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NONRECTIFIABLE OSCILLATORY SOLUTIONS OF SECOND
ORDER LINEAR DIFFERENTIAL EQUATIONS

Takanao Kanemitsu and Satoshi Tanaka

Abstract. The second order linear differential equation
(p(x)y′)′ + q(x)y = 0 , x ∈ (0, x0]

is considered, where p, q ∈ C1(0, x0], p(x) > 0, q(x) > 0 for x ∈ (0, x0].
Sufficient conditions are established for every nontrivial solutions to be non-
rectifiable oscillatory near x = 0 without the Hartman–Wintner condition.

1. Introduction

We consider the second order linear differential equation
(1.1) (p(x)y′)′ + q(x)y = 0 , x ∈ (0, x0] ,
where, p, q ∈ C1(0, x0], p(x) > 0, q(x) > 0 for x ∈ (0, x0]. A solution y of (1.1) is
said to be oscillatory near x = 0 if there exists {zn}∞n=1 such that y(zn) = 0 for
n ∈ N and zn → 0 as n→∞. Otherwise, it is said to be nonoscillatory near x = 0.

A study of the oscillation of solutions to (1.1) has a long history. See, for example,
[1, 2, 3, 4, 5, 14]. However, it seems that very little is known how oscillatory a
solution of (1.1) is. In this paper, we divide oscillatory solutions into the following
two classes: into rectifiable and nonrectifiable solutions, that is, those of finite and
infinite length, respectively. Namely, a solution y of (1.1) is said to be rectifiable
(resp. nonrectifiable) oscillatory near x = 0 if y is oscillatory near x = 0 and satisfies∫ x0

0

√
1 + |y′(x)|2dx <∞ (resp. =∞) .

We remark that nonrectifiable oscillatory means more oscillatory than rectifiable
oscillatory.

To classify oscillatory solutions of the second order linear differential equations
by this geometric viewpoint began Pašić [8, 9]. Pašić [10] and J. S. W. Wong [15]
presented the rectifiable and nonrectifiable oscillatory results for the Euler type
equation

y′′ + λx−σy = 0 , x ∈ (0, x0] ,
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where σ ≥ 2 and λ > 0. Pašić [11] obtained the rectifiable and nonrectifiable
oscillatory results for the Riemann–Weber version of Euler differential equation

y′′ + x−σ
(1

4 + λ

| log x|β
)
y = 0 , x ∈ (0, x0] ,

where σ ≥ 2, β > 0 and λ > 0. Kwong, Pašić and J. S. W. Wong [7] considered the
general equation

(1.2) y′′ + q(x)y = 0 , x ∈ (0, x0] .

Pašić and Tanaka [13] considered more general equation (1.1) and presented the
following result.

Theorem A. Assume that p, q ∈ C2(0, x0],∫ x0

0

√
q(x)
p(x)dx =∞

and the Hartman–Wintner condition

(1.3)
∫ x0

0

1
4
√
p(x)q(x)

∣∣∣(p(x)
( 1

4
√
p(x)q(x)

)′)′∣∣∣dx <∞ .

Then the following (i) and (ii) hold:
(i) every nontrivial solution of (1.1) is rectifiable oscillatory near x = 0 if∫ x0

0
[p(x)]− 3

4 [q(x)] 1
4 dx <∞ ;

(ii) every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0 if∫ x0

0
[p(x)]− 3

4 [q(x)] 1
4 dx =∞ .

Kwong, Pašić and J. S. W. Wong [7] gave Theorem A when p(x) ≡ 1. The
proof of Theorem A is based on the asymptotic formula of oscillatory solutions of
(1.1), which is obtained from the Hartman–Wintner condition (1.3). The purpose
of this paper is to obtain nonrectifiable oscillatory results for (1.1) without the
Hartman–Wintner condition (1.3). In [12], equation (1.2) is considered and condition
(1.3) with p(x) ≡ 1 is not supposed, but it is assumed that every solution y of (1.2)
satisfies either

lim sup
x→+0

x
θ+1

2 |y′(x)| <∞ or lim sup
x→+0

x
θ+1

2 |y(x)| <∞

for some θ > 0.
The main results of this paper are as follows.

Theorem 1.1. Assume that every solution of (1.1) is oscillatory near x = 0
and (p(x)q(x))′ ≥ 0 for x ∈ (0, x0]. Then every nontrivial solution of (1.1) is
nonrectifiable oscillatory near x = 0.
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Theorem 1.2. Assume that there exist µ, σ ∈ R such that µ+ σ > 2,
(xµ+σ−2p(x)q(x))′ ≥ 0 for x ∈ (0, x0], and

lim sup
x→+0

x−µp(x) <∞ ,(1.4)

lim inf
x→+0

xσq(x) > 0 .(1.5)

Then every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0.
Theorem 1.3. Assume that there exist a, b ∈ R such that a+ b > 0,
(e− a+b

x p(x)q(x))′ ≥ 0 for x ∈ (0, x0], and
lim sup
x→+0

e
a
x p(x) <∞,(1.6)

lim
x→+0

x4e−
b
x q(x) =∞ .(1.7)

Then every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0.
Remark 1.1. We obtain more general results than Theorems 1.1–1.3. See later
on.
Example 1.1. We consider the Euler type equation
(1.8) (xµy′)′ + λx−σy = 0 , x ∈ (0, x0] ,
where λ > 0, µ, σ ∈ R. If µ + σ > 2, then every solution of (1.8) is oscillatory
near x = 0. Conversely, if µ + σ < 2, then every nontrivial solution of (1.8) is
nonoscillatory near x = 0. Indeed, we consider the Euler equation
(1.9) (xµy′)′ + νxµ−2y = 0 , x ∈ (0, x0] ,
which is (1.8) with σ = 2− µ and λ = ν. When ν > (µ− 1)2/4, equation (1.9) has
the oscillatory solution

y(x) = x
1−µ

2 sin
(√4ν − (µ− 1)2

2 log x
)
.

If µ+ σ > 2, λ > 0 and µ > 0, then λx−σ > νxµ−2 for all sufficiently small x > 0,
and hence the Sturm–Picone comparison theorem implies that every solution of
(1.8) is oscillatory near x = 0. Next we assume that µ+ σ < 2. Since x(1−µ)/2 is
a nonoscillatory solution of (1.9) with ν = (µ− 1)2/4 and λx−σ < νxµ−2 for all
sufficiently small x > 0, the Sturm–Picone comparison theorem implies that every
nontrivial solution of (1.8) is nonoscillatory near x = 0.

Applying Theorem 1.1, we conclude that if µ + σ > 2 and µ ≥ σ, then every
nontrivial solution of (1.8) is nonrectifiable oscillatory near x = 0. Using Theorem
1.2, we find that every nontrivial solution of (1.8) is nonrectifiable oscillatory near
x = 0, if µ+ σ > 2 and µ ≥ 1, which is better than µ+ σ > 2 and µ ≥ σ.

On the other hand, from Theorem A and Example 1.4 in [13], it follows that
every nontrivial solution of (1.8) is rectifiable oscillatory near x = 0, provided
µ+σ > 2 and 3µ+σ < 4, and that every nontrivial solution of (1.8) is nonrectifiable
oscillatory near x = 0, provided µ+ σ > 2 and 3µ+ σ > 4. Therefore, for equation
(1.8), Theorem A is better than Theorem 1.2. However, the Hartman–Wintner
condition (1.3) is not needed in Theorems 1.1 and 1.2.
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Example 1.2. We consider the equation

(1.10) (e−αx y′)′ + λe
β
x y = 0 , x ∈ (0, x0] ,

where λ > 0 and α, β ∈ R. Theorem 1.3 implies that every nontrivial solution of
(1.10) is nonrectifiable oscillatory near x = 0 when α > 0 and α+ β > 0. Indeed,
setting a = α, b = β − ε and ε = min{(α+ β)/2, α}, we find that

a+ b = α+ β − ε > α+ β − α+ β

2 = α+ β

2 > 0 .

Moreover, p(x) = e−
α
x and q(x) = λe

β
x satisfy

(e−
a+b
x p(x)q(x))′ =

(
λe

−2α+ε
x

)′ = λ
2α− ε
x2 e

ε
x = λ

α+ (α− ε)
x2 e

ε
x > 0 ,

lim sup
x→+0

e
a
x p(x) = 1 ,

and

lim
x→+0

x4e−
b
x q(x) = lim

x→+0
λx4e

ε
x =∞ .

To prove Theorems 1.1–1.3, we use the following nonrectifiable criteria by Pašić
[10, Proposition 4.2].

Proposition 1.1. Let y ∈ C1(0, x0]. Assume that there exists a strictly decreasing
sequence {an}∞n=1 such that 0 < a1 ≤ x0, an → 0 as n→∞, y(an)y(an+1) < 0 for
n ∈ N, and

∑∞
n=1 |y(an)| =∞. Then y is nonrectifiable oscillatory near x = 0.

To use Proposition 1.1, we have to estimate the amplitude of oscillatory solutions
of (1.1). To this end, we employ the following energy function

(1.11) E[y](x) = 1
f(x)

(
p(x)y′

)2 + p(x)q(x)
f(x) y2 ,

where f ∈ C1(0, x0] and f(x) > 0 for x ∈ (0, x0]. Assume that y is an oscillatory
solution near x = 0 of (1.1). Then

(1.12) d

dx
E[y](x) =

(p(x)q(x)
f(x)

)′
y2 − f ′(x)[p(x)]2

[f(x)]2 (y′)2 .

Condition (2.1) below implies that d
dxE[y](x) ≤ 0. By (1.11) and (1.12), we can

estimate |y(x)|. Recently, the amplitude of oscillatory solutions to (1.1) has been
studied by Kusano and Yoshida [6]. We take a decreasing sequence {an}∞n=1 such
that 0 < a1 ≤ x0, an → 0 as n → ∞ and y(an)y(an+1) < 0, y′(an) = 0 for
n ∈ N. If we have lim infn→∞ |y(an)| > 0, then

∑∞
n=1 |y(an)| = ∞, and hence

Proposition 1.1 implies that y is nonrectifiable oscillatory near x = 0. By this
approach, we will prove Theorem 1.1 in Section 2. Moreover, by the Sturm-Picone
comparison theorem with a concrete equation, we can know the distribution of
zeros of y, and hence we obtain the asymptotic behavior of an as n→∞. In this
way, we will prove Theorems 1.2 and 1.3 in Sections 3 and 4, respectively.
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2. Proof of the first main result

To prove Theorem 1.1 we begin with the following more general result.
Theorem 2.1. Assume that every solution of (1.1) is oscillatory near x = 0 and
there exists f ∈ C1(0, x0] such that

f(x) > 0 , f ′(x) ≥ 0 ,
(p(x)q(x)

f(x)

)′
≤ 0 for x ∈ (0, x0] ,(2.1)

lim sup
x→+0

p(x)q(x)
f(x) <∞ .(2.2)

Then every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0.
Proof. Let y be a nontrivial solution of (1.1). Then y is oscillatory near x = 0,
which implies that y′ is also oscillatory near x = 0. Let {an}∞n=1 be a strictly
decreasing sequence {an}∞n=1 such that 0 < a1 ≤ x0, an → 0 as n → ∞ and
y(an)y(an+1) < 0, y′(an) = 0 for n ∈ N. We use the energy function (1.11). Then
E[y](x) ≥ 0 for x ∈ (0, x0]. We note that E[y](x) > 0 for x ∈ (0, x0]. Indeed, if
E[y](ξ) = 0 for some ξ ∈ (0, x0], then y(ξ) = y′(ξ) = 0, which means that y(x) ≡ 0
on (0, x0] by the uniqueness of initial value problems. This is a contradiction. From
(1.12) and (2.1), it follows that

d

dx
E[y](x) ≤ 0 , x ∈ (0, x0] .

Hence,
E[y](x) ≥ K , x ∈ (0, x0]

for some K > 0. Since y′(an) = 0, we obtain

E[y](an) = p(an)q(an)
f(an) [y(an)]2 ≥ K , n ∈ N ,

that is,

(2.3) |y(an)| ≥

√
Kf(an)

p(an)q(an) , n ∈ N .

By (2.2), there exists c > 0 such that
p(x)q(x)
f(x) ≤ c , x ∈ (0, x0] .

Consequently,

|y(an)| ≥
√
K

c
> 0 , n ∈ N ,

which implies that
∞∑
n=1
|y(an)| =∞ .

Therefore, Proposition 1.1 implies that y is nonrectifiable oscillatory near x = 0. �

Proof of Theorem 1.1. Setting f(x) = p(x)q(x) in Theorem 2.1, we obtain
Theorem 1.1 immediately. �
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3. Proof of the second main result

In this section we give a proof of Theorem 1.2. To this end, we prove the following
result.

Theorem 3.1. Assume that r, s ∈ C(0, x0],
p(x) ≤ r(x) , q(x) ≥ s(x) > 0 , x ∈ (0, x0] .

Let w be a nontrivial solution of
(3.1) (r(x)w′)′ + s(x)w = 0 .
Assume moreover that there exist a strictly decreasing sequence {tn}∞n=1 and a
function f ∈ C1(0, x0] such that w(tn) = 0 for n ∈ N, tn → 0 as n → ∞, and
(2.1) and the following condition hold:

(3.2)
∞∑
n=1

√
f(tn)

p(tn)q(tn) =∞ .

Then every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0.

Proof. The Sturm–Picone comparison theorem implies that every nontrivial solu-
tion of (1.1) is oscillatory near x = 0. Let y be a nontrivial solution of (1.1). Then
y is oscillatory near x = 0, and hence there exists {zn}∞n=1 such that zn → 0 as
n→∞, y(zn) = 0 for n ∈ N, y(x) 6= 0 for x ∈ (zn+1, zn), and

0 < · · · < zn+1 < zn < · · · < z1 < x1 .

By Rolle’s theorem, for each n ∈ N, there exists an ∈ (zn+1, zn) such that y′(an) =
0. We take k ∈ N so large that t1+k < z1. Now we set bn = tn+k for n ∈ N. Then
b1 < z1. The Sturm–Picone comparison theorem implies that y(x) has at least n+1
zeros in (bn+2, b1), which means that bn+2 < zn+1. Since zn+1 < an, we have

an > zn+1 > bn+2 , n ∈ N .

In exactly same way as in the proof in Theorem 2.1, we conclude that (2.3) holds
for some K > 0. From (2.1) and an > bn+2, it follows that

|y(an)| ≥

√
Kf(an)

p(an)q(an) ≥

√
Kf(bn+2)

p(bn+2)q(bn+2) , n ∈ N.

Since bn = tn+k, we have
N∑
n=1
|y(an)| ≥

√
K

N∑
n=1

√
f(tn+k+2)

p(tn+k+2)q(tn+k+2)

=
√
K

N+k+2∑
n=k+3

√
f(tn)

p(tn)q(tn)

=
√
K

N+k+2∑
n=1

√
f(tn)

p(tn)q(tn) −
√
K

k+2∑
n=1

√
f(tn)

p(tn)q(tn) .
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Letting N →∞ and using (3.2), we obtain
∞∑
n=1
|y(an)| =∞ .

Consequently, Proposition 1.1 implies that y is nonrectifiable oscillatory near
x = 0. �

From Theorem 3.1, we have the following result.

Theorem 3.2. Assume that there exist f ∈ C1(0, x0] and µ, σ ∈ R such that
µ+ σ > 2, (1.4) and (1.5) hold, f(x) satisfies (2.1) and

(3.3) lim sup
x→+0

xµ+σ−2 p(x)q(x)
f(x) <∞ .

Then every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0.

Proof. By (1.4) and (1.5), there exist c1 > 0 and c2 > 0 such that
(3.4) x−µp(x) < c1 , xσq(x) > c2 , x ∈ (0, x0] .
We define r(x), s(x) and w(x) by

r(x) = c1x
µ , s(x) = x−σ

[c2

2 −
c1

16(σ − µ)(σ + 3µ− 4)xµ+σ−2
]

and
w(x) = x

σ−µ
4 sin

(
γx−

µ+σ
2 +1) ,

respectively, where

γ =
2√c2

(µ+ σ − 2)
√

2c1
.

Then w is an oscillatory solution near x = 0 of (3.1). Now we set

tn =
(
nπ

γ

)− 2
µ+σ−2

, n ∈ N .

Then w(tn) = 0 for n ∈ N. By µ+ σ > 2 and (3.4), there exists x1 ∈ (0, x0] such
that

s(x) ≤ c2x
−σ < q(x) , x ∈ (0, x1] .

Moreover, from (3.4), it follows that p(x) < r(x) for x ∈ (0, x0]. By (3.3), there
exists c3 > 0 such that

xµ+σ−2 p(x)q(x)
f(x) ≤ c3 , x ∈ (0, x0] .

Therefore, √
f(tn)

p(tn)q(tn) ≥
1
√
c3

(tn)
µ+σ−2

2 = γ
√
c3πn

, n ≥ n1

for some n1, which means that (3.2) is satisfied. Consequently, Theorem 3.1 implies
that every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0. �

Proof of Theorem 1.2. Letting f(x) = xµ+σ−2p(x)q(x) in Theorem 3.2, we have
Theorem 1.2. �
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4. Proof of the third main result

In this section we prove Theorem 1.3.

Theorem 4.1. Assume that there exist f ∈ C1(0, x0] and a, b ∈ R such that
a+ b > 0, (1.6) and (1.7) hold and f(x) satisfies (2.1),

(4.1) lim sup
x→+0

e−
a+b
x
p(x)q(x)
f(x) <∞ .

Then every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0.

Proof. By (1.6), there exists c1 > 0 such that
(4.2) e

a
x p(x) < c1 , x ∈ (0, x0] .

By (1.7), there exists x1 ∈ (0, x0] such that

(4.3) x4e−
b
x q(x) > (a+ b)2

2 c1 , x ∈ (0, x1] .

We define r(x), s(x) and w(x) by
r(x) = c1e

− ax ,

s(x) = c1

x4 e
b
x

[ (a+ b)2

4 +
( (a− b)(3a+ b)

16 − ax
)
e−

a+b
x

]
and

w(x) = xe
a−b
4x sin

(
e
a+b
2x
)
,

respectively. Then w is an oscillatory solution near x = 0 of (3.1). Now we set

tn = a+ b

2 lognπ , n ∈ N .

Then w(tn) = 0 for n ∈ N. By (4.3), there exists x2 ∈ (0, x1] such that

s(x) < c1

x4 e
b
x

(a+ b)2

2 < q(x) , x ∈ (0, x2] .

Moreover, from (4.2), it follows that p(x) < r(x) for x ∈ (0, x0]. By (4.1), there
exists c3 > 0 such that

(4.4) e−
a+b
x
p(x)q(x)
f(x) ≤ c3 , x ∈ (0, x0] .

Therefore, √
f(tn)

p(tn)q(tn) ≥
1
√
c3

exp
(
− a+ b

2tn

)
= 1
√
c3

exp(− lognπ) = 1
√
c3πn

, n ≥ n1

for some n1, which means that (3.2) is satisfied. Consequently, Theorem 3.1 implies
that every nontrivial solution of (1.1) is nonrectifiable oscillatory near x = 0. �

Proof of Theorem 1.3. Setting f(x) = e−
a+b
x p(x)q(x) in Theorem 4.1, we obtain

Theorem 1.3. �
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