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THE INFINITESIMAL COUNTERPART OF TANGENT
PRESYMPLECTIC GROUPOIDS OF HIGHER ORDER

P.M. Kouotchop Wamba and A. MBA

Abstract. Let (G,ω) be a presymplectic groupoid. In this paper we charac-
terize the infinitesimal counter part of the tangent presymplectic groupoid of
higher order, (T rG,ω(c)) where T rG is the tangent groupoid of higher order
and ω(c) is the complete lift of higher order of presymplectic form ω.

1. Introduction

We denote by LG the category of Lie groupoids and by LA the category of Lie
algebroids. For an objet G of LG over a manifold M , we denote the source and
target map by s, t : G → M , the multiplication m : G(2) → G where G(2) is the
set of composable arrows. By ı : G → G and ε : M → G we denote respectively
inversion map and unit section. There is a natural functor A : LG → LA which
maps each objet G ∈ LG to the objet AG ∈ LA, and every morphism of Lie
groupoids ψ : G1 → G2 is mapped to the Lie algebroid morphism Aψ : AG1 → AG2
(see [13]). It is called the Lie functor and preserves fibered product. A symplectic
groupoid is a pair (G,ω), where G is a Lie groupoid over M and ω is a symplectic
form on G such that:

(1.1) m∗ω = (pr1)∗ ω + (pr2)∗ ω

where pr1, pr2 : G(2) → G are the natural projections. Such forms are usually called
multiplicative forms (see [2]). Given a symplectic groupoid (G,ω), then there exists
an isomorphism of Lie algebroids (see [4])

(1.2)
σ : AG→ T ∗M

u 7→ (iuω) |TM
where the Lie algebroid structure on T ∗M is the one induced by the poisson bivector
πω on M such that the source map s is a Poisson map, and the target map t is
anti-Poisson. The 1-form (iuω) |TM is defined for any x ∈M and hx ∈ TxM by:

(1.3) (iuω) (x) (hx) = ω (x)
(
iAG(u), Txε(hx)

)
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and iAG : AG → TG is a canonical injection. The anchor map induced by πω is
given by:

(1.4) ]πω = ρAG ◦ σ−1

where ρAG : AG → TM is the anchor map of the Lie algebroid AG. It follows
that the Poisson manifolds can be thought as the infinitesimal counterparts of
symplectic groupoids. The key point in the construction of πω is the isomorphism
of vector bundles σ : AG→ T ∗M , which in turn comes from the fact that ω is non
degenerate. However, if ω ∈ Ω2 (G) is a closed multiplicative form not necessarily
symplectic the bundle map σ : AG→ T ∗M is not an isomorphism.

Let M be a smooth manifold, we consider the direct sum vector bundle TM ⊕
T ∗M equipped with the nondegenerate symmetric pairing

〈X ⊕ ω, Y ⊕$〉+ = 1
2
(
〈X,$〉M + 〈Y, ω〉M

)
and the natural skew-symmetric pairing

〈X ⊕ ω, Y ⊕$〉− = 1
2
(
〈X,$〉M − 〈Y, ω〉M

)
where the bracket 〈·, ·〉M : TM ⊕ T ∗M → R is the usual canonical duality pairing.
The space of sections Γ (TM ⊕ T ∗M) = X (M) ⊕ Ω1 (M) is endowed with the
Courant bracket

[X ⊕ ω, Y ⊕$] = [X,Y ]⊕ (LX$ − iY dω) .

A Dirac structure on M (see [5]) is a sub-bundle L ⊂ TM ⊕ T ∗M which is Lagran-
gian with respect to the non degenerate symmetric pairing 〈 ; 〉+ and involutive,
in the sense that: the space of smooth sections Γ(L) is closed under the Courant
bracket. For example, a bivector field π on M induces a subbundle of TM ⊕ T ∗M
given by Lπ = {]π(α)⊕ α, α ∈ T ∗M}. It corresponds to a Dirac structure if and
only if [π, π]SN = 0, where [·, ·]SN is the Schouten bracket of multivector fields.

Let G be a Lie groupoid over a manifold M , we have the following result
established in [2].

Theorem 1. If ω ∈ Ω2 (G) is a multiplicative closed form, then the associated
bundle map σ : AG→ T ∗M satisfies the following conditions
(1) For any u, v ∈ Γ (AG),

(1.5)
〈
ρAG ⊕ σ (u) , ρAG ⊕ σ (v)

〉
+ = 0 .

(2) For any u, v ∈ Γ (AG),

(1.6) σ ([u, v]) = Lρ(u)v − Lρ(v)u− d
(
〈ρAG ⊕ σ (u) , ρAG ⊕ σ (v)〉−

)
.

The bundle maps σ : AG→ T ∗M satisfying properties (1) and (2) in Theorem 1
are called the infinitesimal counterparts of closed multiplicative 2-forms (see [2],
[1]).
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Consider the bundle map σ : AG→ T ∗M associated to a presymplectic groupoid
(G,ω), the set (ρAG ⊕ σ) (AG) ⊂ TM ⊕ T ∗M is not a bundle in general. It is a
bundle if the following conditions are satisfied (see [1]): for any x ∈ G{

(i) dimG = 2 dimM

(ii) ker (Txs) ∩ ker (Txt) ∩ ker
(
ω] (x)

)
= {0}

where ω] (x) : TxG→ T ∗xG is a vector bundle morphism induced by ω (x). In [6],
it has been proven that a presymplectic groupoid (G,ω) satisfies (i) and (ii) if and
only if ω] : T ∗G → TG is V B-Morita map. If (i) and (ii) are satisfied, then M
inherits a Dirac structure. More precisely, the bundle morphism

(1.7) ρAG ⊕ σ : AG→ TM ⊕ T ∗M

is an embedding whose image is a Dirac structure on M . Moreover, the target
map t : (G,ω)→ (M,L) is a forward Dirac map. The bundle map (1.7) establishes
an isomorphism of Lie algebroid between AG and the canonical Lie algebroid
determined by the Dirac structure L. Hence, Dirac manifolds may be thought of as
the infinitesimal data of presymplectic groupoids satisfying (i) and (ii) (for more
details see [2]).

Let M be an m-dimensional manifold. The tangent bundle of order r of M is the
m(r + 1)-dimensional manifold T rM of r-jets at 0 ∈ R, of smooth map γ : R→M .
We denote by πrM : T rM →M the canonical projection defined by πrM (jr0γ) = γ(0).
Then T rM has a bundle structure over M . If r = 1, T 1M = TM is the tangent
bundle of M . However, if r ≥ 2, πrM : T rM →M is not a vector bundle (for more
details see [8]). In the sequel, we adopt the notations of [14] and for the coordinates
system

(
U, xi

)
in M , the local coordinates system of T rM over T rU is such that,

the coordinate functions
(
xiγ
)

with i = 1, . . . ,m and γ = 0, . . . , r are given by:

(1.8)
{
xi0 (jr0g) = xi (g (0)) ,
xiγ (jr0g) = 1

γ! ·
dγ

dtγ

(
xi ◦ g

)
(t) |t=0 .

For the measure of convenience, the coordinate function xi0 is denoted by xi. The
differential geometry of the tangent bundles of higher order has been extensively
studied by many authors, see for instance the papers [3], [9], [10], [11] and [17]. It
plays an essential role in theoretical physics namely, the Lagrangian and Hamiltonian
formulations of some dynamical systems of higher order (see [17]). The tangent
lift of higher order of Dirac structures have been studied in [10] and some of its
properties are given. This lifting generalizes the tangent lift of higher order of
Poisson structures and symplectic structures (see [10]). The particular cases of
symplectic groupoids is not studied and some properties induced by this lifting
are not established. Therefore, in this paper we study the tangent lifts of higher
order of multiplicative 2-forms on a Lie groupoid and we establish some of their
properties. In particular, we describe the infinitesimal counterpart of this lifting.
So, the main results of this paper are Theorems 3, 4, 5 and Corollaries 2, 3, 4.
Given a presymplectic groupoid (G,ω) verifying the assertions (i) and (ii), we prove
that

(
T rG,ω(c)) is a presymplectic groupoid verifying (i), (ii) and we characterize
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the Dirac structure induced by this lifting on T rM , where T rG is a tangent Lie
groupoid of order r over T rM obtained by applying the tangent functor of order r
to each of the structure maps defining G (source, target, multiplication, inversion
and identity section).

In this paper, all manifolds and mappings are assumed to be differentiable of
class C∞. We shall fix a natural integer r ≥ 1.

2. Preliminaries

2.1. The canonical isomorphism A (T rG) ∼= T r (AG). For each manifold M ,
there is a canonical diffeomorphism (see [3])

(2.1) κrM : T rTM → TT rM

which is an isomorphism of vector bundles

T r (πM ) : T rTM → T rM and πrTM : TT rM → T rM

such that T (πrM ) ◦ κrM = πrTM . Let
(
x1, . . . , xm

)
be a local coordinate system of

M , we introduce the coordinates (xi, ẋi) in TM ,
(
xi, ẋi, xiβ , ẋ

i
β

)
in T rTM and(

xi, xiβ , ẋ
i, x̃iβ

)
in TT rM . We have

κrM
(
xi, ẋi, xiβ , ẋ

i
β

)
=
(
xi, xiβ , ẋ

i, x̃iβ
)

with x̃iβ = ẋiβ .
Consider now a Lie groupoid G over M with Lie algebroid AG. The vector

bundle isomorphism κrG : T rTG→ TT rG restricted to AG induces an isomorphism
of vector bundles

(2.2) JrG : T r (AG)→ A (T rG) .

More precisely, we have the following commutative diagram (see [9])

(2.3) T r(AG) JrG //

T r(iAG)
��

A(T rG)

iA(TrG)

��
T rTG

κrG

// TT rG

where iAG : AG→ TG is a canonical injection.
Let (E, [·, ·] , ρ) be a Lie algebroid over M , it exists one and only one Lie algebroid

structure on T rE, of anchor map ρ(r) = κrM ◦ T rρ such that, for any u, v ∈ Γ(E)
we have:

(2.4) [T r(u), T r(v)] = T r
(

[u, v]
)
.

It is called tangent lift of higher order of Lie algebroid E (see [11]). It follows that,
the map

JrG : T r (AG)→ A (T rG)
is an isomorphism of Lie algebroids, where the Lie algebroid on T r (AG) is the
tangent lift of order r of Lie algebroid AG.
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2.2. The canonical isomorphism A (T ∗G) ∼= T ∗ (AG). Let (E,M, π) be a vec-
tor bundle, we denote by

(
xi, yj

)
an adapted coordinate system of E, it induces the

local coordinates
(
xi, πj

)
in E∗, (xi, yj , pi, ζj) in T ∗E and (xi, πj , pi, ξj) in T ∗E∗.

It is defined in [13], the natural submersion rE : T ∗E → E∗ such that locally

rE
(
xi, yj , pi, ζj

)
=
(
xi, ζj

)
and the Legendre type map

RE : T ∗E∗ → T ∗E

which is an anti-symplectomorphism with respect to the canonical symplectic
structures on T ∗E∗ and T ∗E respectively, and locally defined by:

RE
(
xi, πj , pi, ξ

j
)

=
(
xi, yj ,−pi, ζj

)
, with

{
yj = ξj

πj = ζj

We suppose that the vector bundle E → M carries a Lie algebroid structure, so
there is a linear Poisson structure π on E∗. Since any Poisson structure on a
manifold defines a Lie algebroid structure on its cotangent bundle (see [16]), we
obtain a Lie algebroid structure on T ∗E∗ with the anchor map

]π : T ∗E∗ → TE∗ .

By the Legendre map RE , we carry the Lie algebroid of T ∗E∗ on T ∗E. The Lie
algebroid T ∗E → E∗ is called cotangent algebroid of E.

Let G be a Lie groupoid over M , we know that T ∗G is a Lie groupoid over A∗G
(see [13]). The source and target maps are defined respectively by:

s∗ (γg) (u) = γg
(
TLg (u− Tt (u))

)
and t∗ (δg) (v) = δg

(
TRg (v)

)
where γg ∈ T ∗gG, u ∈ As(g)G and δg ∈ T ∗gG, v ∈ At(g)G. The multiplication on
T ∗G is defined by:

(βg • γh) (Xg �Xh) = βg (Xg) + γh (Xh)

for (Xg, Xh) ∈ T(g,h)G(2). As the natural pairing 〈·, ·〉G : TG ⊕ T ∗G → R is a
groupoid morphism and applying the Lie functor, we obtain an isomorphism
ςG : A (TG)∗ → A (T ∗G). On the other hand, for any manifold M , there is a
canonical diffeomorphism (see [3])

αrM : T ∗T rM → T rT ∗M

which is an isomorphism of vector bundles

π∗T rM : T ∗T rM → T rM and T r (π∗M ) : T rT ∗M → T rM

dual of κrM with respect to pairings 〈·, ·〉′T rM = τr ◦ T r (〈·, ·〉M ) and 〈·, ·〉T rM , i.e.
for any (u, u∗) ∈ T rTM ⊕ T ∗T rM ,

(2.5)
〈
κrM (u) , u∗

〉
T rM

=
〈
u, αrM (u∗)

〉′
T rM

.
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Let
(
x1, . . . , xm

)
be a local coordinates system of M , we introduce the coordinates

(xi, pj) in T ∗M ,
(
xi, pj , x

i
β , p

β
j

)
in T rT ∗M and

(
xi, xiβ , πj , π

β
j

)
in T ∗T rM . We

have:

αrM
(
xi, πj , x

i
β , π

β
j

)
=
(
xi, xiβ , pj , p

β
j

)
with

{
pj = πrj
pβj = πr−βj

By εrM we denote the map (αrM )−1 and it is called natural isomorphism of Tulczyjew
over M .

Remark 1. Let G be a Lie groupoid. In the particular case r = 1, the natural
isomorphism of Tulczyjew, ε1

G establishes a canonical isomorphism of Lie algebroids
between the Lie algebroid of cotangent groupoid A (T ∗G) and the cotangent
algebroid of A(G) (see [12]).

2.3. Tangent lifts of higher order of presymplectic manifolds. In this sec-
tion we recall briefly the main results of A. Morimoto [14], about the complete lifts
of differential forms to the tangent bundle of higher order. These result will be
used in the sequel.

2.3.1. Prolongations of functions. For each s ∈ {0, . . . , r}, we denote by τs the
linear form on Jr0 (R,R) defined by:

τs(jr0γ) = 1
s! ·

ds

dts
(
γ(t)

)∣∣
t=0 , where γ ∈ C∞(R,R) .

Let M be a smooth manifold of dimension m > 0. For g ∈ C∞(M) and
s ∈ {0, . . . , r}, we set: g(s) = τs ◦T rg. The smooth map g(s) is called s-prolongation
of g, and, more explicitly, it is given by:

g(s) (jr0ϕ) = 1
s!
ds (g ◦ ϕ)

dts
(t) |t=0 for ϕ ∈ C∞ (R,M) .

Remark 2.
(i) By this expression, it follows that xiβ =

(
xi
)(β) on T rU where

(
x1, . . . , xm

)
are coordinates on some open subset U ⊂M , β ∈ {0, · · · , r}.

(ii) The mapping

C∞ (M)→ C∞ (T rM)

g 7→ g(s)

is R-linear.

2.3.2. Prolongations of vector fields. Let (E,M, π) be a vector bundle, consider
the vector bundle morphism χ

(α)
E : T rE → T rE defined by:

χ
(α)
E (jr0Ψ) = jr0(tαΨ)

where Ψ ∈ C∞ (R, E) and tαΨ is the smooth map defined for any t ∈ R by:

(tαΨ) (t) = tαΨ(t) .
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Let X be a vector field on a manifold M , we define the α-prolongation of X
denoted X(α) by:

X(α) = κrM ◦ χ
(α)
TM ◦ T

rX .

When α = 0, it is called complete lift of X to T rM and is denoted by X(c). We
put X(α) = 0 for α > r or α < 0.

If
(
U, xi

)
is a local coordinates system of M such that

X = Xi ∂

∂xi
,

then we have:

X(α) =
(
Xi
)(β−α) ∂

∂xiβ
.

Proposition 1.
(i) For X ∈ X (M), f ∈ C∞(M) and α, β ∈ {0, . . . , r}, we have:

X(α)(f (β)) =
(
X(f)

)(β−α)
.

(ii) For X, Y ∈ X (M) and α, β ∈ {0, . . . , r}, we have:[
X(α), Y (β)

]
= [X,Y ](α+β)

.

(iii) The set
{
X(β), X ∈ X (M) , β = 0, . . . , r

}
generates the C∞ (T rM)-module

X (T rM).

Proof. See [7]. �

2.3.3. Prolongations of differential forms. Let ω ∈ Ωk (M) and β ∈ {0, . . . , r}. We
have the following result establishes in [14].

Proposition 2. It exists on T rM one and only one differential form of degree k
denoted by ω(β) verifying:

(2.6) ω(β)(X(β1)
1 , . . . , X

(βk)
k

)
=
(
ω (X1, . . . , Xk)

)(β−(β1+···+βk))
.

For all X1, . . . , Xk ∈ X (M) and β1, . . . , βk ∈ {0, · · · , r}.

The differential form ω(β) is called β-prolongation of ω from M to T rM . When
β = r, ω(β) is called complete lift of ω on T rM and it is denoted by ω(c).

Remark 3.
(1) In local coordinates, if ω = ωi1...ikdx

i1 ∧ · · · ∧ dxik , then

ω(β) =
∑

β1+···+βk+α=β
(ωi1···ik)(α)

dxi1β1
∧ · · · ∧ dxikβk .

(2) For any ω ∈ Ω1 (M), we have the following equality:

ω(α) = εrM ◦ χ
(r−α)
T∗M ◦ T rω .
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Proposition 3.
(1) For any β ≤ r, the map ω 7→ ω(β) from Ωk (M) to Ωk (T rM) is R-linear.
(2) For any X ∈ X (M) and α, β ≤ r we have:

iX(α)ω(β) = (iXω)(β−α)
,(2.7)

d
(
ω(β)

)
= (dω)(β)

,(2.8)

LX(α)ω(β) = (LXω)(β−α)
.(2.9)

(3) For f ∈ C∞ (M,N) and $ ∈ Ωk (N), we have:

(2.10) (T rf)∗$(β) = (f∗$)(β)

Proof. For (1) and the equalities (2.7), (2.8) and (2.9) see [7]. We prove the equality
(2.10). Let (U, xi) and (V ; yj) local charts of M and N such that f(U) ⊂ V . The
local expression of T rf is given by T rf(xi, xiα) =

(
fp(xi), f (β)

p (xi, xiα)
)
.

As $ = $i1...ikdy
i1 ∧ · · · ∧ dyik , then $(β) =

∑
β1+···+βk+γ=β

($i1...ik)(γ)
dyi1β1

∧ · · · ∧

dyikβk . We have

(T rf)∗$(β) =
(

($i1...ik)(γ) ◦ T rf
)
d
(
yi1β1
◦ T rf

)
∧ · · · ∧ d

(
yikβk ◦ T

rf
)

= ($i1···ik ◦ f)(γ)
d
(
f

(β1)
i1

)
∧ · · · ∧ d

(
f

(βk)
ik

)
= ($i1···ik ◦ f)(γ) (dfi1)(β1) ∧ · · · ∧ (dfik)(βk)

.

So, (T rf)∗$(β) = (f∗$)(β). �

Remark 4. The equation (2.8) shows that if ω is closed then ω(c) is also closed.
In particular, for k = 2, the complete lift ω(c) is such that,(

ω(c))] = εrM ◦ T r
(
ω]
)
◦ (κrM )−1

.

In particular, if ω is non degenerate, then ω(c) is also non degenerate.

Corollary 1. If (M,ω) is a symplectic manifold, then (T rM,ω(c)) is also sym-
plectic manifold.

2.3.4. Complete lift of tensor fields of type (0, p). Let (E,M, π) be a vector bundle
and ϕ a tensor field of type (0, p) on E. We interpret a tensor ϕ on E as a p-linear
mapping ϕ : E ×M · · · ×M E → R on the fibered product over M of p-copies of E.
Put,

ϕ(c) = τr ◦ T rϕ .
ϕ(c) is a tensor field of type (0, p) on the vector bundle (T rE → T rM), called
α-complete lift of ϕ from E to T rE (see [7]). On the other hand, given s : M → E

a smooth section of E, it is defined (see [7]) the section s(α) of (T rE → T rM) by:

s(α) = χ
(α)
E ◦ T r(s) , 0 ≤ α ≤ r .
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It is called α-prolongation of order r of s. For the sake of convenience we put
s(α) = 0 for α < 0 or α > r. We have the following result established in [10].

Proposition 4.
(i) The set

{
s(α), s ∈ Γ (E) , 0 ≤ α ≤ r

}
generates the C∞ (T rM)-module Γ (T rE).

(ii) ϕ(c) is the only tensor field of type (0, p) on T rE satisfying:

ϕ(c)(s(α1)
1 , . . . , s(αp)

p

)
=
(
ϕ (s1, . . . , sp)

)(r−
p∑
i=1

αi)

for all s1, . . . , sp ∈ Γ(E) and 0 ≤ α1, . . . , αp ≤ r.

3. Higher order tangent lifts of twisted Dirac structures

As observed, for instance, in [2], one can use a closed 3-form φ on M to modify
the standard Courant bracket as follows:

(3.1) [X ⊕ ω, Y ⊕$]φ = [X,Y ]⊕ (LX$ − iY dω + iX∧Y φ) .

It is called the φ-twisted Courant-bracket on X (M)⊕ Ω1 (M).
An almost Dirac structure on a manifold M is a subbundle L of vector bundle

TM⊕T ∗M which is maximally isotropic under the symmetric pairing 〈·, ·〉+. If Γ (L)
is closed under the bracket (3.1), adopting the definitions introduced in [2], [15], we
will say that, the almost Dirac structure L is integrable or L is a φ-twisted-Dirac
structure on M . It is denoted by (M,L, φ) and we prefer to write L = Lφ. In the
particular case where φ = 0, we obtain the integrability condition defined in [5].
The integrability of a twisted-Dirac structure (M,Lφ) is also measured by the
Courant 3-tensor Tφ defined by:

Tφ (e1, e2, e3) =
〈

[e1, e2]φ , e3
〉

+ .

In fact, an almost Dirac structure L ⊂ TM ⊕ T ∗M defines a φ-twisted Dirac
structure on M if and only if the Courant tensor Tφ vanishes.

Example 1. Let ω be a 2-form on a manifold M . The vector bundle Lω defined
by the graph of the map ω] : TM → T ∗M defines a φ-twisted Dirac structure if
and only if

dω + φ = 0 .
In this case we say that ω is closed with respect to φ.

Example 2. Let π ∈ X2 (M), the vector bundle Lπ defined by the graph of the
anchor map ]π : T ∗M → TM defines a φ-twisted Dirac structure if and only if

1
2 [π, π] =

(∧3
]π

)
(φ)

where
∧3

]π denotes the extension of the bundle map ]π : T ∗M → TM to higher
exterior powers.
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Remark 5. Given a φ-twisted Dirac structure Lφ on a manifold M , the vector
bundle Lφ → M inherits a canonical Lie algebroid structure with anchor map
given by the restriction of the canonical projection pr1 |Lφ : Lφ → TM , and the Lie
bracket on the sections of Lφ is defined by the restriction of the φ-twisted Courant
bracket. Since every Lie algebroid defines a singular foliation on its base manifold,
(see [5]) it follows that Lφ defines a singular foliation on M . Additionally, on each
leaf of M iS : S ↪→M there is a 2-form ΩS such that:

dΩS + i∗Sφ = 0
where for any x ∈ S, ux, vx ∈ TxS = (Lφ)x, we have

ΩS (x) (ux, vx) = 〈ux, vx〉− .
So, the 2-forms ΩS are closed up to i∗Sφ and we say that ΩS is presymplectic
relative to i∗Sφ. In this way we obtain the singular presymplectic foliation related
to φ.

Let φ be a closed 3-form on M and (M,Lφ) an almost Dirac structure. We put:
(3.2) T rLφ = (κrM ⊕ εrM ) (T rLφ) ⊂ TT rM ⊕ T ∗T rM
T rLφ is an almost Dirac structure on T rM (see for instance [10]). On the other
hand, for any e ∈ Γ (Lφ), we denote by e(α) the α-lift of e from Lφ to T rLφ. We
have:

κrM ⊕ εrM
(
e(α)) ∈ Γ (T rLφ) .

We put e(α) = κrM ⊕ εrM
(
e(α)). In particular, if e = X ⊕ω, then we have (see [10]):

e(α) = X(α) ⊕ ω(r−α) .

The set
{
e(α), e ∈ Γ (Lφ) , 0 ≤ α ≤ r

}
generates the C∞(M)-module Γ (T rLφ).

Lemma 1. For any e1, e2 ∈ Γ (Lφ) we have:〈
e

(α)
1 , e

(β)
2
〉

+ =
(
〈e1, e2〉+

)(r−α−β)(3.3) 〈
e

(α)
1 , e

(β)
2
〉
− =

(
〈e1, e2〉−

)(r−α−β)
.(3.4)

Proof. By calculation. �

Lemma 2. For e1, e2 ∈ Γ (Lφ), we have:

(3.5)
[
e

(α)
1 , e

(β)
2
]
φ(c) = [e1, e2](α+β)

φ .

Proof. We put e1 = X1 ⊕ ω1, e2 = X2 ⊕ ω2, we have:[
e

(α)
1 , e

(β)
2
]
φ(c) =

[
X

(α)
1 ⊕ ω(r−α)

1 , X
(β)
2 ⊕ ω(r−β)

2
]
φ(c)

=
[
X

(α)
1 , X

(β)
2
]
⊕
(

(LX1ω2)(r−α−β) − (iX2dω1)(r−α−β)

+ (iX1∧X2φ)(r−α−β) )
= [X1, X2](α+β) ⊕ (LX1ω2 − iX2dω1 + iX1∧X2φ)(r−α−β)

= [e1, e2](α+β)
.
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�

Let Lφ be an almost φ-twisted Dirac structure on M . We denote by Tφ(c) the
Courant tensor of the almost Dirac structure T rLφ.

Theorem 2. We have:

(3.6) Tφ
(c) = Tφ(c) ◦

[ 3⊕
(κrM ⊕ εrM )

]
.

Proof. Let e1, e2, e3 ∈ Γ (Lφ), we have:

Tφ(c) ◦
[ 3⊕

(κrM ⊕ εrM )
](
e

(α)
1 , e

(β)
2 , e

(γ)
3
)

= Tφ(c)
(
e

(α)
1 , e

(β)
2 , e

(γ)
3
)

=
〈[
e

(α)
1 , e

(β)
2
]
φ(c) , e

(γ)
3
〉

+ =
〈

[e1, e2](α+β)
φ , e

(γ)
3
〉

+

=
(〈

[e1, e2]φ , e3
〉

+

)(r−α−β) = Tφ
(c)(

e
(α)
1 , e

(β)
2 , e

(γ)
3
)
.

Thus, Tφ
(c) = Tφ(c) ◦

[⊕3 (κrM ⊕ εrM )
]
. �

For the tangent lift of Lie algebroid see [11].

Proposition 5. Let Lφ be an integrable φ-twisted Dirac structure on M . The
tangent Lift of higher order of Lie algebroid

(
Lφ, [·, ·]φ , pr1

)
is isomorphic to the

Lie algebroid
(
T rLφ, [·, ·]φ(c) , pr1

)
over T rM .

Proof. Follows by the equation (3.2). It is such that,
κrM ⊕ εrM : T rLφ → T rLφ

is an isomorphism of Lie algebroids. �

For the tangent lifts of higher order of singular foliations and their properties,
see [11]. Using these results, we have:

Proposition 6. Let Lφ be an integrable Dirac structure, Fφ the generalized foliation
induced by Lφ and S a leaf of Fφ.
(1) The singular foliation induced by T rLφ is the tangent lift of order r of the

generalized foliation Fφ.

(2) If ΩS is the presymplectic form on S relative to i∗Sφ then, Ω(c)
S is the presym-

plectic form on the leaf T rS relative to i∗T rSφ(c).

Proof. Let X, Y ∈ pr1 (Γ (Lφ)) tangent to S such that X ⊕ ω, Y ⊕$ ∈ Γ (Lφ).
We have:

ΩT rS
(
X(α), Y (β)) = ω(r−α)(Y (β))

=
(
ω (Y )

)(r−α−β)

=
(
ΩS (X,Y )

)(r−α−β)

= Ω(c)
S
(
X(α), Y (β)) .
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It follows that, ΩT rS = Ω(c)
S . The equality d (ΩT rS) + i∗T rSφ

(c) = 0 is a now
consequence of Lemma 2. �

4. The main results

Let G be a Lie groupoid over a manifold M equipped with closed multiplicative
2-form ω.

Theorem 3. The pair
(
T rG,ω(c)) is a presymplectic groupoid.

Proof. T rm : (T rG)(2) → T rM is the partial multiplication map. We have:

(T rm)∗ ω(c) = (m∗ω)(c)

=
(
(pr1)∗ω + (pr2)∗ω

)(c)

= (T r pr1)∗ ω(c) + (T r pr2)∗ ω(c)

= pr∗1 ω(c) + pr∗2 ω(c)

where pr1, pr2 : (T rG)(2) → T rG are the natural projections. �

We denote by σr : A (T rG)→ T ∗T rM the infinitesimal counterpart of the closed
multiplicative 2-form induced by the presymplectic groupoid

(
T rG,ω(c)).

Theorem 4. We have:

(4.1) σr = εrM ◦ T r (σ) ◦ (JrG)−1
.

Proof. As JrG : T r (AG)→ A (T rG) is an isomorphism of Lie algebroids and JrG
is the restriction of κrG : T rTG→ TT rG to T r (AG), then for any u ∈ Γ (AG)

u(α) = JrG

(
u(α)

)
∈ Γ
(
A(T rG)

)
.

For any u ∈ Γ(AG) and α ∈ {0, 1, . . . , r} we have:

σr
(
u(α)) = iu(α)ω(c)

= (iuω)(r−α)
.

In the same way,

εrM ◦ T r (σ) ◦ (JrG)−1 (
u(α)) = εrM ◦ T r (σ) ◦ χ(α)

AG ◦ T
ru

= εrM ◦ χ
(α)
T∗M ◦ T

r (σ ◦ u)

= εrM ◦ χ
(α)
T∗M ◦ T

r (iuσ)

= (iuσ)(r−α)
.

Since Γ (A (T rG)) is generated by the set
{
u(α), u ∈ Γ (AG) , α ≤ r

}
, then εrM ◦

T r (σ) ◦ (JrG)−1 = σr. �
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Corollary 2. Let (G,ω) be a symplectic groupoid and πω the Poisson tensor on
M induced by ω. We have:

(4.2) πω(c) = (πω)(c)
,

where (πω)(c) is the complete lift of the Poisson tensor πω.

Proof. The anchor map of Poisson tensor πω(c) is such that (see [11])
(4.3) ]π

ω(c) = ρA(T rG) ◦ σ−1
r .

The anchor map of Lie algebroid T r (AG) is given by: ρ(r)
AG = κrM ◦ T r (ρAG). It

follows that:
ρA(T rG) = κrM ◦ T r (ρAG) ◦ (JrG)−1

hence,
]π
ω(c) = κrM ◦ T r (ρAG) ◦ (JrG)−1 ◦ σ−1

r

= κrM ◦ T r
(
ρAG ◦ σ−1) ◦ αrM

= κrM ◦ T r (]πω ) ◦ αrM .

Therefore ]π
ω(c) = ]

π
(c)
ω

, i.e. πω(c) = (πω)(c). �

Example 3. Let G be a Lie group, it is a Lie groupoid over a point. We denote
by g the Lie algebra of G, T ∗G is a Lie groupoid over g∗. Equipping T ∗G with
the canonical symplectic form ωG, it becomes a symplectic groupoid and the
corresponding Poisson structure on g∗ is the standard linear Poisson structure. So,(
T rT ∗G,ω

(c)
G

)
is a symplectic groupoid. We denote by (ei) the canonical basis of g

and
(
ei
)

its dual basis. By
(
eβi
)

we denote the basis of T rg obtained by prolongation
and by

(
eβ,i
)

its dual basis. We denote by
(
ei,β
)

the basis of T rg∗ obtained by
prolongation. As the Poisson bracket on g∗ is given by:{

ei, ej
}

= cijk e
k .

We deduce that, the Poisson bracket on T rg∗ is given by:{
ei,β , ej,γ

}
= cijk e

k,β+γ−r .

Consider the vector space isomorphism Ig∗ : (T rg)∗ → T rg∗ defined in [9]. It is
such that Ig∗

(
eβ,i
)

= ei,r−β , so the linear Poisson structure on (T rg)∗ is such that
the canonical isomorphism Ig∗ is a Poisson map. This linear Poisson structure
on (T rg)∗ is induced by the tangent Lie algebra T rg of order r. In the same way,
αrG : T ∗T rG→ T rT ∗G is an isomorphism of Lie groupoids over the map Ig∗ and
(αrG)∗

(
ω

(c)
G

)
= ωT rG, it follows that αrG is an isomorphism of symplectic groupoids

between (T ∗T rG,ωT rG) and
(
T rT ∗G,ω

(c)
G

)
.

Let (G,ω) be a presymplectic groupoid such that:

(4.4)
{

dimG = 2 dimM

ker (Ts) ∩ ker (Tt) ∩ ker(ω]) = 0

where ω] : TG→ T ∗G is a vector bundle morphism induced by ω.
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Theorem 5. Let (G,ω) be a presymplectic groupoid satisfying the equation (4.4),
we have:

(4.5) ker
(
T (T rs)

)
∩ ker

(
T (T rt)

)
∩ ker

(
(ω(c))]

)
= {0} .

Proof. s, t : G→M are source and target maps of G. Let u ∈ TT rG such that

u ∈ ker
(
T (T rs)

)
∩ ker

(
T (T rt)

)
∩ ker

(
(ω(c))]

)
.

There is smooth map γ : R× R→ G such that u = d
dτ (jr0γ (·, τ)) |τ=0. As

(κrG)−1 (u) = jr0

( d
dτ

(
γ (·, τ)

)
|τ=0

)
and εrG is an isomorphism of vector bundles, it follows that:

jr0

(
ω]
( d
dτ

(γ (·, τ)) |τ=0

))
= 0 .

On the other hand,

TT rs (u) = d

dτ

(
T rs (jr0γ (·, τ))

)
|τ=0

= d

dτ

(
(jr0 (s ◦ γ) (·, τ))

)
|τ=0

= jr0

( d
dτ

(
(s ◦ γ) (·, τ)

)
|τ=0

)
.

In the same way, we have

TT rt (u) = jr0

( d
dτ

(
(t ◦ γ)(·, τ)

)
|τ=0

)
.

Thus, we have:

jr0

( d
dτ

(
(t ◦ γ)(·, τ)

)
|τ=0

)
= 0

jr0

( d
dτ

(
(s ◦ γ)(·, τ)

)
|τ=0

)
= 0

jr0

(
ω]
( d
dτ

(
γ(·, τ)

)
|τ=0

))
= 0

Let
(
xi
)
,
(
xi, gj

)
be a local coordinates systems of M and G. For any α ≤ r, we

have:
d

dτ

(
xiα ◦ T rt(jr0γ(·, τ))

)
|τ=0 = 0

d

dτ

(
xiα ◦ T rs(jr0γ(·, τ))

)
|τ=0 = 0

d

dτ

(
giα ◦ T r(ω])(jr0γ(·, τ))

)
|τ=0 = 0
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Therefore,
d

dτ

( dα
dzα

(
xi ◦ t ◦ γ(τ, z)

))
|τ=z=0 = 0

d

dτ

( dα
dzα

(
xi ◦ s ◦ γ(τ, z)

))
|τ=z=0 = 0

d

dτ

( dα
dzα

(
gi ◦ ω] ◦ γ(τ, z)

))
|τ=z=0 = 0 .

So for any α 6= 0,
dα

dzα

( d
dτ

(
xi ◦ t ◦ γ(τ, z)

))
|τ=z=0 = 0

dα

dzα

( d
dτ

(
xi ◦ s ◦ γ(τ, z)

))
|τ=z=0 = 0

dα

dzα

( d
dτ

(
gi ◦ ω] ◦ γ(τ, z)

))
|τ=z=0 = 0 .

As
d

dτ

(
xi ◦ t ◦ γ (τ, ·)

)
|τ=0= d

dτ

(
xi ◦ s ◦ γ (τ, ·)

)
|τ=0= d

dτ

(
gi ◦ ω] ◦ γ (τ, ·)

)
|τ=0= 0 .

Therefore, for any 0 ≤ α ≤ r,
d

dτ

( dα
dzα

(
xi ◦ γ(τ, z)

)
|z=0

)
|τ=0= d

dτ

( dα
dzα

(
gi ◦ γ(τ, ·z)

)
|z=0

)
|τ=0= 0 .

More exactly
d

dτ

(
xiα(jr0γ(τ, ·))

)
|τ=0= d

dτ

(
giα(jr0γ(τ, ·))

)
|τ=0= 0 .

It follows that u = 0. �

Theorem 6. Let (G,ω) be a presymplectic groupoid satisfying the equation (4.4)
and L the Dirac structure on M induced by G. The Dirac structure induced by the
presymplectic groupoid

(
T rG,ω(c)) is the Dirac structure T rL.

Proof. The Dirac structure L ⊂ TM ⊕ T ∗M induced by (G,ω) is such that:
L = (ρAG ⊕ σ) (AG) .

The Dirac structure induced by
(
T rG,ω(c)) is given by:

Lr = (ρA(T rG) ◦ σr)
(
A(T rG)

)
we have:

Lr =
[
κrM ◦ T r (ρAG) ◦ (JrG)−1 ]⊕ [εrM ◦ T r (σ) ◦ (JrG)−1 ](

A (T rG)
)

= (κrM ⊕ εrM )
(
T r (ρAG ⊕ σ)

)(
T r (AG)

)
= (κrM ⊕ εrM )

(
T r ((ρAG ⊕ σ) (AG))

)
= T rL .

So, T rL = Lr. �
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Remark 6. We have seen that every Lie groupoid G equipped with a closed
multiplicative 2-form ω verifying (4.4) induces a natural Dirac structure L such
that there is an isomorphism between Lie algebroid A(G) and the canonical
Lie algebroid determined by L. Hence, Dirac manifolds may be thought as the
infinitesimal version of presymplectic groupoid. We say that (G,ω) is an integration
of L (see [1], [2], [15]).

Let L be a Dirac structure on M , whose associated Lie algebroid is integrable.
Let G be the source simply connected Lie groupoid integrating L, then there is a
unique closed multiplicative 2-form ω on G verifying (4.4) such that (G,ω) is an
integration of L (see [2]). As consequence, the presymplectic groupoid

(
T rG,ω(c))

is an integration of the Dirac structure T rL.

The infinitesimal counterpart of tangent lifts of higher order of symplectic
groupoid (G,ω) verifying (4.4) is a tangent lifts of higher order of Dirac structure
induced by (G,ω). Let φ be a closed 3-form on M , a φ-twisted presymplectic
groupoid over M is a pair (G,ω) where G is a Lie groupoid over M and ω is a
multiplicative 2-form on G satisfying:
(1) dω = s∗φ− t∗φ
(2) dimG = 2 dimM

(3) For each x ∈ G, the following condition holds
ker (Txs) ∩ ker (Txt) ∩ ker

(
ω] (x)

)
= {0} .

It induces a bundle map σφ : AG→ TM called infinitesimal multiplicative 2-form.
Using the condition (2) and (3), it follows that the image Lφ of the bundle morphism

ρAG ⊕ σφ : AG→ TM ⊕ T ∗M
is a φ- twisted Dirac structure on M .

Corollary 3. Let (G,ω) be a φ-twisted presymplectic groupoid, the pair
(
T rG,ω(c))

is also a φ(c)-twisted presymplectic groupoid and the IM-2-form σφ(c) induced by(
T rG,ω(c)) is given by:

(4.6) σφ(c) = εrG ◦ T r (σφ) ◦ (JrG)−1
.

Corollary 4. The φ(c)-twisted Dirac structure on T rM induced by the φ(c)-twisted
presymplectic groupoid

(
T rG,ω(c)) is the tangent lift of order r of the φ-twisted

Dirac structure induced by the φ-twisted presymplectic groupoid (G,ω).
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