CONDITIONS FOR INTEGRABILITY OF A 3-FORM

JIŘÍ VANŽURA

ABSTRACT. We find necessary and sufficient conditions for the integrability of one type of multisymplectic 3-forms on a 6-dimensional manifold.

Let V be a 6-dimensional real vector space. The general linear group GL(V) operates naturally on the space of 3-forms $\Lambda^3 V^*$ by

$$\varphi\alpha(v,v',v'') = \alpha(\varphi^{-1}v,\varphi^{-1}v',\varphi^{-1}v'')\,, \quad \alpha \in \Lambda^3 V^*, \ \varphi \in GL(V)\,.$$

This action has six orbits, see e.g. [1]. They can be described by their representatives. Let us choose a basis v_1, \ldots, v_6 of V, and let $\alpha_1, \ldots, \alpha_6$ be the corresponding dual basis. Let us recall that a 3-form $\alpha \in \Lambda^3 V^*$ is called *regular* or *multisymplectic* if the linear mapping

$$\iota \colon V \to \Lambda^2 V^*, \quad \iota(v) = \iota_v \alpha$$

is injective. All the other forms are then called *singular*. Obviously, all forms belonging to an orbit are either regular or singular. We then speak about *regular* orbits and singular orbits. We denote R_+ , R_- and R_0 the regular orbits and by ρ_+ , ρ_- , ρ_0 their representatives. Similarly we denote S_1 , S_2 and S_3 the singular orbits and by σ_1 , σ_2 , σ_3 their representatives.

$$(R_{+}) \qquad \rho_{+} = \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3} + \alpha_{4} \wedge \alpha_{5} \wedge \alpha_{6},$$

$$(R_{-}) \qquad \rho_{-} = \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3} + \alpha_{1} \wedge \alpha_{4} \wedge \alpha_{5} + \alpha_{2} \wedge \alpha_{4} \wedge \alpha_{6} - \alpha_{3} \wedge \alpha_{5} \wedge \alpha_{6},$$

 $(R_0) \qquad \rho_0 = \alpha_1 \wedge \alpha_4 \wedge \alpha_5 + \alpha_2 \wedge \alpha_5 \wedge \alpha_6 + \alpha_3 \wedge \alpha_6 \wedge \alpha_4 \,,$

$$(S_1) \qquad \sigma_1 = 0\,,$$

$$(S_2) \qquad \sigma_2 = \alpha_1 \wedge \alpha_2 \wedge \alpha_3 \,,$$

$$(S_3) \qquad \sigma_3 = \alpha_1 \wedge (\alpha_2 \wedge \alpha_3 + \alpha_4 \wedge \alpha_5).$$

We recall that a 2-form β on a vector space is called *decomposable* if there exist 1-forms γ and γ' such that $\beta = \gamma \wedge \gamma'$. It is well known that a 2-form β is decomposable if and only if $\beta \wedge \beta = 0$.

With every 3-form $\alpha \in \Lambda^3 V^*$ we can associate a subset $\Delta(\alpha) \subset V$ defined by

$$\Delta(\alpha) = \{ v \in V; \iota_v \alpha \land \iota_v \alpha = 0 \}.$$

²⁰¹⁰ Mathematics Subject Classification: primary 37J30; secondary 53C10.

Key words and phrases: multisymplectic 3-form, 6-dimensional manifold, integrability.

Received April 24, 2017. Editor M. Čadek.

DOI: 10.5817/AM2017-5-371

In other words $\Delta(\alpha)$ consists of all $v \in V$ such hat the 2-form $\iota_v \alpha$ is decomposable.

1. Algebraic properties

We take now an element $\alpha \in R_0$. We find easily that

$$\Delta(\rho_0) = [v_1, v_2, v_3].$$

This shows that the subset $\Delta(\alpha)$ is a 3-dimensional subspace of V. For simplicity we denote $V_0 = \Delta(\alpha)$. There is also another possible description of $\Delta(\alpha)$.

1. Lemma. $\Delta(\alpha) = \{ v \in V; (\iota_v \alpha) \land \alpha = 0 \}.$

Proof. Obviously it suffices to prove this equality for $\alpha = \rho_0$. We take $v = a_1v_1 + \cdots + a_6v_6$ and we find

$$(\iota_v \rho_0) \wedge \rho_0 = -2a_6\alpha_2 \wedge \alpha_3 \wedge \alpha_4 \wedge \alpha_5 \wedge \alpha_6 + 2a_4\alpha_1 \wedge \alpha_3 \wedge \wedge \alpha_4 \wedge \alpha_5 \wedge \alpha_6 - 2a_5\alpha_1 \wedge \alpha_2 \wedge \alpha_4 \wedge \alpha_5 \wedge \alpha_6.$$

This proves the lemma.

For ρ_0 , and consequently for every $\alpha \in R_0$ we have the following lemma.

2. Lemma. If $\alpha \in R_0$ and $v, v' \in \Delta(\alpha)$, then $\alpha(v, v', \cdot) = 0$.

Inspired by ρ_0 we introduce the following definition.

3. **Definition.** A basis w_1, \ldots, w_6 of V is called *canonical basis for* α if the following conditions are satisfied

$$\begin{split} &\alpha(w_1, w_2, w_3) = 0 \,, \quad \alpha(w_i, w_j, w_k) = 0 \quad \text{for} \quad 1 \leq i < j \leq 3, \ k = 4, 5, 6 \,, \\ &\alpha(w_1, w_4, w_5) = 1 \,, \quad \alpha(w_1, w_5, w_6) = 0 \,, \quad \alpha(w_1, w_6, w_4) = 0 \,, \\ &\alpha(w_2, w_4, w_5) = 0 \,, \quad \alpha(w_2, w_5, w_6) = 1 \,, \quad \alpha(w_2, w_6, w_4) = 0 \,, \\ &\alpha(w_3, w_4, w_5) = 0 \,, \quad \alpha(w_3, w_5, w_6) = 0 \,, \quad \alpha(w_3, w_6, w_4) = 1 \,, \\ &\alpha(w_4, w_5, w_6) = 0 \,. \end{split}$$

A dual basis β_1, \ldots, β_6 to a canonical basis will be called *canonical dual basis* for α .

It is easy to see that β_1, \ldots, β_6 is a canonical dual basis for α if and only if there is

$$\alpha = \beta_1 \wedge \beta_4 \wedge \beta_5 + \beta_2 \wedge \beta_5 \wedge \beta_6 + \beta_3 \wedge \beta_6 \wedge \beta_4.$$

Because the forms α and ρ_0 are equivalent (= belong to the same orbit), it is obvious that

4. Lemma. Every 3-form $\alpha \in R_0$ has a canonical basis.

Nevertheless for the later considerations within the framework of differential geometry we shall present a constructive proof.

Proof. We choose first a complement V_c of V_0 in V. In this complement we take three linearly independent vectors z_4 , z_5 , z_6 . We denote $a = \alpha(z_4, z_5, z_6)$. Because

the form α is regular, there is $v_0 \in V_0$ such that $\alpha(v_0, z_5, z_6) = b \neq 0$. Taking $w_4 = z_4 - (a/b)v_0$, $w_5 = z_5$, and $w_6 = z_6$ we get

$$\begin{aligned} \alpha(w_4, w_5, w_6) &= \alpha(z_4 - (a/b)v_0, z_5, z_6) \\ &= \alpha(z_4, z_5, z_6) - (a/b)\alpha(v_0, z_5, z_6) = a - (a/b)b = 0. \end{aligned}$$

Now we have on V_0 three linear forms, namely the forms $\alpha(\cdot, w_4, w_5)$, $\alpha(\cdot, w_5, w_6)$, and $\alpha(\cdot, w_6, w_4)$. The regularity of α implies again that these three forms are linearly independent. Consequently, there are uniquely determined $w_1, w_2, w_3 \in V_0$ such that

$$\begin{aligned} &\alpha(w_1, w_4, w_5) = 1 \,, \quad \alpha(w_1, w_5, w_6) = 0 \,, \quad \alpha(w_1, w_6, w_4) = 0 \,, \\ &\alpha(w_2, w_4, w_5) = 0 \,, \quad \alpha(w_2, w_5, w_6) = 1 \,, \quad \alpha(w_2, w_6, w_4) = 0 \,, \\ &\alpha(w_3, w_4, w_5) = 0 \,, \quad \alpha(w_3, w_5, w_6) = 0 \,, \quad \alpha(w_3, w_6, w_4) = 1 \,. \end{aligned}$$

The equations $\alpha(w_1, w_2, w_3) = 0$ and $\alpha(w_i, w_j, w_k) = 0$ for $1 \le i < j \le 3, k = 4, 5, 6$ are satisfied automatically by virtue of Lemma 2.

Let us consider two canonical dual bases β_1, \ldots, β_6 and $\beta'_1, \ldots, \beta'_6$. We can write

$$\begin{aligned} \beta_1' &= c_{11}\beta_1 + c_{12}\beta_2 + c_{13}\beta_3 + c_{14}\beta_4 + c_{15}\beta_5 + c_{16}\beta_6 \\ \beta_2' &= c_{21}\beta_1 + c_{22}\beta_2 + c_{23}\beta_3 + c_{24}\beta_4 + c_{25}\beta_5 + c_{26}\beta_6 \\ \beta_3' &= c_{31}\beta_1 + c_{32}\beta_2 + c_{33}\beta_3 + c_{34}\beta_4 + c_{35}\beta_5 + c_{36}\beta_6 \\ \beta_4' &= c_{44}\beta_4 + c_{45}\beta_5 + c_{46}\beta_6 \\ \beta_5' &= c_{54}\beta_4 + c_{55}\beta_5 + c_{56}\beta_6 \\ \beta_6' &= c_{64}\beta_4 + c_{65}\beta_5 + c_{66}\beta_6 \end{aligned}$$

We start with the equation

 $\beta_1' \wedge \beta_4' \wedge \beta_5' + \beta_2' \wedge \beta_5' \wedge \beta_6' + \beta_3' \wedge \beta_6' \wedge \beta_4' = \beta_1 \wedge \beta_4 \wedge \beta_5 + \beta_2 \wedge \beta_5 \wedge \beta_6 + \beta_3 \wedge \beta_6 \wedge \beta_4.$ Comparing the coefficients at $\beta_1 \wedge \beta_4 \wedge \beta_5$, $\beta_1 \wedge \beta_5 \wedge \beta_6$, and $\beta_1 \wedge \beta_6 \wedge \beta_4$, we obtain

c_{21}	c_{44}	c_{45}		c_{21}	c_{45}	c_{46}		c_{21}	c_{46}	c_{44}	
c_{31}	c_{54}	c_{55}	= 1,	c_{31}	c_{55}	c_{56}	=0,	c_{31}	c_{56}	c_{54}	= 0.
c_{11}	c_{64}	c_{65}		c_{11}	c_{65}	c_{66}		c_{11}	c_{66}	c_{64}	

Let us introduce the vectors

$$z = (c_{21}, c_{31}, c_{11}), z_4 = (c_{44}, c_{54}, c_{64}), z_5 = (c_{45}, c_{55}, c_{65}), z_6 = (c_{46}, c_{56}, c_{66}).$$

It is obvious that the vectors z_4, z_5, z_6 are linearly independent. The last two determinant identities show that z is a linear combination of z_5 and z_6 as well as a linear combination of z_6 and z_4 . This implies that z is a multiple of z_6 , i.e. $z = \tau z_6$. From the first determinant identity we get then

$$\tau \begin{vmatrix} c_{46} & c_{44} & c_{45} \\ c_{56} & c_{54} & c_{55} \\ c_{66} & c_{64} & c_{65} \end{vmatrix} = 1.$$

We denote

$$\delta = \begin{vmatrix} c_{44} & c_{45} & c_{46} \\ c_{54} & c_{55} & c_{56} \\ c_{64} & c_{65} & c_{66} \end{vmatrix}.$$

From the identity $z = \tau z_6$ we get

$$c_{11} = c_{66} \cdot \delta^{-1}, \quad c_{21} = c_{46} \cdot \delta^{-1}, \quad c_{31} = c_{56} \cdot \delta^{-1}.$$

Comparing coefficients at the monomials $\beta_2 \wedge \beta_4 \wedge \beta_5$, $\beta_2 \wedge \beta_5 \wedge \beta_6$, and $\beta_2 \wedge \beta_6 \wedge \beta_4$ we obtain along the same lines as above

$$c_{12} = c_{64} \cdot \delta^{-1}, \quad c_{22} = c_{44} \cdot \delta^{-1}, \quad c_{32} = c_{54} \cdot \delta^{-1}.$$

Further, comparing coefficients at the monomials $\beta_3 \wedge \beta_4 \wedge \beta_5$, $\beta_3 \wedge \beta_5 \wedge \beta_6$, and $\beta_3 \wedge \beta_6 \wedge \beta_4$ we have

$$c_{13} = c_{65} \cdot \delta^{-1}, \quad c_{23} = c_{45} \cdot \delta^{-1}, \quad c_{33} = c_{55} \cdot \delta^{-1}$$

It remains to compare coefficients at $\beta_4 \wedge \beta_5 \wedge \beta_6$. Here we obtain the identity

$$(*) \qquad \qquad \begin{vmatrix} c_{14} & c_{15} & c_{16} \\ c_{44} & c_{45} & c_{46} \\ c_{54} & c_{55} & c_{56} \end{vmatrix} + \begin{vmatrix} c_{24} & c_{25} & c_{26} \\ c_{54} & c_{55} & c_{56} \\ c_{64} & c_{65} & c_{66} \end{vmatrix} + \begin{vmatrix} c_{34} & c_{35} & c_{36} \\ c_{64} & c_{65} & c_{66} \\ c_{44} & c_{45} & c_{46} \end{vmatrix} = 0.$$

We have thus proved the following

5. Lemma. If $\beta'_1, \ldots, \beta'_6$ and β_1, \ldots, β_6 are canonical dual bases, then their transition matrix has the form

$(c_{66} \cdot$	δ^{-1}	$c_{64} \cdot \delta^{-1}$	$c_{65} \cdot \delta^{-1}$	c_{14}	c_{15}	c_{16}
c_{46} ·	δ^{-1}	$c_{44} \cdot \delta^{-1}$	$c_{45} \cdot \delta^{-1}$	c_{24}	c_{25}	c_{26}
c_{56} ·	δ^{-1}	$c_{54} \cdot \delta^{-1}$	$c_{55} \cdot \delta^{-1}$	c_{34}	c_{35}	c_{36}
()	0	0	c_{44}	c_{45}	c_{46}
()	0	0	c_{54}	c_{55}	c_{56}
$\langle 0 \rangle$)	0	0	c_{64}	c_{65}	c_{66}

satisfying (*). If β_1, \ldots, β_6 is a canonical dual basis and $\beta'_1, \ldots, \beta'_6$ is a basis of V^* such that the transition matrix between both bases has the above form and satisfies (*), then $\beta'_1, \ldots, \beta'_6$ is also a canonical dual basis.

2. Geometric properties

Now we start to consider a 6-dimensional differentiable manifold M. From now on all structures will be differentiable, i.e. of class C^{∞} . A 3-form ω on M will be called a *form of class* R_0 if for every $x \in M$ there is an isomorphism $h_x \colon T_x M \to V$ such that $h_x^* \rho_0 = \omega_x$. (Quite analogical definitions can be introduced for other types of forms.) We consider now on M a 3-form of type R_0 . We get easily on M a 3-dimensional distribution D defined by $D_x = \Delta(\omega_x)$. But here we need the following lemma.

6. Lemma. The distribution D is differentiable.

374

Proof. Around any point $x \in M$ we can find a local basis X_1, \ldots, X_6 of TM. We take a vector field $X = f_1X_1 + \cdots + f_6X_6$, where f_1, \ldots, f_6 are (locally defined) differentiable functions. To find differentiable vector fields Y_1, Y_2, Y_3 which span the distribution D it is necessary to solve the equation $(\iota_X \omega) \wedge \omega = 0$. This leads to a system of six linear homogeneous equations the coefficients of which are differentiable functions. The rest of the proof is then completely standard. \Box

7. **Definition.** A local basis X_1, \ldots, X_6 of TM around a point $x \in M$ is called *local canonical basis for* ω if the following conditions are satisfied

$$\begin{aligned} &\alpha(X_1, X_2, X_3) = 0, \quad \alpha(X_i, X_j, X_k) = 0 \quad \text{for} \quad 1 \le i < j \le 3, \ k = 4, 5, 6, \\ &\alpha(X_1, X_4, X_5) = 1, \quad \alpha(X_1, X_5, X_6) = 0, \quad \alpha(X_1, X_6, X_4) = 0, \\ &\alpha(X_2, X_4, X_5) = 0, \quad \alpha(X_2, X_5, X_6) = 1, \quad \alpha(X_2, X_6, X_4) = 0, \\ &\alpha(X_3, X_4, X_5) = 0, \quad \alpha(X_3, X_5, X_6) = 0, \quad \alpha(X_3, X_6, X_4) = 1, \\ &\alpha(X_4, X_5, X_6) = 0. \end{aligned}$$

8. **Proposition.** Around every point $x \in M$ there exists a canonical basis for the 3-form ω .

Proof. We choose first a complement D_c of D in TM. This complement is also a differentiable distribution. In this complement we take locally three linearly independent vector fields Y_4 , Y_5 , Y_6 . We denote $f = \omega(Y_4, Y_5, Y_6)$. Because the form ω_x is regular, there is $v_0 \in D_x$ such that $\omega_x(v_0, Y_{5,x}, Y_{6,x}) = b \neq 0$. Then we take a vector field Y_0 around x lying in D such that $X_{0,x} = v_0$. Obviously, then $\omega(Y_0, Y_5, Y_6) = g$ is non-zero in a neighborhood of x. Taking $X_4 = Y_4 - (f/g)Y_0$, $X_5 = Y_5$, and $X_6 = Y_6$ we get

$$\begin{split} \omega(X_4, X_5, X_6) &= \alpha(Y_4 - (f/g)Y_0, Y_5, Y_6) \\ &= \omega(Y_4, Y_5, Y_6) - (f/g)\omega(Y_0, Y_5, Y_6) = f - (f/g)g = 0 \,. \end{split}$$

Now we have in a neighborhood of $x \in M$ three 1-forms, namely the forms $\omega(\cdot, X_4, X_5)$, $\omega(\cdot, X_5, X_6)$, and $\omega(\cdot, X_6, X_4)$. The regularity of ω_x implies again that these three forms are linearly independent. Consequently, there are uniquely determined vector fields X_1, X_2, X_3 in D such that

$$\begin{split} &\omega(X_1, X_4, X_5) = 1 \,, \quad \omega(X_1, X_5, X_6) = 0 \,, \quad \omega(X_1, X_6, X_4) = 0 \,, \\ &\omega(X_2, X_4, X_5) = 0 \,, \quad \omega(X_2, X_5, X_6) = 1 \,, \quad \omega(X_2, X_6, X_4) = 0 \,, \\ &\omega(X_3, X_4, X_5) = 0 \,, \quad \omega(X_3, X_5, X_6) = 0 \,, \quad \omega(X_3, X_6, X_4) = 1 \,. \end{split}$$

The equations $\omega(X_1, X_2, X_3) = 0$ and $\omega(X_i, X_j, X_k) = 0$ for $1 \le i < j \le 3$, k = 4, 5, 6 are again satisfied automatically by virtue of Lemma 2. This finihes the proof.

Now it suffices to take dual 1-forms $\omega_1, \ldots, \omega_6$ to the vector fields X_1, \ldots, X_6 and we get the following proposition.

9. **Proposition.** For a 3-form ω of type R_0 on M locally there exist 1-forms $\omega_1, \ldots, \omega_6$ such that

$$\omega = \omega_1 \wedge \omega_4 \wedge \omega_5 + \omega_2 \wedge \omega_5 \wedge \omega_6 + \omega_3 \wedge \omega_6 \wedge \omega_4.$$

10. **Example.** On \mathbb{R}^6 let us consider the 3-form

 $\omega = dx_1 \wedge (dx_4 + x_1 dx_3) \wedge dx_5 + dx_2 \wedge dx_5 \wedge dx_6 + dx_3 \wedge dx_6 \wedge (dx_4 + x_1 dx_3).$ We have

$$d\omega = dx_1 \wedge dx_1 \wedge dx_3 \wedge dx_5 + dx_3 \wedge dx_6 \wedge dx_1 \wedge dx_3 = 0.$$

On the other hand the distribution $D = \Delta(\omega)$ is spanned by the vector fields

$$\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial x_3} - x_1 \frac{\partial}{\partial x_4}$$

and is not integrable. This shows that the closeness of the 3-form ω does not imply the integrability of the associated distribution $\Delta(\omega)$.

We shall need a version of the Poincaré lemma. On \mathbb{R}^6 we take coordinates (x_1, \ldots, x_6) and consider an integrable 3-dimensional distribution D defined by the equations $dx_4 = dx_5 = dx_6 = 0$.

11. **Lemma.** Let θ be a 2-form on \mathbb{R}^6 such that $d\theta = 0$ and $\theta | D = 0$. Then there exists a 1-form η on \mathbb{R}^6 such that $\theta = d\eta$ and $\eta | D = 0$.

Proof. We denote Ω^k the vector space of k-forms on \mathbb{R}^6 and $Z(\Omega^k)$ the subspace consisting of closed forms. It is well known that there exists a linear mapping $E: Z(\Omega^2) \to \Omega^1$ such that for every $\xi \in Z(\Omega^2)$ there is $\xi = dE(\xi)$. The problem is that $E(\theta)$ need not satisfy $E(\theta)|D = 0$. But we have

$$dE(\theta)|D = \theta|D = 0.$$

On any leaf $L(c_4, c_5, c_6)$ of the distribution D (i.e. $x_4 = c_4, x_5 = c_5, x_6 = c_6$) we can again apply the Poincaré lemma and we find that there exists on $L(c_4, c_5, c_6)$ a function $f_{(c_4, c_5, c_6)}$ such that $E(\theta)|L(c_4, c_5, c_6) = df_{(c_4, c_5, c_6)}$. Of course, this does not solve our problem. But we can use an obvious parametric version of the Poincaré lemma. We can consider \mathbb{R}^3 with coordinates (x_1, x_2, x_3) . On \mathbb{R}^3 we take a family of 1-forms ζ_{c_4, c_5, c_6} depending on three parameters c_4, c_5, c_6 . Namely, the 1-form ζ_{c_4, c_5, c_6} with parameters c_4, c_5, c_6 is the form $E(\theta) \mid L(c_4, c_5, c_6)$ transferred to \mathbb{R}^3 under the natural identification $(x_1, x_2, x_3) \mapsto (x_1, x_2, x_3, c_4, c_5, c_6)$. Now the Poincaré lemma with three parameters gives us a three parametric system of functions f_{c_4, c_5, c_6} on \mathbb{R}^3 such that $\zeta_{c_4, c_5, c_6} = df_{c_4, c_5, c_6}$. In other words this means that the function $f(x_1, x_2, x_3, x_4, x_5, x_6) = f_{x_4, x_5, x_6}(x_1, x_2, x_3)$ satisfies

$$E(\theta)|D = df|D.$$

Taking now $\eta = E(\theta) - df$ we can see that $d\eta = \theta$ and $\eta \mid D = 0$.

Let us recall now the following definition.

12. **Definition.** A 3-form ω of type R_0 on a manifold M is called *integrable* if locally there exist coordinates x_1, \ldots, x_6 such that

$$\omega = dx_1 \wedge dx_4 \wedge dx_5 + dx_2 \wedge dx_5 \wedge dx_6 + dx_3 \wedge dx_6 \wedge dx_4$$

It is obvious that if the 3-form ω is integrable then ω is closed and the associated distribution $\Delta(\omega)$ is integrable. Now we are going to prove that these two conditions are also sufficient for the integrability.

13. **Theorem.** A 3-form ω of type R_0 on a manifold M is integrable if and only if the following two conditions are satisfied

- (1) $d\omega = 0$,
- (2) the distribution $D = \Delta(\omega)$ is integrable.

Proof. We must show that the conditions are sufficient. According to Proposition 9 around every point $x \in M$ we can find 1-forms $\omega_1'', \ldots, \omega_6''$ such that

$$\omega = \omega_1'' \wedge \omega_4'' \wedge \omega_5'' + \omega_2'' \wedge \omega_5'' \wedge \omega_6'' + \omega_3'' \wedge \omega_6'' \wedge \omega_4''.$$

Because $\Delta(\omega)$ is integrable, we can find three functions f'_4 , f'_5 , f'_6 such that their differentials df'_4 , df'_5 , df'_6 are linearly independent and $df'_4 \mid D = df'_5 \mid D = df'_6 \mid D = 0$. Then using Lemma 5 we can find 1-forms ω'_1 , ω'_2 , ω'_3 such that

$$\omega = \omega_1' \wedge df_4' \wedge df_5' + \omega_2' \wedge df_5' \wedge df_6' + \omega_3' \wedge df_6' \wedge df_4' \,.$$

We denote X'_1, \ldots, X'_6 the canonical basis associated to the canonical dual basis $\omega'_1, \omega'_2, \omega'_3, df'_4, df'_5, df'_6$. Obviously, we have

(d)
$$0 = d\omega = d\omega'_1 \wedge df'_4 \wedge df'_5 + d\omega'_2 \wedge df'_5 \wedge df'_6 + d\omega'_3 \wedge df'_6 \wedge df'_4.$$

Applying $\iota_{X'_2}\iota_{X'_1}$ on both sides we get

$$0 = (\iota_{X'_2}\iota_{X'_1}d\omega'_1) \cdot df'_4 \wedge df'_5 + (\iota_{X'_2}\iota_{X'_1}d\omega'_2) \cdot df'_5 \wedge df'_6 + (\iota_{X'_2}\iota_{X'_1}d\omega'_3) \cdot df'_6 \wedge df'_4 + (\iota_{X'_2}\iota_{X'_1}d\omega'_3) \cdot df'_6 \wedge df'_6 + (\iota_{X'_2}\iota_{X'_1}d\omega'_6) + (\iota_{X'_2}\iota$$

This shows that $d\omega'_1(X'_1, X'_2) = d\omega'_2(X'_1, X'_2) = d\omega'_1(X'_1, X'_2) = 0$. Similarly we find that $d\omega'_1(X_2, X_3) = d\omega'_2(X_2, X_3) = d\omega'_3(X_2, X_3) = 0$ and $d\omega'_1(X_3, X_1) = d\omega'_2(X_3, X_1) = d\omega'_3(X_3, X_1) = 0$. We have thus proved that

$$d\omega_1' \mid D = d\omega_2' \mid D = d\omega_3' \mid D = 0$$

Consequently $d\omega'_1$ must have the following form

$$\begin{split} d\omega_1' &= g_{114}\omega_1' \wedge df_4' + g_{115}\omega_1' \wedge df_5' + g_{116}\omega_1' \wedge df_6' \\ &+ g_{124}\omega_2' \wedge df_4' + g_{125}\omega_2' \wedge df_5' + g_{126}\omega_2' \wedge df_6' \\ &+ g_{134}\omega_3' \wedge df_4' + g_{135}\omega_3' \wedge df_5' + g_{136}\omega_3' \wedge df_6' \\ &+ g_{145}df_4' \wedge df_5' + g_{156}df_5' \wedge df_6' + g_{164}df_6' \wedge df_4' \,. \end{split}$$

Similar formulas we can write for $d\omega'_2$ and $d\omega'_3$. Now taking into account the equation (d) we find the following identities.

$$g_{116} + g_{214} + g_{315} = 0,$$

$$g_{126} + g_{224} + g_{325} = 0,$$

$$g_{136} + g_{234} + g_{335} = 0.$$

Let us consider now the 2-form $d\omega'_1$. This form is closed because $dd\omega'_1 = 0$ and $d\omega'_1|D = 0$. According to Lemma 11 there exists a 1-form θ_1 such that $\theta_1|D = 0$ and $d\theta_1 = d\omega'_1$. Again similar considerations are possible with the 2-forms $d\omega'_2$ and

 $d\omega'_3$. In this way we obtain three 1-forms θ_1 , θ_2 , and θ_3 , which can be expressed in the form

$$\begin{aligned} \theta_1 &= h_{14} df'_4 + h_{15} df'_5 + h_{16} df'_6 \,, \\ \theta_2 &= h_{24} df'_4 + h_{25} df'_5 + h_{26} df'_6 \,, \\ \theta_3 &= h_{34} df'_4 + h_{35} df'_5 + h_{36} df'_6 \,. \end{aligned}$$

The 1-forms $\omega'_1 - \theta_1$, $\omega'_2 - \theta_2$, and $\omega'_3 - \theta_3$ are closed and consequently we can find functions f'_1 , f'_2 , f'_3 such that $\omega'_1 - \theta_1 = df'_1$, $\omega'_2 - \theta_2 = df'_2$, and $\omega'_3 - \theta_3 = df'_3$. Now it is obvious that the functions $f'_1 \dots, f'_6$ represent a local coordinate system. The local dual basis df'_1 , df'_2 , df'_3 , df'_4 , df'_5 , df'_6 is a relatively good basis, but unfortunately it need not be a canonical basis. The transition matrix from the canonical basis ω'_1 , ω'_2 , ω'_3 , df'_4 , df'_5 , df'_6 to the last basis is

(1)	0	0	$-h_{14}$	$-h_{15}$	$-h_{16}$
0	1	0	$-h_{24}$	$-h_{25}$	$-h_{26}$
0	0	1	$-h_{34}$	$-h_{35}$	$-h_{36}$
0	0	0	1	0	0
0	0	0	0	1	0
0	0	0	0	0	1 /

and it may happen that $h_{16} + h_{24} + h_{35} \neq 0$.

Considering the equations $d\omega_1' = d\theta_1$, $d\omega_2' = d\theta_2$, and $d\omega_3' = d\theta_3$ we get the identities

$$\begin{split} &X_1'h_{16} = g_{116} \,, \quad X_2'h_{16} = g_{126} \,, \quad X_3'h_{16} = g_{136} \,, \\ &X_1'h_{24} = g_{214} \,, \quad X_2'h_{24} = g_{224} \,, \quad X_3'h_{24} = g_{234} \,, \\ &X_1'h_{35} = g_{315} \,, \quad X_2'h_{35} = g_{325} \,, \quad X_3'h_{35} = g_{335} \,. \end{split}$$

Hence we obtain

$$\begin{aligned} X_1(h_{16} + h_{24} + h_{35}) &= g_{116} + g_{214} + g_{315} = 0 \,, \\ X_2(h_{16} + h_{24} + h_{35}) &= g_{126} + g_{224} + g_{325} = 0 \,, \\ X_3(h_{16} + h_{24} + h_{35}) &= g_{136} + g_{234} + g_{335} = 0 \,. \end{aligned}$$

We can see that the function $h = h_{16} + h_{24} + h_{35}$ is constant on the leaves of the foliation associated with the distribution D. In our coordinate system f'_1, \ldots, f'_6 this means that h is a function of variables f'_4, f'_5, f'_6 only. We can choose a function l of variables f'_4, f'_5, f'_6 only such that $\partial l/\partial f'_6 = h$. Now we take a dual basis in the form

$$df'_1 + dl, df'_2, df'_3, df'_4, df'_5, df'_6$$

The transition matrix of this basis with respect to the basis ω'_1 , ω'_2 , ω'_3 , df'_4 , df'_5 , df'_6 is

(1)	0	0	$-h_{14} + \partial l / \partial f'_4$	$-h_{15} + \partial l / \partial f'_5$	$-h_{16}+h$
0	1	0	$-h_{24}$	$-h_{25}$	$-h_{26}$
0	0	1	$-h_{34}$	$-h_{35}$	$-h_{36}$
0	0	0	1	0	0
0	0	0	0	1	0
$\setminus 0$	0	0	0	0	1 /

and obviously satisfies the condition (*). This implies that the dual basis $df'_1 + dl$, df'_2 , df'_3 , df'_4 , df'_5 , df'_6 is canonical. Now it suffices to set $f_1 = f'_1 + l$, $f_2 = f'_2$, $f_3 = f'_3$, $f_4 = f'_4$, $f_5 = f'_5$, $f_6 = f'_6$ and we have

$$\omega = df_1 \wedge df_4 \wedge df_5 + df_2 \wedge df_5 \wedge df_6 + df_3 \wedge df_6 \wedge df_4.$$

Let us assume now that there exists on M a symmetric connection ∇ such that $\nabla \omega = 0$. Then using [2, Cor. 8.6], we find that $d\omega = \operatorname{Alt}(\nabla \omega) = 0$. Next for arbitrary vector fields X, X_1, X_2, Y we can calculate

$$\begin{aligned} \left(\nabla_Y (\iota_X \omega)(X_1, X_2)\right) &= Y \big((\iota_X \omega)(X_1, X_2) \big) - (\iota_X \omega)(\nabla_Y X_1, X_2) - (\iota_X \omega)(X_1, \nabla_Y X_2) \\ &= Y (\omega(X, X_1, X_2)) - \omega(X, \nabla_Y X_1, X_2) - \omega(X, X_1, \nabla_Y X_2) \\ &= (\nabla_Y \omega)(X, X_1, X_2) + \omega(\nabla_Y X, X_1, X_2) + \omega(X, \nabla_Y X_1, X_2) \\ &+ \omega(X, X_1, \nabla_Y X_2) - \omega(X, \nabla_Y X_1, X_2) - \omega(X, X_1, \nabla_Y X_2) \\ &= \omega(\nabla_Y X, X_1, X_2) = (\iota_{\nabla_Y X} \omega)(X_1, X_2) \,. \end{aligned}$$

Now let us assume that a vector field X lies in the distribution D. We have then $(\iota_X \omega) \wedge \omega = 0$ and consequently

$$0 = \nabla_Y((\iota_X \omega) \wedge \omega) = (\nabla_Y(\iota_X \omega)) \wedge \omega = (\iota_{\nabla_Y X} \omega) \wedge \omega,$$

which show that ∇ preserves the distribution D. Because the connection ∇ is symmetric, this implies that the distribution D is integrable. Together this means that the 3-form ω is integrable. We will see that the converse is also true.

14. **Theorem.** A 3-form ω of type R_0 on a paracompact manifold M is integrable if and only if there exists on M a symmetric connection ∇ such that $\nabla \omega = 0$.

Proof. We must prove that if ω is integrable then there exists a symmetric connection ∇ such that $\nabla \omega = 0$. We can cover M by a locally finite open covering of M consisting of charts $\{U^{\lambda}\}_{\lambda \in I}$ with coordinates $x_1^{\lambda}, \ldots, x_6^{\lambda}$ such that on U^{λ} we have

$$\omega = dx_1^{\lambda} \wedge dx_4^{\lambda} \wedge dx_5^{\lambda} + dx_2^{\lambda} \wedge dx_5^{\lambda} \wedge dx_6^{\lambda} + dx_3^{\lambda} \wedge dx_6^{\lambda} \wedge dx_4^{\lambda} \,.$$

On each U^{λ} we take a connection ∇^{λ} defined by

$$abla_{\partial/\partial x_i^{\lambda}}^{\lambda}(\partial/\partial x_j^{\lambda}) = 0, \quad i, j = 1, \dots, 6.$$

It is obvious that this connection is symmetric and satisfies $\nabla^{\lambda}\omega = 0$. Now it remains to glue these connections together. We take a partition of unity $\{a^{\lambda}\}_{\lambda \in I}$ subordinate to the covering $\{U^{\lambda}\}_{\lambda \in I}$. Then it suffices to define

$$\nabla = \sum_{\lambda \in I} a^{\lambda} \nabla^{\lambda}$$

,

and we have on M a symmetric connection satisfying $\nabla \omega = 0$.

References

- Djoković, D.Ž., Classification of trivectors of an eight-dimensional real vector space, Linear and Multilinear Algebra 13 (1) (1983), 3–39.
- [2] Kobayashi, S., Nomizu, K., Foundations of differential geometry I, Interscience (Wiley), New York, 1963.

ACADEMY OF SCIENCES OF THE CZECH REPUBLIC, MATHEMATICAL INSTITUTE, BRANCH BRNO, ŽIŽKOVA 22, 616 62 BRNO, CZECH REPUBLIC *E-mail*: vanzura@ipm.cz