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The paper is dedicated to Professor Vladimír Souček on the occasion of his 70th birthday.

Abstract. We construct series of examples of non-flat non-homogeneous
parabolic geometries that carry a symmetry of the parabolic geometry at each
point.

1. Introduction

In this article, we deal with symmetric regular normal parabolic geometries
on smooth connected manifolds. Consider a regular normal parabolic geometry
(G →M,ω) of type (G,P ). A symmetry at the point x ∈M is an automorphism
φx of the parabolic geometry such that φx(x) = x and the restriction of Txφx
to the bracket generating distribution T−1M is −id. The parabolic geometry is
symmetric, if there is a symmetry at each x ∈M .

There are several known constructions of examples of symmetric parabolic
geometries. In particular, there is a simple condition proved in [4] that is necessary
and sufficient for the existence of symmetric parabolic geometries.

Lemma 1. Let G be a semisimple Lie group and P a parabolic subgroup of G.
Let G0 n exp(p+) be the reductive Levi decomposition of P corresponding to the
grading gi of g, where g0 is the Lie algebra of G0 and p+ = g1 ⊕ · · · ⊕ gk.

If the parabolic geometry (G → M,ω) of type (G,P ) is symmetric, then there
is s ∈ G0 acting as −id on g−1. Moreover, if the type (G,P ) is effective, then the
element s is the unique element of G0 acting as −id on g−1.

Conversely, if there is s ∈ G0 acting as −id on g−1, then the flat model (G→
G/P, ωG) is symmetric. In particular, there is an infinite number of symmetries at
the origin eP given by the left multiplications by the elements of the form

s exp(−Ads(Y )) exp(Y )
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for Y ∈ p+ and the symmetries at arbitrary point gP are then of the form
gs exp(−Ads(Y )) exp(Y )g−1. In fact, we get a symmetric flat homogeneous para-
bolic geometry.

It is proved in [2, Proposition 1.29] that for each semisimple Lie algebra g and its
parabolic subalgebra p, there always exists a Lie group G and its closed subgroup
P such that the flat model (G→ G/P, ωG) is symmetric. In fact, there is a general
construction of flat and non–flat homogeneous symmetric parabolic geometries
on homogeneous fiber bundles over symmetric spaces described in the article [2,
Theorem 2.7.].

There are also examples of flat non–homogeneous symmetric parabolic geometries
obtained from the flat model, which are not related to the symmetric spaces. It
is shown in [6, 7, 3] that if we remove two distinguished points u, v from the flat
models (G → G/P, ωG) of the parabolic geometries of the projective, projective
contact and conformal types, then the restrictions of the flat models (G→ G/P, ωG)
to M := G/P − {u, v} are still symmetric parabolic geometries. In all these cases,
the manifold M decomposes into several orbits with respect to the action of the
automorphism group (which consists exactly of elements of G that preserve the
subset {u, v} ⊂ G/P ), and on each of these orbits, the symmetries either preserve
u and v or swap them.

Further, there are constructions of homogeneous symmetric parabolic geometries
other than the construction in [2]. In particular in [4], there is a construction of
non–flat homogeneous symmetric parabolic geometries on a (semidirect) product
of a flat model of a different (non–effective) type of parabolic geometry and a
homogeneous space of a nilpotent Lie group.

There is a natural question, whether there are also non–flat non–homogeneous
symmetric parabolic geometries? It is proved in [3] that all non–homogeneous
symmetric conformal geometries are necessarily flat and it is clear from the proof
that the same result can be obtained for all AHS-structures. However, we will show
in this article that we can combine the constructions from [4] and [6, 7, 3] and
prove that there are types of parabolic geometries for which the question can be
answered positively.

In the Section 2, we show how to combine the above constructions to get
new examples of non-flat non-homogeneous symmetric parabolic geometries. We
discuss several necessary and sufficient conditions under which the construction
is applicable. As our main result, we show in the Theorem 1 that there are two
series (A) and (C) of non-flat non-homogeneous symmetric parabolic geometries
provided by our construction. We describe these parabolic geometries in detail.

In the Section 3, we give a proof of the main Theorem 1. The proof consists of
several technical lemmas and we explain the technicalities in detail.

2. Non-flat non-homogeneous symmetric parabolic geometries

Let us firstly give the statement that explains, how to combine the two construc-
tions of symmetric parabolic geometries mentioned in the Introduction.
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Proposition 1. Let G be a semisimple Lie group and P a parabolic subgroup of
G. Let G0 n exp(p+) be the reductive Levi decomposition of P corresponding to the
grading gi of g, where g0 is the Lie algebra of G0 and p+ = g1 ⊕ · · · ⊕ gk. Suppose
there is a non-flat K-homogeneous parabolic geometry (G →M,ω) of type (G,P )
satisfying the following conditions:

(1) K is an algebraic Lie subgroup of the automorphism group of the parabolic
geometry (G → M,ω) acting transitively on M and we denote by H the
stabilizer of a point x ∈M .

(2) There is u ∈ G covering x and a reductive Levi decomposition K = exp(n)o
Ḡ such that if we define the subgroups

exp(n0) := {exp(X) ∈ exp(n) : exp(X)(u) ∈ uG0} ,

Ḡ0 := {ḡ ∈ Ḡ : ḡ(u) ∈ uG0} ,
and exp(p̄+) := {ḡ ∈ Ḡ : ḡ(u) ∈ u exp(p+)} ,

then H is a semidirect product of exp(n0) and the parabolic subgroup P̄ of
Ḡ with a reductive Levi decomposition P̄ := Ḡ0 n exp(p̄+).

(3) There is s̄ ∈ Ḡ0 such that s̄(u) = us for s ∈ G0 acting as −id on g−1.
(4) There is a submanifold M̄ of Ḡ/P̄ such that the flat model (Ḡ→ Ḡ/P̄ , ωḠ)

restricts to a non-homogeneous symmetric parabolic geometry of type (Ḡ, P̄ )
on M̄ .

Then M̃ := exp(n)/ exp(n0)× M̄ is a smooth submanifold of M and the restricted
parabolic geometry

(G|M̃ → M̃, ω|M̃ )

on M̃ is a non-flat non-homogeneous symmetric parabolic geometry of type (G,P ).

Proof. It follows from the assumptions (2) and (3) that the flat model (Ḡ →
Ḡ/P̄ , ωḠ) is symmetric. Moreover, (G →M,ω) is a symmetric parabolic geometry
and it follows from [4, Theorem 3.7] that the set of symmetries at x contains
a subset isomorphic to s exp(p̄+). Therefore the condition (4) implies that the
parabolic geometry (G|M̃ → M̃, ω|M̃ ) is symmetric, because the set of symmetries
at the point (exp(X) exp(n0), x̄) ∈ M̃ clearly contains the set of symmetries of
(Ḡ|M̄ → M̄, ωḠ|M̄ ) at the point x̄. �

Let us now discuss, when the conditions (1)–(4) of the Proposition 1 can be
satisfied.

Firstly, the condition (1) posses only topological restrictions on M , G and P
that are not restrictive. There is a construction in [5, Section 3] that transforms a
non-flat K-homogeneous parabolic geometry (G →M,ω) into a parabolic geometry
satisfying in addition the condition (1), after a sufficient algebraic completion of G
and P and covering of M .

On the other hand, the conditions (2) and (3) are highly restrictive in the case of
the non-flat parabolic geometries. We know from [4] that not all types of parabolic
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geometries can admit a symmetry at a point with non-trivial curvature and there
are even fewer types of parabolic geometries that admit more than one symmetry
at one point, i.e., a non-trivial exp(p̄+), see the tables in [4]. Moreover, the non-flat
homogeneous symmetric parabolic geometries do not satisfy the condition (2),
in general. However, in the article [4, Section 6 (second construction)], there is
a construction of parabolic geometries (G → M,ω) of type (G,P ) satisfying the
conditions (1), (2), (3) under the following conditions.

Lemma 2. Suppose the type (G,P ) of parabolic geometries satisfies the following
conditions:
• There is s ∈ G0 acting as −id on g−1 and acting as id on some component of

the harmonic curvature of parabolic geometries of type (G,P ).
• The lowest weight µ in the component of the harmonic curvature, on which
s ∈ G0 acts as id, is preserved by the Cartan involution of the complexification
of g.

Then there is a non-flat K-homogeneous parabolic geometry (G → M,ω) of type
(G,P ) satisfying the conditions (1), (2), (3) of the Proposition 1 for K being the
automorphism group of (G →M,ω) and µ being its curvature.

Motivated by the construction of the non-homogeneous flat examples, we study,
whether the parabolic geometries from the Lemma 2 satisfy the condition (4) of the
Proposition 1, when we remove two points from the flat model (Ḡ→ Ḡ/P̄ , ω̄). We
know that removing two points in the case dim(Ḡ/P̄ ) = 1 leads to a homogeneous
parabolic geometry. Therefore we need to consider the cases, when dim(Ḡ/P̄ ) > 1.
If we look in the tables in the article [4], we get that there are only two series of
possible types (G,P ) (up to covering) satisfying the conditions of the Lemma 2
and admitting dim(Ḡ/P̄ ) to be greater than one. Let us point out that we need to
choose the projectivizations of the groups in order to satisfy the condition (3) for
n odd.

(A) Consider G = PGl(n+ 1,R) and P the stabilizer of the flag
e1 ⊂ e1 ∧ e2 ⊂ e1 ∧ · · · ∧ el

in Rn+1 for n ≥ 2l − 1, l > 3, where e1, . . . , en+1 is the standard basis
of Rn+1. Then the group K of the non-flat K-homogeneous parabolic
geometry (G →M,ω) from the Lemma 2 is (as a set) represented by the
matrices from PGl(n+ 1,R) of the form



L′1,1 L′1,2 0 0 . . . 0 0 . . . 0 0
L′2,1 L′2,2 0 0 . . . 0 0 . . . 0 0
N3,1 N3,2 R1 0 . . . 0 0 . . . 0 0
N4,1 N4,2 Z4,3 L1,1 . . . L1,l−3 L1,l−2 . . . L1,n−3 0

...
...

...
...

. . .
...

...
. . .

...
...

Nl,1 Nn,2 Zl,3 Ll−3,1 . . . Ll−3,l−3 Ll−3,l−2 . . . Ll−3,n−3 0
Nl+1,1 Nn,2 Nn,3 Ll−2,1 . . . Ll−2,l−3 Ll−2,l−2 . . . Ll−2,n−3 0

...
...

...
...

. . .
...

...
. . .

...
...

Nn,1 Nn,2 Nn,3 Ln−3,1 . . . Ln−3,l−3 Ln−3,l−2 . . . Ln−3,n−3 0
Nn+1,1 Nn+1,2 Nn+1,3 Nn+1,4 . . . Nn+1,l Zn+1,l+1 . . . Zn+1,n R2
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where all the entries are real numbers such that the equalities

(det(L′)R1 det(L)R2)2 = 1 , det(L′)R−3
1 R2 = 1

hold for the submatrices L, L′ formed from elements Li,j , L′i,j . This means
that Ḡ ∼= L′ × L is the reductive Levi subgroup of K, and the unipotent
radical corresponds to N and Z. The result of the multiplication of two
elements exp(X1)ḡ1, exp(X2)ḡ2 ∈ exp(n) n Ḡ is

exp(C(X1,Adḡ1(X2)))ḡ1ḡ2 ∈ exp(n) n Ḡ ,

where C(−,−) represents the Baker–Campbell–Hausdorff–formula for the
nilpotent Lie algebra n. The difference between the Lie bracket in n and
the Lie bracket in sl(n+ 1,R) of the matrices representing the elements of
n is precisely the lowest weight of the harmonic curvature of the parabolic
geometries of type (G,P ), which takes entries in N3,1 and N3,2 slots and
has values in Nn+1,3 slot.

The subgroup exp(n0) corresponds to Z entries and the parabolic sub-
group P̄ is the product of the stabilizer Q′ of e1 in L′ and the stabilizer
Q of e4 ∧ · · · ∧ el in L. Thus Ḡ/P̄ is the product of L′/Q′ ∼= RP 1 and
the space L/Q of the Grassmannians of (l − 3)-planes in Rn−3. Finally,
the element s̄ is the diagonal matrix with (1,−1, 1, . . . , 1,−1 . . . ,−1, 1) for
exactly l appearances of 1 on the diagonal.

(C) Consider G = P Sp(2n,R) and P the stabilizer of the flag of isotropic
subspaces

e1 ⊂ e1 ∧ e2 ⊂ e1 ∧ · · · ∧ en

in R2n for n > 4, where e1, . . . , en and f1, . . . , fn are the bases of two
maximally isotropic subspaces in R2n satisfying Ω(ei, fj) = δij for the
natural symplectic form Ω preserved by P Sp(2n,R). Then the group K
of the non-flat K-homogeneous parabolic geometry (G →M,ω) from the
Lemma 2 is (as a set) represented by the matrices in P Sp(2n,R) with the
block structure (

A B
C ∗

)
with respect to the bases e1, . . . , en and f1, . . . , fn, where

A :=



L′1,1 L′1,2 0 0 . . . 0
L′2,1 L′2,2 0 0 . . . 0
N3,1 N3,2 R3 0 . . . 0
N4,1 N4,2 Z4,3 L1,1 . . . L1,n−3

...
...

...
...

. . .
...

Nn,1 Nn,2 Zn,3 Ln−3,1 . . . Ln−3,n−3


,
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B :=



0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 0 . . . 0
0 0 0 L1,n−2 . . . L1,2n−6
...

...
...

...
. . .

...
0 0 0 Ln−3,n−2 . . . Ln−3,2n−6


,

C :=



Nn+1,1 Nn+2,1 Nn+3,1 Nn+4,1 . . . N2n,1
∗ Nn+2,2 Nn+3,2 Nn+4,2 . . . N2n,2
∗ ∗ Nn+3,3 Nn+4,3 . . . N2n,3
∗ ∗ ∗ Ln−2,1 . . . Ln−2,n−3
...

...
...

...
. . .

...
∗ ∗ ∗ L2n−6,1 . . . L2n−6,2n−6


,

where ∗ entries are uniquely determined by the structure of Sp(2n,R), the
matrix L formed by elements Li,j is contained in C Sp(2n− 6,R) and all
the remaining entries are real numbers such that the equality

det(L′)R−4
3 = 1

holds for the submatrix L′ formed from elements L′i,j . This means that
Ḡ ∼= L′ ×L is the reductive Levi subgroup of K, and the unipotent radical
corresponds to N and Z. The result of the multiplication of two elements
exp(X1)ḡ1, exp(X2)ḡ2 ∈ exp(n) n Ḡ is

exp(C(X1,Adḡ1X2))ḡ1ḡ2 ∈ exp(n) n Ḡ ,

where C(−,−) represents the Baker–Campbell–Hausdorff–formula for the
nilpotent Lie algebra n. The difference between the Lie bracket in n and
the Lie bracket in sp(2n,R) of the matrices representing the elements of n
is precisely the lowest weight of the harmonic curvature of the parabolic
geometries of type (G,P ), which takes entries in N3,1 and N3,2 slots and
has values in Nn+3,3 slot.

The subgroup exp(n0) corresponds to Z entries and the parabolic sub-
group P̄ is the product of the stabilizer Q′ of e1 in L′ and the stabilizer
Q of e4 ∧ · · · ∧ en in L. Thus Ḡ/P̄ is the product of L′/Q′ ∼= RP 1 and
the space L/Q of the maximally isotropic (w.r.t. Ω) Grassmannians of
(n− 3)-planes in R2n−6. Finally, the element s̄ is the diagonal matrix with
(1,−1, 1, . . . , 1) on the first n entries of the diagonal.

Since Ḡ/P̄ ∼= RP 1×L/Q is the product of two flat models of parabolic geometries
in both of the above cases (A) and (C), we remove two points from the flat
model (L → L/Q, ωL) and consider M̄ := RP 1 × (L/Q − {l1Q, l2Q}) for some
l1Q, l2Q ∈ L/Q. Then the flat parabolic geometry (Ḡ → Ḡ/P̄ , ωḠ) restricts to
a parabolic geometry over M̄ of the same type (Ḡ, P̄ ). Its automorphism group
consists of the direct product of L′ and those elements of L that preserve the set
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{l1Q, l2Q}. Thus it decomposes into two components according to the fact whether
it preserves l1Q and l2Q or whether it swaps l1Q and l2Q. This property restricts
also the possible symmetries on M̄ and there is a natural question, whether at
least some symmetries on Ḡ/P̄ survive the restriction to M̄ . There is the following
crucial statement.

Theorem 1. Let (L,Q) be one of the types of parabolic geometries from the above
series (A) or (C). Then the following statements are equivalent:

(1) M̄ := RP 1 × (L/Q − {l1Q, l2Q}) satisfies the condition (4) of the Pro-
position 1, i.e., the flat model (Ḡ → Ḡ/P̄ , ωḠ) restricts to a symmetric
parabolic geometry on M̄ ,

(2) the flat model (L→ L/Q, ωL) restricts to a symmetric parabolic geometry
on L/Q− {l1Q, l2Q},

(3) there is q ∈ Q such that ql−1
1 l2Q = e4 ∧ · · · ∧ el−1 ∧ el+1 in the case (A) or

ql−1
1 l2Q = e4 ∧ · · · ∧ en−1 ∧ fn in the case (C).

Proof. Since the parabolic geometry (L′ → L′/Q′ = RP 1, ωL′) is a symmetric
parabolic geometry, the claims (1) and (2) are equivalent, because each symmetry
on M̄ is a product of symmetries on RP 1 and L/Q− {l1Q, l2Q}. The proof of the
equivalence of the claims (2) and (3) is fairly technical and we continue the proof
in the next section. �

Let us give the geometric interpretation of the condition (3) in the Theorem 1
and interpret the condition for the existence of preserving symmetries from the
Lemma 5.

Corollary 1. Let (L,Q) be one of the types of parabolic geometries from the above
series (A) or (C). Then M̄ := RP 1× (L/Q−{l1Q, l2Q}) satisfies the condition (4)
of the Proposition 1 if and only if the subspaces W1 and W2 corresponding to l1Q
and l2Q have an intersection of dimension dim(W1)− 1 = dim(W2)− 1. There is
a symmetry preserving the subspaces W1 and W2 at the point of L/Q− {l1Q, l2Q}
corresponding to the subspace W if and only if the intersection W ∩ (W1 +W2) is
contained in W1 or W2.

The automorphism group of the parabolic geometry (G|M̃ → M̃, ω|M̃ ) in the
case (A) for M̄ := RP 1 × (L/Q− {e4 ∧ · · · ∧ el−1 ∧ el, e4 ∧ · · · ∧ el−1 ∧ el+1}) has
two components. The component of identity consists of a (semidirect) product of
L′, exp(n) and the following matrices in L:

L1,1 . . . L1,l L1,l+1 L1,l+2 . . . L1,n−3
...

. . .
...

...
...

. . .
...

Ll−1,1 . . . Ll−1,l Ll−1,l+1 Ll−1,l+2 . . . Ll−1,n−3
0 . . . LLLl,l 0 Ll,l+2 . . . Ll,n−3
0 . . . 0 LLLl+1,l+1 Ll+1,l+2 . . . Ll+1,n−3
...

. . .
...

...
...

. . .
...

0 . . . 0 0 Ln−3,l+2 . . . Ln−3,n−3


.
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The other component consists of a (semidirect) product of L′, exp(n) and the
following matrices in L:

L1,1 . . . L1,l L1,l+1 L1,l+2 . . . L1,n−3
...

. . .
...

...
...

. . .
...

Ll−1,1 . . . Ll−1,l Ll−1,l+1 Ll−1,l+2 . . . Ll−1,n−3
0 . . . 0 LLLl+1,l+1 Ll+1,l+2 . . . Ll+1,n−3
0 . . . LLLl,l 0 Ll,l+2 . . . Ll,n−3
...

. . .
...

...
...

. . .
...

0 . . . 0 0 Ln−3,l+2 . . . Ln−3,n−3


.

The automorphism group of the parabolic geometry (G|M̃ → M̃, ω|M̃ ) in the
case (C) for M̄ := RP 1 × (L/Q− {e4 ∧ · · · ∧ en−1 ∧ en, e4 ∧ · · · ∧ en−1 ∧ fn}) has
two components. The component of identity consists of a (semidirect) product of
L′, exp(n) and the following matrices in L:

L1,1 . . . L1,n L1,n+1 . . . L1,2n−1 L1,2n
...

. . .
...

...
. . .

...
...

Ln−1,1 . . . Ln−1,n Ln−1,n+1 . . . Ln−1,2n−1 Ln−1,2n
0 . . . LLLn,n Ln,n+1 . . . Ln,2n−1 0
0 . . . 0 Ln+1,n+1 . . . Ln−2,n−3 0
...

. . .
...

...
. . .

...
...

0 . . . 0 L2n−1,n+1 . . . L2n−1,2n−1 0
0 . . . 0 L2n,n+1 . . . L2n,2n−1 LLL2n,2n


.

The other component consists of a (semidirect) product of L′, exp(n) and the
following matrices in L:

L1,1 . . . L1,n L1,n+1 . . . L1,2n−1 L1,2n
...

. . .
...

...
. . .

...
...

Ln−1,1 . . . Ln−1,n Ln−1,n+1 . . . Ln−1,2n−1 Ln−1,2n
0 . . . 0 L2n,n+1 . . . L2n,2n−1 LLL2n,2n
0 . . . 0 Ln+1,n+1 . . . Ln−2,n−3 0
...

. . .
...

...
. . .

...
...

0 . . . 0 L2n−1,n+1 . . . L2n−1,2n−1 0
0 . . . LLLn,n Ln,n+1 . . . Ln,2n−1 0


.

Therefore, there is the following characterization of orbits of the automorphism
group in M̃ .

Proposition 2. In the case (A) or (C), the points (exp(X1) exp(n0), l′1Q′,W3) and
(exp(X2) exp(n0), l′2Q′,W4) for the Grassmannians W3,W4 in L/Q − {W1,W2}
are points in the same orbit of the automorphism group of the parabolic geometry
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(G|M̃ → M̃, ω|M̃ ) if and only if
dim(W3 ∩W2 ∩W1) = dim(W4 ∩W2 ∩W1) ,

dim(W3 ∩ (W2 +W1)) = dim(W4 ∩ (W2 +W1)) ,
dim(W3 ∩ (W2 tW1)) = dim(W4 ∩ (W2 tW1)) ,

where W2 tW1 is the union of W2 and W1 as algebraic sets.

3. The proof of Theorem 1

Let us continue the proof of the Theorem 1. So we will assume that (L,Q) is
one of the types of parabolic geometries from the above series (A) or (C). Since
L acts by automorphisms of the flat model (L → L/Q, ωL) from the left, the
restriction of (L→ L/Q, ωL) to L/Q− {l1Q, l2Q} is isomorphic to the restriction
of (L→ L/Q, ωL) to L/Q− {ll1Q, ll2Q} for all l ∈ L.

Therefore we can choose l = ql−1
1 for some q ∈ Q and work with the parabolic

geometry on L/Q − {eQ, ql−1
1 l2Q}. Therefore the non-isomorphic restrictions of

(L→ L/Q, ωL) to L/Q− {l1Q, l2Q} are parametrized by the double coset space
Q\L/Q. We will find a suitable representative v ∈ L of the classes in Q\L/Q and
investigate the symmetries on the restrictions of (L→ L/Q, ωL) to L/Q−{eQ, vQ}.

The elements of the Lie algebra l of L, which are diagonal in the bases e1, . . . , en+1
or e1, . . . , fn, respectively, form the Cartan subalgebra of the Lie algebra l. The Lie
algebra q of Q is a standard parabolic subalgebra of l for this Cartan subalgebra and
we denote by l−1 ⊕ l0 ⊕ l1 the corresponding |1|-grading of l. Then the subgroups
W (l), W (l0) generated by (distinguished in the case (C)) elements of L, L0, which
permute the elements of the bases e1, . . . , en+1 or e1, . . . , fn, respectively, induce
the Weyl groups of l, l0. Let us recall that there are representatives of the classes
of W (l)/W (l0) encoded by the Hasse diagram Wq of the parabolic subalgebra q,
which define the decomposition of L/Q into Schubert cells, see [1, Section 3.2.19].

Lemma 3. Each element of L/Q can be uniquely written as exp(Z)wQ for w ∈ Wq

and Z ∈ Ad−1
w (l−1) ∩ b+, where b+ ⊂ q is the sum of all positive root spaces in l.

The dimension of Ad−1
w (l−1) ∩ b+ is equal to the length of w in Wq.

Proof. Since we are working with split real forms, we can use the complex results
from [1, Corollary 3.2.19]. The claims of the Lemma are proven directly in the
proof of [1, Corollary 3.2.19]. �

Consequently, the double coset space Q\L/Q is finite and is in a bijective
correspondence with the double coset space W (l0)\W (l)/W (l0). Therefore we can
represent the classes of Q\L/Q by the shortest elements in the Hasse diagram Wq

from the class in W (l0)\W (l)/W (l0).
We start the investigation of the symmetries of the restriction of (L→ L/Q, ωL)

to L/Q− {eQ, vQ} on the smallest cell exp(Z)wQ for w ∈ Wq of the length 1. In
the case (A), there is a unique w of the length 1, which is the simple reflection
over the (l − 3)rd simple root that corresponds to swapping el and el+1, and Z is
contained in the root space of the (l− 3)rd simple root of l. In the case (C), there is
a unique w of the length 1, which is the simple reflection over the (n− 3)rd simple
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root that corresponds to swapping en and fn, and Z is contained in the root space
of the (n− 3)rd simple root of l.

Lemma 4. Let (L,Q) be the type of parabolic geometry from (A) or (C), let w be
the unique element of Wq of the length 1 and let v be the shortest element in Wq

representing a class in Q\L/Q. If the length of v is greater than 1, then there is
no symmetry at the points exp(Z)wQ,Z 6= 0 of L/Q− {eQ, vQ}.

Proof. There is a symmetry at the point exp(Z)wQ preserving the points eQ and
vQ if and only if there is Y ∈ l1 such that

exp(Z)ws exp(Y )(exp(Z)w)−1 ∈ Q

and simultaneously

v−1 exp(Z)ws exp(Y )(exp(Z)w)−1v ∈ Q.

Since NL(Q) = Q, v−1wsw−1v ∈ Q and exp(Ad−1
wsw−1(Z)) = exp(−Z) hold for

both types (A) and (C), these two conditions are equivalent to the conditions

Adexp(Z)w(Y ) ∈ q

and simultaneously

exp(Ad−1
v Adexp(−Z)w(Y )) exp(−2Ad−1

v (Z)) ∈ Q.

From the structure of Wq follows that Ad−1
v (Z) is a non–zero element of l−1, while

the condition Adexp(Z)w(Y ) ∈ q implies that Adexp(−Z)w(Y ) has trivial component
in the root space of (l− 3)rd or (n− 3)rd simple root, respectively. Therefore, there
is a symmetry at exp(Z)wQ preserving the points eQ and vQ only if Z = 0.

There is a symmetry at exp(Z)wQ swapping the points eQ and vQ if and only
if there is Y ∈ l1 such that the condition

exp(Z)ws exp(Y )(exp(Z)w)−1v ∈ Q

holds. This condition is equivalent to the condition

exp(Adexp(Z)w(Y ))v = exp(Adw(Y ) + [Z,Adw(Y )] + 1/2[Z, [Z,Adw(Y )]])v ∈ Q.

Since the right multiplication by elements of W (l) acts by swapping columns
in the matrix exp(Adw(Y ) + [Z,Adw(Y )] + 1/2[Z, [Z,Adw(Y )]]), the entries on
the diagonal of exp(Adw(Y ) + [Z,Adw(Y )] + 1/2[Z, [Z,Adw(Y )]]) decide on the
existence of the symmetry. But there are numbers 1 on the diagonal except the
(l−2)nd and (l−3)rd position in the case (A) and (n−3)nd and 2(n−3)rd position
in the case (C) that both depend on [Z,Adw(Y )]. Therefore, if the length of v is
greater than one, there is no swapping symmetry at exp(Z)wQ. �

Therefore it remains to investigate the symmetries of the restriction of the flat
model to L/Q− {eQ, vQ} for the unique element v of Wq of the length 1. In this
case, we can again use the decomposition of L/Q into Schubert cells to show, when
there is a symmetry preserving the points eQ and vQ.
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Lemma 5. Let (L,Q) be the type of parabolic geometry from (A) or (C) and let v
be the unique element of Wq of the length 1. Then there is a symmetry at the point
exp(Z)wQ of L/Q− {eQ, vQ} preserving the points eQ and vQ if and only if Z
has trivial component in the root space of the (l− 3)rd or (n− 3)rd simple root of l,
respectively.

Proof. Since the conditions v−1wsw−1v ∈ Q and exp(Ad−1
wsw−1(Z)) = exp(−Z)

from the proof of the Lemma 4 are satisfied for generic v and w and Z ∈ Ad−1
w (l−1)∩

b+, the symmetry exp(Z)ws(exp(Z)w)−1 at the point exp(Z)wQ of L/Q−{eQ, vQ}
preserves the points eQ and vQ if and only if Z has trivial component in the root
space of the (l − 3)rd or (n− 3)rd simple root of l.

It remains to show that there are no preserving symmetries at the other points
of L/Q− {eQ, vQ}. Therefore it suffices to show that if the symmetry

exp(Z)ws exp(Y )(exp(Z)w)−1

at the point exp(Z)wQ preserves the points eQ and vQ, then Z has trivial com-
ponent in the root space of the (l − 3)rd or (n− 3)rd simple root of l, respectively.
Let us assume that the conditions

Adexp(Z)w(Y ) ∈ q

and simultaneously
exp(Ad−1

v Adexp(−Z)w(Y )) exp(−2Ad−1
v (Z)) ∈ Q

hold. If Z has a non-trivial component in the root space of the (l−3)rd or (n−3)rd
simple root of l, then Adexp(−Z)w(Y ) has a non-trivial component in the root space
of the (l − 3)rd or (n− 3)rd simple root of l, too. But

Adexp(−Z)w(Y ) = Adw(Y )− [Z,Adw(Y )] + 1/2[Z, [Z,Adw(Y )]] ∈ q

follows from the condition Adexp(Z)w(Y ) ∈ q, and thus Adw(Y ) ∈ q has a non-trivial
component in the root space of the (l−3)rd or (n−3)rd simple root of l. However, if
w = v◦w′ holds for some w′ ∈ Wq and if the (l−3)rd or (n−3)rd simple root of l is
in the image of Adw(l1), then the dimension of Ad−1

w′ (l−1)∩ b+ is dim(Ad−1
w (l−1)∩

b+) + 1. This is a contradiction with the condition Z ∈ Ad−1
w (l−1) ∩ b+ for Z with

a non-trivial component in the root space of the (l − 3)rd or (n− 3)rd simple root
of l. �

Therefore it remains to show that there is a symmetry swapping the points eQ
and vQ at the points exp(Z)wQ ∈ L/Q such that Z has a non-trivial component
in the root space of the (l − 3)rd or (n− 3)rd simple root of l. We show this as a
part of the following lemma that summarizes the previous statements.

Lemma 6. Let (L,Q) be the type of parabolic geometry from (A) or (C) and let
v be the unique element of Wq of the length 1. Then there is a symmetry either
preserving or swapping eQ and vQ at each exp(Z)wQ ∈ L/Q− {eQ, vQ}.

Proof. Suppose exp(Z)wQ ∈ L/Q − {eQ, vQ} is such that Z has a non-trivial
component in the root space of the (l− 3)rd or (n− 3)rd simple root of l. Since the
conditions v−1wsw−1v ∈ Q and exp(Ad−1

wsw−1(Z)) = exp(−Z) from the proof of the
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Lemma 4 are satisfied for generic v and w and Z ∈ Ad−1
w (l−1) ∩ b+, the symmetry

exp(Z)ws exp(Y )(exp(Z)w)−1 at the point exp(Z)wQ of L/Q− {eQ, vQ} swaps
the points eQ and vQ if and only if

exp(Adw(Y ) + [Z,Adw(Y )] + 1/2[Z, [Z,Adw(Y )]])v ∈ Q.
However, v swaps (l − 2)nd and (l − 3)rd column in the case (A) and (n− 3)rd

and 2(n−3)rd column in the case (C). Therefore there is a symmetry at exp(Z)wQ
if there is 0 on the (l − 3)rd or 2(n− 3)rd position on the diagonal in the matrix
exp(Adw(Y ) + [Z,Adw(Y )] + 1/2[Z, [Z,Adw(Y )]]) and the component of Adw(Y )
in l−1 is contained in the root space of the minus (l− 3)rd or (n− 3)rd simple root
of l. If Z ∈ Ad−1

w (l−1) ∩ b+ has a non–trivial component in the root space of the
(l − 3)rd or (n − 3)rd simple root of l, then there is Y ∈ l1 such that Adw(Y ) is
contained in the root space of the minus (l − 3)rd or (n − 3)rd simple root of l,
because there is the duality between the positive and negative roots. Thus for Y
that is anti-proportional to the component of Z in the root space of the (l − 3)rd
or (n− 3)rd simple root of l, there is 0 on the (l − 3)rd or 2(n− 3)rd position on
the diagonal in the matrix exp(Adw(Y ) + [Z,Adw(Y )] + 1/2[Z, [Z,Adw(Y )]]) and
therefore the symmetry exp(Z)ws exp(Y )(exp(Z)w)−1 at the point exp(Z)wQ of
L/Q− {eQ, vQ} swaps the points eQ and vQ. �
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