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EXISTENCE RESULTS FOR A CLASS OF HIGH ORDER

DIFFERENTIAL EQUATION ASSOCIATED WITH

INTEGRAL BOUNDARY CONDITIONS AT RESONANCE

Le Cong Nhan, Do Huy Hoang, and Le Xuan Truong

Abstract. By using Mawhin’s continuation theorem, we provide some
sufficient conditions for the existence of solution for a class of high order
differential equations of the form

x(n) = f(t, x, x′, . . . , x(n−1)) , t ∈ [0, 1] ,
associated with the integral boundary conditions at resonance. The
interesting point is that we shall deal with the case of nontrivial kernel
of arbitrary dimension corresponding to high order differential operator
which will cause some difficulties in constructing the generalized inverse
operator.

1. Introduction

In this paper, we consider the nth order differential equation
x(n)(t) = f(t, x, x′, . . . , x(n−1)) , t ∈ (0, 1) ,(1.1)

subjected to the integral boundary conditions

αix
(i−1)(0) + βix

(i−1)(1) = γi

∫ 1

0
x(s)ds , i = 1, 2, . . . , n ,(1.2)

where αi, βi and γi, i = 1, 2, . . . , n are real constants.

The problem (1.1)–(1.2), as we will see in the next sections, can be written
in operator form

Lx = Nx ,(1.3)
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(called semilinear) where L is a linear and N is a nonlinear operator in
appropriate function spaces. If L has a trivial null space, Ker L, the problem
(1.3) is said to be at nonresonance case. Otherwise, we call the problem (1.3) at
resonance. In the resonance case, the problem (1.3) can be studied by various
methods including the alternative method, the continuation method of Mawhin
and perturbation method (see [19]).

In topological approach, the boundary value problems (BVPs) for the second
order ordinary differential equations has been studied by many authors with
different boundary conditions for both cases non-resonance [8, 9] and resonance
[3, 2, 7, 11, 12, 15, 10, 6, 4, 21].

However, there is rarely works that have been done for higher order BVPs
particularly at resonance case. In the nonresonance case, we refer to [17, 18, 20]
and references therein. For the resonance case, W. Ge at al., [1, 14, 13] studied
the high order ordinary differential equation

x(n) = f(t, x, x′, . . . , x(n−1)) + e(t) ,

associated with multi-point conditions

x′(0) = 0, x′′(0) = 0, . . . , x(n−1)(0) = 0 , x(1) =
m−2∑
i=1

αix(ξi) , or

x′(0) = 0, x′′(0) = 0, . . . , x(n−1)(0) = 0 , x′(1) =
m−2∑
i=1

αix
′(ξi) , or

x(0) =
m−2∑
i=1

αix
′(ξi) , x′(0) = 0, . . . , x(n−2)(0) = 0 , x(1) = x(η) ,

where f : [0, 1]×Rn−1 → R is a continuous function and e ∈ L1(0, 1). In these
setting, the set of nontrivial solutions of the associated homeogeneous problem
Lx = x(n) = 0, KerL, is isomorphic to R. Then the authors use the coincidence
degree theory of Mawhin [5] in order to prove the existence of solutions of
high-order multi-point BVPs. However, to our best knowledge, the high-order
BVPs with the higher dimension of null space has not been studied broadly.

Motivated by these works, in this paper, we discuss the existence of solutions
of problem (1.1)–(1.2) at resonance, in which the dimension of null space KerL
might be 1, 2, . . . , n. It is noticed that in the way of Mawhin’s approach, the
higher dimension of kernel, the more difficult to construct the projections P ,
Q, and this paper will contribute a slightly general way to construct such
projectors.
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Our paper is organized as follows. In Section 2, we first recall some abstract
results from the coincidence degree theory for L-compact operator and then
give the conditions on the nonlinear term f(t, x, x′, . . . , x(n−1)) to be such
operator. Finally, in Section 3, we prove the existence result of the problem
(1.1)–(1.2) and give an example to demonstrate the results.

2. Preliminaries

2.1. A continuation theorem. We start this section by recalling some de-
finitions and abstract results from the coincidence degree theory. For more
details we refer the readers to [5, 16].

Assume that X and Z are two real Banach spaces.

Definition 2.1 (see [5]). Let L : dom (L) ⊂ X → Z be a linear operator. The
operator L is said to be a Fredholm operator of index zero if the following
conditions hold:

(i) Im L is a closed subset of Z,
(ii) codim Im L = dim Ker L < +∞.

It follows from the Definition 2.1 that if L is a Fredholm operator of index
zero, then there exist continuous projectors P : X → X and Q : Z → Z such
that
Im P = Ker L , Ker Q = Im L , X = Ker L ⊕ Ker P , Z = Im L⊕, Im Q .

Further, the restriction of L on dom L∩Ker P , which is LP : dom L∩Ker P →
Im L, is invertible. We denote by KP the inverse of LP and KP,Q := KP (I−Q)
the generalized inverse of L. In addition, if L has index zero (i.e., Im Q
and Ker L are isomorphic) then the operator JQ + KP,Q : Z → dom L is
isomorphism, and

(JQ+KP,Q)−1 =
(
L+ J−1P

)∣∣
dom L

,

for every isomorphism J : Im Q→ Ker L. It follows from Mawhin’s equivalent
theorem that x ∈ Ω is a solution to equation Lx = Nx if and only if it is a
fixed point of Mawhin’s operator

Φ := P + (JQ+KP,Q)N ,

where Ω is an given open bounded subset of X such that dom (L) ∩ Ω 6= ∅.

Definition 2.2 (see [5]). Let L : dom (L) ⊂ X → Z be a Fredholm mapping
of index zero. The operator N : Ω→ Z is said to be L-compact operator on Ω
if:

a) the map QN : Ω→ Z is continuous and QN
(
Ω
)

is bounded in Z,
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b) the map KP,QN : Ω→ X is completely continuous.
In addition, we say that N is L-completely continuous if it is L-compact on
every bounded subset in X.

The following continuation theorem due to Mawhin [5] will be used for our
main purpose.

Theorem 2.3. Let Ω ⊂ X be open and bounded, L be a Fredholm operator
of index zero and N be L-compact operator on Ω. Assume that the following
conditions are satisfied:

(1) Lx 6= λNx for every (x, λ) ∈ (dom (L)\Ker L) ∩ ∂Ω× (0, 1);
(2) QNx 6= 0 for every x ∈ Ker L ∩ ∂Ω;
(3) for some isomorphism J : Im Q→ Ker L, we have

deg (JQN ; Ω ∩Ker L, 0) 6= 0 ,

where Q : Z → Z is a projector given as above.
Then the equation Lx = Nx has at least one solution in dom (L) ∩ Ω.

2.2. Some preliminary results. In order to obtain the existence of solutions
for (1.1)–(1.2) by applying the Theorem 2.3, we first formulate the problem
(1.1)–(1.2) as a semilinear equation in Banach spaces and then offer some cer-
tain conditions on the nonlinearity f(t, x, . . . , x(n−1)) so that it is L-completely
continuous. Let ν ∈ Z+, we denote

Iνz(t) := 1
(ν − 1)!

∫ t

0
(t− s)ν−1z(s) ds ,

for convenient reason. Let X be the Banach space Cn−1[0, 1] with the norm

‖x‖ = max
{
‖x(i)‖∞ : 1 = 1, . . . , n− 1

}
,

and Z be the Banach space L1(0, 1) with its usual norm ‖ · ‖1.

We now define L the linear operation from dom (L)⊂X to Z by Lx = x(n),
for x ∈ dom (L), where

dom (L) ={
x ∈ ACn[0, 1] : αix(i−1)(0)+βix(i−1)(1) = γi

∫ 1

0
x(s) ds , i = 1, 2, . . . , n

}
.

We also define the nonlinear operator N : X → Z by

(2.1) Nx(t) = f
(
t, x(t), x′(t), . . . , x(n−1)(t)

)
, t ∈ (0, 1) .
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Then the problem (1.1)–(1.2) is equivalent to the abstract equation

Lx = Nx .

We shall show that under certain conditions then L is a Fredholm operator of
index zero and N is L-completely continuous.

First, we shall to look for the kernel and the range of L. To determine the
Ker L, we suppose Lx = 0 for x ∈ dom(L) which implies

x(t) = c1 + c2t+ · · ·+ cn
(n− 1)! t

n−1 .

Using the boundary conditions (1.2), we derive

A
[
c1 c2 . . . cn

]T = 0 ,

where A = (aij) is a square matrix of order n with

a1j =

α1 + β1 − γ1 if j = 1

] β1
(j−1)! −

γ1
j! if 2 ≤ j ≤ n ,

and

aij =


−γij! if 1 ≤ j ≤ i− 1

αi + βi − γi
i! if j = i

βi
(j−i)! −

γi
j! if i+ 1 ≤ j ≤ n ,

(2 ≤ i ≤ n) .

This follows

Ker L =
{
x(t) = c1+c2t+· · ·+

cn
(n− 1)! t

n−1 : (c1, c2, . . . , cn) ∈ Ker A
}
∼= Ker A .

Hence we get dim Ker L = dim Ker A < +∞.

Now, we determine the range of operator L, Im L. Consider the function
φ : Z → Rn given by

(2.2) φ(z) = D
[
In+1z(1) Inz(1) · · · Iz(1)

]T
,

where D is a n× (n+ 1) matrix defined by

D =


γ1 −β1 0 · · · 0
γ2 0 −β2 · · · 0
...

...
...

. . .
...

γn 0 0 · · · −βn

 .
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Then we claim that
(2.3) Im L = {z ∈ Z : φ(z) ∈ Im A} .
Indeed, for z ∈ ImL, there exists x ∈ dom (L) such that x(n)(t) = z(t) and
then

x(t) = c1 + c2t+ · · ·+ cn
(n− 1)! t

n−1 + Inz(t) .

Since x satisfies boundary conditions

αix
(i−1)(0) + βix

(i−1)(1) = γi

∫ 1

0
x(s)ds , i = 1, 2, . . . , n ,

we can deduce that
φ(z) = A

[
x(0) x′(0) . . . x(n−1)(0)

]T ∈ Im A .

Conversely, if z ∈ L1[0, 1] and holds φ(z) ∈ Im A, then there exists c =
(c1, c2, . . . , cn) ∈ Rn such that

A
[
c1 c2 . . . cn

]T = φ(z) .
Then by setting

x(t) = c1 + c2t+ · · ·+ cn
(n− 1)! t

n−1 + Inz(t) ,

it calculates straightforwardly that x ∈ dom (L) and Lx = z ∈ ImL. Thus, the
claim (2.3) is valid.

The following lemma gives the properties of the operator φ.

Lemma 2.4. Let φ : Z → Rn be the linear operator defined by (2.2). Then
the following statements are hold:

i/ |φ(z)|Rn ≤ ‖D‖∗ ‖z‖1, for all z ∈ Z, and
ii/ Im φ = Im D,

where | · |Rn and ‖ ·‖∗ are the max-norms on Rn and Mn×(n+1)(R), respectively.

Proof. Setting the operator I : Z → Rn+1 by

Iz =
[
In+1z(1) Inz(1) . . . Iz(1)

]T
, z ∈ Z .

We derive that φ = D ◦ I. Thanks to the linearity of I, we obtain the linearity
of the operator φ. Furthermore, for ν ≥ 1, ν ∈ N, we have

|Iνz(1)| ≤ 1
(ν − 1)!

∫ 1

0
(1− s)ν−1|z(s)|ds ≤ 1

(ν − 1)!‖z‖1 .

It follows that
|φ(z)|Rn ≤ ‖D‖∗max{|Iνz(1)| : ν = 1, 2, . . . , n+ 1} ≤ ‖D‖∗‖z‖1 ,
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for z ∈ Z. Hence, φ is a linear continuous operator which satisfies i/. In order
to prove ii/, it suffices to show that the operator I is surjective. In fact, it is
obviously that Im I ⊂ Rn+1. Conversely, for ξ = (ξ1, ξ2, . . . , ξn+1) ∈ Rn+1, we
shall show that there exists z ∈ Z to be form of

z(t) = c1 + c2(1− t) + · · ·+ cn+1(1− t)n ,

which satisfies Iz = ξ. Notice that for ν = 1, 2, . . . , n+ 1, we have

Iνz(1) = 1
(ν − 1)!

∫ 1

0
(1− s)ν−1 [c1 + c2(1− s) + · · ·+ cn+1 (1− s)n] ds

= 1
(ν − 1)!

[ 1
ν

1
ν+1 . . . 1

ν+n
] [
c1 c2 . . . cn+1

]T
.

Hence, one has Iz = C
[
c1 c2 . . . cn+1

]T , where C denotes the following
square matrix of order n+ 1

C =


1

n!(n+1)
1

n!(n+2) · · · 1
n!(2n+1)

1
(n−1)!n

1
(n−1)!(n+1) · · · 1

(n−1)!2n
...

...
. . .

...
1
1

1
2 · · · 1

n+1

 .
On the other hand, it is not difficult to see that C is invertible matrix and
denote its inverse as C−1. We now let c = (c1, c2, . . . , cn+1) = C−1 · ξ and
z(t) = c1 + c2(1 − t) + · · · + cn+1(1 − t)n, then Iz = ξ. The proposition is
proved. �

Next we note that this paper is merely interested in resonance case, that is
to say that the dimension of Ker A is larger than or equal to 1. Therefore there
exists an orthonormal basis of the orthorgonal complement of ImA ∩ Im D in
Imφ = ImD which is denoted by

{ωk : k = 1, 2, . . . ,m}

for some 1 ≤ m ≤ n. Then we could represent the range of L as follows

(2.4) Im L = {z ∈ Z : 〈φ(z), ωk〉 = 0 , k = 1, 2, . . . ,m} ,

where 〈·, ·〉 denotes the inner product in Rn.

On the other hand, for each ωk ∈ Im φ = Im D, there exists ξk =(
ξk1 , ξ

k
2 , . . . , ξ

k
n+1
)
∈ Rn+1 to be a solution of the system linear equation

DCξ = ωk. Put

zk(t) = ξk1 + ξk2 (1− t) + · · ·+ ξkn+1(1− t)n ,
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then we obtain zk ∈ Z and φ(zk) = DCξk = ωk. Moreover, thanks to the
linearity of the operator φ and the independence of system vector {ωk : k =
1, 2, . . . ,m}, we deduce that {zk : k = 1, 2, . . . ,m} is an independent system
in Z.

We now offer a sufficient condition given by the following lemma to ensure
that L is a Fredholm operator of index zero.

Lemma 2.5. Suppose that Im A+Im D = Rn. Then the operator L : dom (L)
⊂ X → Z is a Fredholm operator of index zero.

Proof. First, we notice that Ker L ∼= Ker A, so one has dim Ker L < +∞. In
addition, Im L is closed subset in Z because φ is a linear continuous operator.
So, in order to prove that L is a Fredholm of index zero, we need only to
prove that codim Im L = dim Ker L. In fact, we define the linear operator
Q : Z → Z as follows

Qz(t) =
m∑
k=1
〈φ(z), ωk〉 zk(t) .(2.5)

Since φ(zk) = ωk and {ωk : k = 1, . . . ,m} being an othornormal basis we
deduce that

〈φ(Qz), ωk〉 = 〈φ(z), ωk〉
for all k = 1, 2, . . . ,m. This implies that Q is idempotent and therefore Q is a
projector. In addition, using the continuity of the operator φ and inner product
in Rn, one gain Q is a continuous projector. Next, utilizing {zk : k = 1, . . . ,m}
an independent system of Z, we argue that

z ∈ Ker Q⇔
m∑
k=1
〈φ(z), ωk〉 zk = 0⇔ 〈φ(z), ωk〉 = 0 ,

∀ k ∈ {1, 2, . . . ,m} ⇔ z ∈ ImL .

Hence Ker Q = Im L. On the other hand, it is not difficult to show that
ImQ = span {z1, z2, . . . , zm}. And therefore, we have

codim Im L = dim Im Q

= dim Im D − dim (Im A ∩ Im D)
= dim (Im A+ Im D)− dim Im A
= dim(Rn)− dim Im A
= dim Ker A = dim Ker L ,

where we use the hypothesis Im A+ Im D = Rn. The proof is complete. �
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Let P : X → X be the operator defined by

Px(t) =
[
1 t · · · tn−1

(n−1)!

]
(In −A+A)

[
x(0) x′(0) · · · x(n−1)(0)

]T
,

where A+ is Moore-Penrose pseudoinverse of A and In denotes the square
matrix of n order. Since PA = In − A+A is an orthorgonal projector onto
Ker A, it is not difficult to see that P is a projector onto Ker L and

Ker P =
{
x ∈ X :

[
x(0) x′(0) · · · x(n−1)(0)

]T
= A+A

[
x(0) x′(0) · · · x(n−1)(0)

]T }
.

The following lemma gives us the properties of pseudoinverse of L.

Lemma 2.6. Let KP : Im L→ dom (L) ∩Ker P be a linear operator defined
by

(KP z)(t) =
[
1 t · · · tn−1

(n−1)!

]
A+φ(z) + Inz(t) ,

for z ∈ Im L. Then KP is a pseudoinverse of L which means that

KP = (L|dom L∩Ker P )−1
.

Moreover, we have the following estimate
‖KP z‖ ≤

(
1 + n

∥∥A+∥∥
∗ ‖D‖∗

)
‖z‖1

for every z ∈ Im L.

Proof. For each z ∈ ImL, it is not difficult to see that KP z ∈ ACn[0, 1] and[
KP z(0) (KP z)′(0) · · · (KP z)(n−1)(0)

]T = A+φ(z) .
It is straightforward to verify that KP z ∈ dom L ∩Ker P . Hence KP is well
defined. On the other hand, it is clear that LKP z(t) = z(t) for all t ∈ [0, 1]
and z ∈ Im L. Moreover, for each x ∈ dom L ∩Ker P , we have x ∈ dom (L)
which implies

A
[
x(0) x′(0) · · · x(n−1)(0)

]T = φ(Lx) .
It follows that

(KPLx) (t) =
[
1 t · · · tn−1

(n−1)!

]
A+φ(Lx) + InLx(t)

= x(t)−
[
1 t · · · tn−1

(n−1)!

] (
In −A+A

)
×
[
x(0) x′(0) · · · x(n−1)(0)

]T
= x(t)− Px(t) = x(t) ,(2.6)
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where we use the fact that x ∈ Ker P in the last equality. Hence, (KPLx)(t) =
x(t) for all t ∈ [0, 1] and for every x ∈ dom L ∩ Ker P . Thus, KP =
(L|dom L∩Ker P )−1. Furthermore, by the definition of the the pseudoinverse
KP of L, we get

(2.7) (KP z)(i) (t) =
[
0 · · · 1 · · · tn−1−i

(n−1−i)!

]
A+φ(z) + In−iz(t),

where 1 is (i+ 1)th position, for i = 0, 1, . . . , (n− 1). It follows from (2.7) and
Lemma 2.4 that∣∣(KP z)(i)(t)

∣∣ ≤ (n− i)
∥∥A+∥∥

∗ |φ(z)|Rn + 1
(n− 1− i)!

∫ t

0
(t− s)n−1−i |z(s)| ds

≤
[
1 + (n− i)

∥∥A+∥∥
∗ ‖D‖∗

]
‖z‖1 ,

for all t ∈ [0, 1] and for each i = 0, 1, . . . , (n− 1), which implies

‖KP z‖ = max
{
‖(KP z)(i)‖∞ : i = 0, 1, . . . , n−1

}
≤
(
1 + n‖A+‖∗‖D‖∗

)
‖z‖1 .

This results in the Lemma 2.6. �

In what follows, we always assume that f : [0, 1] × Rn → R satisfies
Carethéodory conditions, that is:

(a) f (·, u) is measurable for u ∈ Rn,
(b) f (t, ·) is continuous on Rn for almost every t ∈ [0, 1],
(c) for each compact set K ⊂ Rn, the function hK(t)

= sup {|f (t, u)| : u ∈ K} is Lebesgue integrable on [0, 1].
By these assumptions on f and dominated convergence theorem, it is well

known that the Nemytskii operator associated with f , N : X → Z defined
by (2.1) is continuous mapping and takes bounded sets into bounded sets.
Furthermore, N is also a L-completely continuous on X, claimed by the
following lemma.

Lemma 2.7. Assume that f : [0, 1]×Rn → R satisfies Carethéodory conditions
as above. Then the operator N : X → Z defined by (2.1) is a L-completely
continuous operator on X.

Proof. Let Ω be an arbitrary open bounded subset in X. Then it is clearly
seen that QN : Ω → Z is continuous and QN

(
Ω
)

is bounded because N
is continuous mapping and takes bounded sets into bounded sets. It now
remains to verify that KP,QN : Ω→ X is completely continuous on Ω. In fact,
since KP,QN is the composition of the continuous operators N , Q and KP ,
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so KP,QN is also continuous operator. In addition, by the definition of the
operator KP,Q, we have

(KP,QNx)(i) (t) = (KP (I −Q)Nx)(i) (t)

=
[
0 · · · 1 · · · tn−1−i

(n−1−i)!

]
A+φ((I −Q)Nx)

+ In−i(I −Q)Nx(t) ,(2.8)

where 1 is (i + 1)th position, for i = 0, 1, . . . , (n − 1) and x ∈ Ω. Set z(t) :=
(I −Q)Nx(t) for t ∈ [0, 1], then there exists a positive constant M such that
‖z‖1 ≤ M for all x ∈ Ω. This implies that KP,QN

(
Ω
)

is bounded by using
the Lemma 2.6.

On the other hand, since
{
ti : t ∈ [0, 1]

}
and

{
In−iz(t) : t ∈ [0, 1]

}
, for

each i = 0, 1, . . . , n − 1 are equicontinuous families, it follows from (2.8)
that

{
(KP z)(i) (t) : t ∈ [0, 1]

}
are equicontinuous on [0, 1]. Hence, one obtains

(KP,QN)(i) (Ω) is relatively compact, for i = 0, 1, . . . , n−1 due to Arzela-Ascoli
theorem. Thus, KP,QN

(
Ω
)

is relatively compact in X which results in the
proof. �

3. Main results

In this section we use the Theorem 2.3 to prove the existence of the solutions
of problem (1.1)–(1.2). For this purpose we assume that

Im A+ Im D = Rn ,

the assumptions of Lemma 2.7 hold, and

(A1) there exist the positive functions a0, a1, . . . , an ∈ Z with C
n−1∑
i=0
‖ai‖1 <

1 and C = 1 + n‖In −A+A‖∗ + n‖A+‖∗‖D‖∗, such that

∣∣f (t, x0, x1, . . . , xn−1)
∣∣ ≤ n−1∑

i=0
ai(t) |xi|+ an(t) ,

for almost everywhere t ∈ [0, 1] and xi ∈ R, for i = 0, 1, . . . , (n− 1);

(A2) there exists a positive constant M1 such that for each x ∈ dom (L),
φ(Nx) /∈ Im A provided that max

{∣∣x(i)(t)
∣∣ : i = 0, . . . , (n− 1)

}
> M1

for all t ∈ [0, 1];
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(A3) there exists a positive constant M2 such that for any {ci}mi=1 ⊂ R with
m∑
i=1
|ci| > M2 then

ci

〈
φ ◦N

( m∑
j=1

cjxj

)
, ωi

〉
< 0 ,(3.1)

or

ci

〈
φ ◦N

( m∑
j=1

cjxj

)
, ωi

〉
> 0 ,(3.2)

for all i ∈ {1, 2, . . . ,m}, where {xj : j = 1, . . . ,m} is a basis of Ker L.
Lemma 3.1. Let Ω1 = {x ∈ dom (L)\Ker L : Lx = λNx, λ ∈ (0, 1)}. Then
Ω1 is bounded subset in X.
Proof. Let x ∈ Ω1, then there exists λ ∈ (0, 1) such that Lx = λNx. It follows
that Nx ∈ Im L = Ker Q which implies

QNx(t) =
m∑
k=1

〈
φ(Nx), ωk

〉
zk(t) = 0 , ∀t ∈ [0, 1] .

Thanks to the linearly independent property of {zk : k = 1, . . . ,m}, we derive
that 〈φ(Nx), ωk〉 = 0 for all k = 1, . . . ,m. Therefore, we possess φ(Nx) ∈
Im A ∩ Im D which implies φ(Nx) ∈ Im A. By utilizing the assumption (A2),
there exists t0 ∈ [0, 1] such that

max
{∣∣x(i)(t0)

∣∣ : i = 0, 1, . . . , (n− 1)
}
≤M1 .

It follows from the identities

x(i)(t) = x(i)(t0) + x(i+1)(t0) (t− t0) + · · ·+ 1
(n− 1− i)!

×
∫ t

t0

(t− s)n−1−i
x(n)(s) ds ,

for all t ∈ [0, 1], i = 1, . . . , n− 1, and

x(t) = x(t0) + x′(t0) (t− t0) + · · ·+ 1
(n− 1)!

∫ t

t0

(t− s)n−1
x(n)(s) ds ,

that
|x(i)(0)| ≤ (n− i)M1+‖x(n)‖1 , i = 1, . . . , n−1 and |x(0)| ≤ nM1+‖x(n)‖1 .

Therefore, we get
max

{
|x(i)(0)| : i = 0, 1, . . . , (n− 1)

}
≤ nM1 + ‖x(n)‖1 ≤ nM1 + ‖Nx‖1 .
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It follows from the definition of the projector P and the inequality above that
‖Px‖ ≤ n

∥∥In −A+A
∥∥
∗max

{
‖x(i)(0)| : i = 0, 1, . . . , (n− 1)

}
≤ n‖In −A+A‖∗

(
nM1 + ‖Nx‖1

)
.(3.3)

On the other hand, since (I − P )x ∈ dom (L) ∩Ker P and using Lemma 2.6,
we achieve

‖(I − P )x‖ = ‖KPL(I − P )x‖ = ‖KPLx‖(3.4)
≤
(
1 + n

∥∥A+∥∥
∗ ‖D‖∗

)
‖Nx‖1 .(3.5)

Combining (3.3)-(3.5), we obtain
‖x‖ = ‖Px+ (I − P )x‖ ≤ ‖Px‖+ ‖(I − P )x‖
≤ C ‖Nx‖1 + n2M1

∥∥In −A+A
∥∥
∗ ,(3.6)

where C = 1 + n ‖In −A+A‖∗ + n ‖A+‖∗ ‖D‖∗.
Exploiting the assumptions of nonlinear term, (A1) and the definition of the
operator N , we gain

‖Nx‖1 ≤
∫ 1

0

∣∣f(s, x(s), x′(s), . . . , x(n−1)(s)
)∣∣ ds

≤
n−1∑
i=1
‖ai‖1

∥∥x(i)∥∥
∞ + ‖an‖1

≤
( n−1∑
i=1
‖ai‖1

)
‖x‖+ ‖an‖1 .(3.7)

It follows from (3.6)–(3.7) and C
( n−1∑
i=1
‖ai‖1

)
< 1 that

‖x‖ ≤
C ‖an‖1 + n2M1 ‖In −A+A‖∗

1− C
n−1∑
i=1
‖ai‖1

.

Thus, Ω1 is bounded in X. �

Lemma 3.2. The set Ω2 = {x ∈ Ker L : Nx ∈ ImL} is a bounded subset
in X.

Proof. Let x ∈ Ω2 and assume that x(t) = c0 + c1t+ · · ·+ cn−1
tn−1

(n−1)! , where
(c0, c1, . . . , cn−1) ∈ Ker A. Also, we have Nx ∈ Im L, by the same argument
as in the proof of Lemma 3.1, one could show that

max
{
|x(i)(t0)|, i = 0, . . . , (n− 1)

}
≤M1 ,
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for some t0 ∈ [0, 1]. As a result, for each i = 0, 1, . . . , (n− 1), ci is bounded in
R. And therefore the Lemma 3.2 is valid. �

Lemma 3.3. Let

Ω−3 = {x ∈ Ker L : −λx+ (1− λ)JQNx = 0, λ ∈ [0, 1]} ,

and

Ω+
3 = {x ∈ Ker L : λx+ (1− λ)JQNx = 0, λ ∈ [0, 1]} ,

where J : Im Q→ Ker L is a linear isomorphism which is defined by

J
( m∑
i=1

cizi

)
=

m∑
i=1

cixi ,

for
m∑
i=1

cizi ∈ Im Q. Then Ω−3 and Ω+
3 are bounded subsets in X provided that

(3.1) and (3.2) of the assumption (A3) hold, respectively.

Proof. Assume that (A3)–(3.1) holds. Let x ∈ Ω−3 , then we might assume
that x =

m∑
i=1

cixi ∈ Ker L, where ci ∈ R, i = 1, 2, . . . ,m and

λJ−1
( m∑
i=1

cixi

)
= (1− λ)QN

( m∑
i=1

cixi

)
,

for λ ∈ [0, 1]. It follows from the definitions of the operators J and Q that

λ

m∑
i=1

cizi = (1− λ)
m∑
i=1

〈
φ ◦N

( m∑
j=1

cjxj

)
, ωi

〉
zi .

This implies

λci = (1− λ)
〈
φ ◦N

( m∑
j=1

cjxj

)
, ωi

〉
,

for all i ∈ {1, . . . ,m}. If λ = 1, then ci = 0 for all i ∈ {1, 2, . . . ,m}. In this
case, it is obvious that Ω−3 is bounded. And if λ ∈ [0, 1) and

m∑
i=1
|ci| > M2,

then by assumption (A3)–(3.1) we get a contradiction

0 ≤ λc2
i = (1− λ)ci

〈
φ ◦N

( m∑
j=1

cjxj

)
, ωi

〉
< 0 ,
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for some i ∈ {1, 2, . . . ,m}. Thus Ω−3 is bounded in X. If (A3)–(3.2) holds, then
by using the same arguments as in above we are also able to prove that Ω+

3 is
bounded in X. The Lemma 3.3 has been proved. �

Theorem 3.4. Suppose that the assumptions (A1), (A2) and (A3)–(3.1) hold.
Then the problem (1.1)–(1.2) has at least one solution in X.

Proof. We shall prove that all the conditions of Theorem 2.3 are satisfied,
where Ω is open and bounded such that

⋃3
i=1 Ωi ⊂ Ω. It is clear that the

operator L is a Fredholm operator of index zero by Lemma 2.5 and N is
L-compact on Ω by Lemma 2.7. Futhermore, the conditions (1) and (2) of
the Theorem 2.3 are fulfilled by exploiting Lemma 3.1 and Lemma 3.2. So,
it remains to verify the third condition of Theorem 2.3. For this purpose, we
apply the degree property of invariance under a homotopy. Let us define

H (λ, x) = −λx+ (1− λ) JQNx ,

where the isomorphism J : Im Q → Ker L is defined as in Lemma 3.3. By
Lemma 3.3, we obtain H(λ, x) 6= 0 for all (λ, x) ∈ [0, 1]× (Ker L ∩ ∂Ω). Hence,
we get

deg (JQN ; Ω ∩Ker L, 0) = deg (H (0, ·) ,Ω ∩Ker L, 0)
= deg (H (1, ·) ,Ω ∩Ker L, 0)
= deg (−I,Ω ∩Ker L, 0) 6= 0 .

Thus, Theorem 3.4 is proved. �

Remark 3.5. If we replace the assumption (A3)–(3.1)in the Theorem 3.4 by
(A3)–(3.2), then by considering the homotopy

H (λ, x) = λx+ (1− λ) JQNx ,

and using similar arguments above, we obtain

deg (JQN ; Ω ∩Ker L, 0) = deg (H (0, ·) ,Ω ∩Ker L, 0)
= deg (H (1, ·) ,Ω ∩Ker L, 0)
= deg (I,Ω ∩Ker L, 0) 6= 0 .

And therefore, the conlusion of Theorem 3.4 does not change.

An illustration for this will be given by following example.

Example. Consider the equation

(3.8) x′′(t) = f (t, x(t), x′(t)) , t ∈ (0, 1)
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associated with the integral boundary condition

(3.9)

x(0) + 2x(1) = 2
∫ 1

0 x(s)ds

1
4x
′(0) + 1

4x
′(1) = −

∫ 1
0 x(s)ds

where

f (t, x0, x1) = sign
{3

2 t
2 − t− 1

4

}
g (t, x0, x1) ,

g (t, x0, x1) = t3

28 sin x0 + 1
11 (1 + t) |x1|+ t2 + 2 .

It is clear that the problem (3.8)–(3.9) is a special case of the problem
(1.1)–(1.2) in which α1 = 1, β1 = 2, γ1 = 2, α2 = 1

4 , β2 = 1
4 and γ2 = −1.

Therefore, in order to show that the problem (3.8)-(3.9) has at least one
solution, it suffices to verify the conditions of the Theorem 3.4.

In this case, we have L : dom (L) ⊂ C1[0, 1]→ L1(0, 1) defined by Lx(t) =
x′′(t) with
dom (L) = {x ∈ AC2[0, 1] : x satisfies the integral boundary condition (3.9)}
and the nonlinear operator N : C1[0, 1]→ L1(0, 1) defined by

Nx(t) = f (t, x(t), x′(t)) .

In the following, we need to show that
(1) L is a Fredholm operator of index zero;
(2) N is a L-completely continuous;
(3) the conditions of Theorem 3.4 hold.

Firstly, we have the matrix A =
[
1 1
1 1

]
, which has Ker A = span {(1;−1)},

Im A = span {(1; 1)} and the Moore-Penrose matrix A+ =
[ 1

4
1
41

4
1
4

]
= 1

4A.

The kernel of L
Ker L = {x = c1 + c2t : (c1, c2) ∈ Ker A} = span {x1} ,

where x1(t) = 1− t.

Moreover, we could see that the matrix D =
[

2 −2 0
−1 0 − 1

4

]
and the

operator φ : Z → R2 defined by

φ(z) = D
[
I3z(1) I2z(1) Iz(1)

]T =
(
2I3z(1)− 2I2z(1);−I3z(1)− 1

4Iz(1)
)
.
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So the image of L

Im L =
{
z ∈ L1(0, 1) : φ(z) ∈ Im A

}
=
{
z ∈ L1(0, 1) :

∫ 1

0

(3
2s

2 − s− 1
4

)
z(s) ds = 0

}
.

It is clearly seen that Im D = R2 and Im A ∩ Im D = Im A. Therefore, we
have

dim (Im A+ Im D) = dim ImA+ dim Im D − dim (ImA ∩ Im D) = dim(R2) .

It follows that Im A + Im D = R2. Hence, according to Lemma 2.5, L is a
Fredholm operator of index zero.

Now, taking
{
ω1 =

√
2

2 (1;−1)
}

is an orthonormal basis of the orthogonal
complement of Im A ∩ Im D = Im A in R2 and setting

z1(t) = ξ1 + ξ2(1− t) + ξ3(1− t)2 ,

where ξ = (ξ1, ξ2, ξ3) =
( 8
√

2
21 ,−

38
√

2
21 , 0

)
∈ R3 is a solution of equation DCξ =

ω1. Then one has φ(z1) = ω1.

We can now define the projectors P : X → X and Q : Z → Z by

Px(t) =
[
1 t

] (
I2 −A+A

) [
x(0) x′(0)

]T = 1
2 (x(0)− x′(0))x1(t) ,

and

Qz(t) = 〈φ(z), ω1〉 z1(t) =
[√2

2

∫ 1

0

(3
2s

2 − s− 1
4

)
z(s)ds

]
z1(t) .

The pseudoinverse Kp is defined by

KP (z)(t) =
[
1 t

]
A+φ(z) +

∫ t

0
(t− s)z(s) ds

which implies ‖KP z‖ ≤ (1 + 2 ‖A+‖∗ ‖D‖∗) ‖z‖1 = 2 ‖z‖1 for all z ∈ Z.
Secondly, it is not difficult to see that f : [0, 1] × R2 → R satisfies the

Carathéodory conditions. Thus, N is a L-completely continuous by Lemma
2.7.

Finally, we verify the conditions of Theorem 3.4. In fact, we have the growth
condition on f

|f (t, x0, x1)| ≤ a0(t) |x0|+ a1(t) |x1|+ a2(t) ,
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for all t ∈ [0, 1] and x0, x1 ∈ R, where a0(t) = t3

28 , a1(t) = 1+t
11 , a2(t) = t2 + 2.

Furthermore, it is straightforward to calculate that

C = 1 + 2
∥∥I2 −A+A

∥∥
∗ + 2

∥∥A+∥∥
∗ ‖D‖∗ = 3

and C (‖a0‖∞ + ‖a1‖∞) = 3
( 1

28 + 2
11

)
< 1 .

Therefore, the condition (A1) holds.
Next, it is noticed that φ(Nx) ∈ Im A is equivalent to∫ 1

0

(3
2s

2 − s− 1
4

)
Nx(s) ds = 0⇔

∫ 1

0

∣∣∣32s2 − s− 1
4

∣∣∣g(s, x(s), x′(s)
)
ds = 0 .

On the other hand, if |x1| > 22 then we get g (t, x0, x1) > 1 for all t ∈ [0, 1].
Hence, taking M1 = 22, then we obtain∫ 1

0

∣∣∣32s2 − s− 1
4

∣∣∣g(s, x(s), x′(s)
)
ds > 0,

provided that max
{∣∣x(i)(t)

∣∣ : i = 0, 1
}
> M1 for all t ∈ [0, 1]. This results

φ(Nx) /∈ Im A. The condition (A2) holds.
For x1(t) = 1− t, we have

〈φ ◦N(c1x1), ω1〉 =
√

2
2

∫ 1

0

∣∣∣32s2 − s− 1
4

∣∣∣g(s, c1(1− s),−c1
)
ds.

Similarly, taking M2 = 22, then we get c1g (t, c1(1− t),−c1) > 1 if c2 > M2
and c1g (t, c1(1− t),−c1) < −1 if c1 < −M2. Therefore, if |c1| > M2, then

c1 〈φ ◦N(c1x1), ω1〉 =
√

2
2

∫ 1

0

∣∣∣32s2 − s− 1
4

∣∣∣c1g
(
s, c1(1− s),−c1

)
ds > 0 ,

or

c1 〈φ ◦N(c1x1), ω1〉 =
√

2
2

∫ 1

0

∣∣∣32s2 − s− 1
4

∣∣∣c1g
(
s, c1(1− s),−c1

)
ds < 0 .

Hence, the condition (A3) holds. Thus, by the Theorem 3.4, the problem
(3.8)–(3.9) has at least one solution.
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