle by T (M) and the Lie algebra of smooth
vector fields by X (M). We shall consider tensor fields on M given by smooth
sections of vector bundles associated to a class of Spin(n+, n−)-representations
discussed in the previous Section 2.

Killing forms. Killing vector fields can be characterized as the vector fields, whose
flow preserves the metric g. In terms of the Levi-Civita covariant derivative, a
Killing vector field K fulfills

g(∇XK,Y ) + g(∇YK,X) = 0 for all X,Y ∈ T (M) .(15)
The skew-symmetry of the covariant derivative of K generalizes to the definition
of Killing form as a differential form α fulfilling (cf., [16], [9])

∇Xα = 1
p+1 X y dα(16)

for all X ∈ T (M), where p is the degree of α and dα denotes the usual exterior
differential of α. By the polarization identity, (16) is equivalent to

X y∇Xα = 0,(17)
and this implies that the Killing forms provide quadratic first integrals of the
geodesic equation, cf. [15]: for α a Killing form and X the geodesic vector field on
M,

∇X(X y α) = 0 .(18)

By (3), the covariant derivative can be decomposed on three invariant first-order
operators: codifferential d∗ : Ωp(M)→ Ωp−1(M) given by p1 ◦∇, exterior differen-
tial d: Ωp(M)→ Ωp+1(M) given by p2 ◦∇, and the twistor operator T: Ωp(M)→
Ωp,1(M) given by projecting ∇ on the twistor module. Here Ωp(M) denotes the
space of differential forms of degree p and Ωp,1(M) the space of tensor fields
corresponding to the representation Ap,1. As for Killing forms, (16) is equivalent to

Tα = 0 , and d∗α = 0 .(19)
In particular, Killing forms are in the kernel of the twistor operator, i.e., they are
conformal Killing forms. For more detailed discussion, see [9].

Killing spinors. We denote by PSpin(M) a chosen spin structure onM and S(M)
the associated spinor bundle. The Levi-Civita connection uniquely lifts to a spin
connection and by abuse of notation we denote the induced covariant derivative on
spinors and tensor-spinor fields ∇ as well. Σ(M) denotes the space of spinor fields
and ΣΩ1

0(M) the space of primitive spinor-valued differential 1-forms corresponding
to the representation SA1

0.
A Killing spinor is a spinor field Ψ such that

∇XΨ = aX ·Ψ, X ∈ T (M) ,(20)
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where a ∈ C is called the Killing number of Ψ. Killing spinors are also intimately
related to the underlying geometry of M, c.f. [7], [2].

The algebraic decomposition (11) yields two invariant first-order differential
operators: Dirac operator D: Σ(M)→ Σ(M) given by p3 ◦∇, and twistor operator
T: Σ(M)→ ΣΩ1

0(M) given by projecting ∇ on the twistor module. The Killing
equation (20) is equivalent to

T Ψ = 0, and D Ψ = −naΨ .(21)

In particular, Killing spinors are in the kernel of the twistor operator, i.e., they are
conformal Killing (or, twistor) spinors.

Killing spinor-valued forms. The Cl(n+, n−)-valued 1-form γ·, see (1), is inva-
riant for the action of Spin(n+, n−) and hence globally defined on M. Since the
Levi-Civita connection is metric, so is the spin connection and subsequently we
also have ∇(γ·) = 0.

Definition 1. A Killing spinor-valued form is a spinor-valued differential form Φ
of degree p ∈ {1, . . . , n− 1} such that

∇XΦ = a
(
X · Φ− 1

p+1 X y (γ· ∧ Φ)
)

+ 1
p+1 X y dΦ, X ∈ T (M) ,(22)

where dΦ is the covariant exterior differential of Φ and a ∈ C is called the Killing
number of Φ.

The equation (22) first appeared in theoretical physics in the context of Kaluza-
-Klein supergravity, cf. [6], [5]. In geometry, the equation was introduced first in a
simplified form corresponding to a = 0 in [12] and in its general form in [17]. As
in the case of differential forms, we can reformulate (22) using the polarization
identity:

X y∇XΦ = aX y (X · Φ) ,(23)

hence Killing spinor-valued forms also yield invariants along the geodesics of M,
but only in the case a = 0. A consequence of (23) is

Proposition 2. Let Φ be a spinor-valued Killing form with Killing number a = 0
and let X be the geodesic vector field on M. Then

∇X(X y Φ) = 0 ,(24)

i.e., X y Φ is covariantly constant along the geodesics.

The Killing spinor-valued forms can be directly constructed out of Killing forms
and Killing spinors.

Proposition 3. Let α be a Killing form of degree p ∈ {1, . . . , n − 1} and Ψ a
Killing spinor with Killing number a. Then Φ = α⊗Ψ is a Killing spinor-valued
form with Killing number a.
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Proof. Let {X1, . . . , Xn} be an orthonormal frame. We first compute the exterior
covariant derivative of Φ using (20),

dΦ =
n∑
i=1

X∗i ∧∇XiΦ =
n∑
i=1

X∗i ∧ (∇Xiα⊗Ψ + α⊗∇XiΨ)

= dα⊗Ψ + aγ· ∧ Φ .

Now by (16) and one more time (20), we get
∇XΦ = ∇Xα⊗Ψ + α⊗∇XΨ = 1

p+1 X y (dα⊗Ψ) + aX · Φ

= a
(
X · Φ− 1

p+1 X y (γ· ∧ Φ)
)

+ 1
p+1 X y dΦ . �

We conclude this section with a description of the spinor-valued Killing forms
in terms of Spin(n+, n−)-invariant first-order operators:

codifferential d∗ : ΣΩp(M)→ ΣΩp−1(M) given by p1 ◦∇,
covariant exterior
differential d: ΣΩp(M)→ ΣΩp+1(M) given by p2 ◦∇,

twisted Dirac
operator D: ΣΩp(M)→ ΣΩp(M) given by p3 ◦∇,

Twistor operator T: ΣΩp(M)→ ΣΩp,1(M) given by projecting ∇
on the twistor module .

Here ΣΩp(M) denotes the space of spinor-valued differential forms of degree p
and ΣΩp,1(M) the space of tensor-spinor fields corresponding to the representation
SAp,1. The equation (22) is then equivalent to the system of three differential
equations

(25)
T Φ = 0 , d∗Φ = aγ∗· y Φ ,

and D Φ = 1
p+1

(
−ap(n+ 2)Φ− γ· ∧ d∗Φ + γ∗· y dΦ

)
.

In particular, we have

Proposition 4. Killing spinor-valued forms are in the kernel of the twistor operator,
i.e., they are a special case of conformal Killing spinor-valued forms.

For detailed computations and further discussion, see [17].

4. The cone construction

Metric cone. The ε-metric cone over pseudo-Riemannian manifold (M, g) is the
warped product (M =M×R+, g = r2g+ε dr2), where r is the coordinate function
on R+ and ε = ±1. Note that the signature of g is (n+, n−) with

n+ = n+ + (1 + ε)/2 and n− = n− + (1− ε)/2 .(26)

The canonical projections p1 : M → M and p2 : M → R+ naturally split the
tangent bundle of M as a direct sum of pull-back bundles

T (M) = p∗1T (M)⊕ p∗2T (R+).(27)
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We associate to a vector field X ∈ X (M) or to a p-form α ∈ Ωp(M) a vector field
X ∈ X (M) or a p-form α ∈ Ωp(M), respectively, by

X = 1
r p∗1(X), α = rp p∗1(α) .(28)

We also denote by ∂r and dr the pull-backs to M of the canonical unit vector field
and coordinate 1-form on R+, respectively.

In order to express the covariant derivative ∇ induced by the Levi-Civita
connection on M in terms of ∇ on M, we first compute the commutators

[X,Y ] = 1
r [X,Y ] , [X, ∂r] = 1

r X , for all X,Y ∈ X (M) .(29)
Subsequently, we have

∇XY = 1
r (∇XY − εg(X,Y ) ∂r) , ∇∂rX = 0,

∇X∂r = 1
r X , ∇∂r∂r = 0 ,

(30)

and dually for α ∈ Ωp(M)

∇Xα = 1
r (∇Xα− dr ∧ (X y α)) , ∇∂rα = 0 ,

∇X(dr) = 1
r εX

∗
, ∇∂r (dr) = 0 .

(31)

Remark. It follows from the comparison
X̃ = p∗1(X) = rX , α̃ = p∗1(α) = 1

rp α ,

that our formulas (30), (31) are equivalent to the frequently used formulas

∇
X̃
Ỹ = ∇̃XY − rεg(X,Y ) ∂r , ∇∂rX̃ = 1

r X̃ ,

∇
X̃
α̃ = ∇̃Xα− 1

rdr ∧ ˜(X y α) , ∇∂r α̃ = −pr α̃ ,
cf. [9]. The advantage of our conventions is that the lifts of vector fields and
differential forms on the cone are always parallel in the radial direction. Moreover,
the inner product of vector fields is preserved.

Let f = (X1, . . . , Xn) be a local orthonormal frame on M and ωjki the corres-
ponding local connection form on M,2

∇XiY =
n∑
j,k=1

ωjki g(Y,Xj)Xk , for all Y ∈ X (M) .(32)

Then f = (X1, . . . , Xn, ∂r) is a local orthonormal frame on M and from (30) we
get the corresponding local connection form ωjki on M,

ωjki = 1
r ω
jk
i , ω

j(n+1)
i = −ω(n+1)j

i = − 1
r ε δ

j
i ,

ωjkn+1 = 0 , ω
j(n+1)
n+1 = −ω(n+1)j

n+1 = 0 ,
(33)

using the fact g(∂r, ∂r) = ε.

2Note that we have raised the index j, which corresponds to an isomorphism between the Lie
algebra so(n+, n−) and the space of skew-symmetric bivectors. This is convenient for subsequent
computations of the spin connection (cf. Lemma 5) without explicit sign changes depending on
the signature (n+, n−).
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Spinors on the cone. The Clifford algebra Cl(n+, n−) is a subalgebra of Cl(n+, n−)
and similarly the spin group Spin(n+, n−) is a subgroup of Spin(n+, n−). The cor-
responding complex spinor spaces S and S can be related as Cl(n+, n−)-modules
by the isomorphisms

(a) if n is even then S ∼= S,

(b) and if n is odd then S ∼= S ⊕ Ŝ, where Ŝ is a second irreducible complex
Cl(n+, n−)-module not isomorphic to S.

In both cases there is a unique, up to a Cl(n+, n−)-equivariant isomorphism,
embedding S ⊂ S. We also introduce two other modified embeddings ϕ± : S→ S,
given by

ϕ±(Ψ) = (1∓
√
ε en+1) ·Ψ,(34)

where {e1, . . . , en} is an orthonormal basis of V and {e1, . . . , en, en+1} is an ortho-
normal basis of V = Rn+,n− . All the subsequent formulas are valid for both choices
of the square root sign, so we choose

√
ε = 1 for ε = 1 and

√
ε = i for ε = −1,

respectively. A straightforward computation based on (en+1·)2 = −ε shows

ϕ±(ei ·Ψ) = ±
√
ε ei · en+1 · ϕ±(Ψ) ,

ϕ±(ei · ej ·Ψ) = ei · ej · ϕ±(Ψ) ,
ϕ+ ◦ ϕ−(Ψ) = ϕ− ◦ ϕ+(Ψ) = 2Ψ .

(35)

In particular, the embeddings ϕ± are Spin(n+, n−)-equivariant and injective. In a
slightly different notation, this construction can be found in [1], [2, pp. 17–19].

The cone M is clearly homotopy equivalent to M, hence any spin structure on
M determines a unique spin structure onM. In more detail, we construct the spin
structure PSpin(M) by taking the pull-back of the spin structure PSpin(M) to M
and extending the structure group,

PSpin(M) = p∗1PSpin(M)×Spin(n+,n−) Spin(n+, n−) .(36)

This extension is compatible with the above construction of the orthonormal frame
f from f , namely, if fs is a lift of f then fs = p∗1(fs) is a lift of f .

Hence we can reduce the structure group of natural bundles on the cone to
Spin(n+, n−), in particular, the spinor bundle is given by

S(M) = p∗1PSpin(M)×Spin(n+,n−) S ,(37)

and the pull-back p∗1S(M) is canonically a subbundle of S(M). Now we use the
equivariant embeddings ϕ± and associate to a spinor field Ψ ∈ Σ(M) spinor fields
Ψ± ∈ Σ(M) by

Ψ± = (1∓
√
ε ∂r) · p∗1Ψ .(38)

The two choices of the sign yield inequivalent though analogous results and we
shall consider both of them.
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Lemma 5. Let Ψ be a spinor field on M and Ψ± the associated spinor fields on
the cone M. The covariant derivative of Ψ± is given by the equations

∇X(Ψ±) = 1
r

(
∇X(Ψ)∓ 1

2
√
εX ·Ψ

)
±
, ∇∂r (Ψ±) = 0 ,(39)

for all X ∈ T (M).

Proof. Let f be a local orthonormal frame field on M and fs its lift to a spin
frame field. The covariant derivative of Ψ is in general given by

∇XiΨ = ∇Xi [fs, s] =
[
fs, Xi(s) + 1

4
∑
j,k

ωjki ej · ek · s
]
,(40)

where s is the S-valued function which corresponds to Ψ with respect to fs. Next
let f and fs be the associated frame fields on M. We substitute into (40) the
formulas (33) for the connection form on M and compute using (35):

∇XiΨ± = ∇Xi
[
fs, ϕ±(p∗1s)

]
=
[
fs, Xi(ϕ±(p∗1s)) + 1

4
∑
j,k

ωjki ej · ek · ϕ±(p∗1s)

+ 1
2
∑
j

ω
j(n+1)
i ej · en+1 · ϕ±(p∗1s)

]
= 1
r

[
fs, p∗1Xi(ϕ±(p∗1s)) + 1

4
∑
j,k

ωjki ej · ek · ϕ±(p∗1s)

− 1
2 ε
∑
j

δji ej · en+1 · ϕ±(p∗1s)
]

= 1
r

[
fs, ϕ±

(
p∗1
(
Xi(s) + 1

4
∑
j,k

ωjki ej · ek · s∓ 1
2
√
ε ei · s

))]
= 1
r

(
∇Xi(Ψ)∓ 1

2
√
εXi ·Ψ

)
±
,

where the indices i, j, k always run through 1, . . . , n. The proof of the second
equality is trivial. �

Finally, to a spinor-valued p-form Φ ∈ ΣΩp(M) we associate spinor-valued
p-forms Φ± ∈ ΣΩp(M) by

Φ± = rp(1∓
√
ε ∂r) · p∗1Φ .(41)

Combining (31) and (39) we get

(42) ∇XΦ± = 1
r

(
(∇XΦ∓ 1

2
√
εX · Φ)± − dr ∧ (X y Φ)±

)
, ∇∂rΦ = 0 ,

for all Φ ∈ ΣΩp(M) and X ∈ T (M).

Killing equations and the cone. The rest of this paper is devoted to the main
results which establish a correspondence between special solutions of the Killing
equations on M and suitable parallel sections on the cone M.
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Comparing (39) with (20) we immediately get the correspondence for Killing
spinors, c.f. [1] for the Riemannian case and [4] for the general pseudo-Riemannian
case.

Corollary 6. Let Ψ be a spinor field on M. The associated spinor field Ψ± on M
is parallel if and only if Ψ is a Killing spinor with the Killing number a = ± 1

2
√
ε.

The next correspondence holds only for special Killing forms introduced by
Tachibana and Yu in [14] by an additional second order condition. Here we present
a slightly generalized version of Semmelmann’s result from [9] by considering also
the case ε = −1.

Definition 7. A special Killing p-form is a Killing p-form α fulfilling
∇X(dα) = bX∗ ∧ α, for all X ∈ T (M),(43)

where b ∈ R is arbitrary constant.

Proposition 8. Let α be a p-form on M. The (p+ 1)-form β on M defined by
β = dr ∧ α+ 1

p+1 dα(44)

is parallel for ∇ if and only α is a special Killing form with constant b = −ε(p+ 1).

Proof. We compute the covariant derivative of β using (31):

∇Xβ = 1
r

(
dr ∧

(
∇Xα− 1

p+1 X y dα
)

+ 1
p+1∇X(dα) + εX∗ ∧ α

)
,

∇∂rβ = 0.
The claim now follows from (16) and (43). �

Analogously to the case of forms itself, the correspondence for Killing spinor-valued
forms holds only for special Killing spinor-valued forms. In this case the second
order condition which fits the cone construction has rather complicated form.

Definition 9. A special Killing spinor-valued p-form is a Killing spinor-valued
p-form Φ fulfilling

∇X(dΦ) = bX∗ ∧ Φ + a
(
X · dΦ + 1

p+1 γ· ∧ (X y dΦ)
)

+ a2
(

2X∗ ∧ Φ + 2p+1
p+1 γ· ∧ (X · Φ) + 1

p+1 γ· ∧ (γ· ∧ (X y Φ))
)
,

(45)

for all X ∈ T (M), where a ∈ C is the Killing number of Φ and b ∈ R is another
arbitrary constant.

The exact form of all the terms containing γ· in both defining equations (22)
and (45) is prescribed purely by algebraic constraints deduced from the decomposi-
tion (14). For an illustration of the algebraic constraints in the case of primitive
spinor-valued forms, see Lemma 11.

Proposition 10. Let Φ be a spinor-valued p-form on M. The spinor-valued
(p+ 1)-form Ξ± on the cone M defined by

Ξ± = dr ∧ Φ± ∓ 1
2(p+1)

√
ε γ· ∧ Φ± + 1

p+1 dΦ±(46)
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is parallel if and only if Φ is special Killing with Killing number a = ± 1
2
√
ε and

constant b = −ε(p+ 1).

Proof. We compute the covariant derivative of Ξ± using (31) and (42):

∇XΞ± = 1
r

((
(εX∗ ∧ Φ)± + dr ∧

(
∇XΦ∓ 1

2
√
εX · Φ

)
±

)
∓ 1

2(p+1)
√
ε
(

(∇X(γ· ∧ Φ)∓ 1
2
√
εX · (γ· ∧ Φ))± − dr ∧ (X y (γ· ∧ Φ))±

)
+ 1
p+1

(
(∇X(dΦ)∓ 1

2
√
εX · dΦ)± − dr ∧ (X y dΦ)±

))
,

∇∂rΞ± = 0 .

We now separate the radial and tangential components in the first equation of the
last display and get that Ξ± is parallel if and only if for all X ∈ T (M)

∇XΦ = ± 1
2
√
ε
(
X · Φ− 1

p+1X y (γ· ∧ Φ)
)

+ 1
p+1 X y dΦ ,

∇X(dΦ) = −ε(p+ 1)X∗ ∧ Φ± 1
2
√
εX · dΦ± 1

2
√
ε γ· ∧ ∇XΦ

− 1
4 εX · (γ· ∧ Φ) .

Next we substitute the first equation into the second one and further rearrange
using the relations (2):

∇X(dΦ) = −ε(p+ 1)X∗ ∧ Φ± 1
2
√
ε
(
X · dΦ + 1

p+1γ· ∧ (X y dΦ)
)

+ 1
4 ε
(
γ· ∧

(
X · Φ− 1

p+1X y (γ· ∧ Φ)
)
−X · (γ· ∧ Φ)

)
= −ε(p+ 1)X∗ ∧ Φ± 1

2
√
ε
(
X · dΦ + 1

p+1γ· ∧ (X y dΦ)
)

+ 1
4 ε
(

2X∗ ∧ Φ + 2p+1
p+1 γ· ∧ (X · Φ) + 1

p+1γ· ∧ (γ· ∧ (X y Φ))
)
.

The claim now follows from (22) and (45). �

Let us recall the notion of primitive Killing spinor-valued p-form, see (9). The
above correspondence applies also to this case, and we show that it maps primitive
spinor-valued forms back to primitive spinor-valued forms.

Lemma 11. Let Φ be a primitive Killing spinor-valued p-form on M with Killing
number a. Then it holds

γ∗· y dΦ = −a(n+ 2)Φ .(47)

In particular, we note that dΦ does not need to be primitive.
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Proof. First recall that ∇(γ·) = 0. Hence the hypothesis implies ∇XΦ is primitive
for all X ∈ T (M) and we compute using (2), (7) and (22):

0 = ∇X(γ∗· y Φ) = γ∗· y∇XΦ

= aγ∗· y
(
X · Φ− 1

p+1 X y (γ· ∧ Φ)
)

+ 1
p+1 γ

∗· y (X y dΦ)

= a
(
−2X y Φ−X · (γ∗· y Φ) + 1

p+1 X y (γ∗· y (γ· ∧ Φ))
)

− 1
p+1 X y (γ∗· y dΦ)

= a
(
−2X y Φ− n−2p

p+1 X y Φ + 1
p+1 X y (γ· ∧ (γ∗· y Φ))

)
− 1
p+1 X y (γ∗· y dΦ)

= − 1
p+1 X y (a(n+ 2)Φ + γ∗· y dΦ) ,

The claim now follows. �

Lemma 12. Let Φ be a spinor-valued p-form on M and Φ± the associated
spinor-valued p-forms on the cone M. Then

γ∗· y Φ± = ±
√
ε ∂r · (γ∗· y Φ)± .(48)

Proof. We can relate the orthogonal duals of the Clifford multiplication 1-forms
on M and M, respectively, by

γ∗· y p∗1Φ = p∗1(γ∗· y Φ) + ε∂r · (∂r y p∗1Φ) = p∗1(γ∗· y Φ) .

Now we substitute (41) and compute using (2) and the fact (∂r·)2 = −ε,

γ∗· y Φ± = rp γ∗· y (1∓
√
ε ∂r) · p∗1Φ

= rp((1±
√
ε ∂r) · (γ∗· y p∗1Φ)± 2∂r y p∗1Φ)

= rp(1±
√
ε ∂r) · (γ∗· y p∗1Φ)

= ±
√
ε rp ∂r · (1∓

√
ε ∂r) · (γ∗· y p∗1Φ)

= ±
√
ε rp ∂r · (1∓

√
ε ∂r) · p∗1(γ∗· y Φ)

= ±
√
ε ∂r · (γ∗· y Φ)± ,

proving the claim. �

Proposition 13. Let Φ be a primitive Killing spinor-valued p-form on M with
Killing number a = ± 1

2
√
ε. Then the spinor-valued differential (p+ 1)-form Ξ± on

the cone M constructed in (46) is primitive as well.
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Proof. By (2), (7), (47) and (48), we calculate:

γ∗· y Ξ± = γ∗· y
(

dr ∧ Φ± ∓ 1
2(p+1)

√
ε γ· ∧ Φ± + 1

p+1 dΦ±
)

= ε∂r · Φ± ∓
√
εdr ∧ ∂r · (γ∗· y Φ)±

− 1
2(p+1) ε∂r · (γ∗· y (γ· ∧ Φ))± ±

1
p+1
√
ε ∂r · (γ∗· y dΦ)±

= ε∂r · Φ± + n−2p
2(p+1) ε∂r · Φ±

− 1
2(p+1) ε∂r · (γ· ∧ (γ∗· y Φ)± −

n+2
2(p+1) ε∂r · Φ± = 0 .

The proof is complete. �
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