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WEAK NORMAL AND QUASINORMAL FAMILIES

OF HOLOMORPHIC CURVES

Si Duc Quang and Dau Hong Quan

Abstract. In this paper we introduce the notion of weak normal and qua-
sinormal families of holomorphic curves from a domain in C into projective
spaces. We will prove some criteria for the weak normality and quasinormality
of at most a certain order for such families of holomorphic curves.

1. Introduction

In the sense of Montel, a family F of meromorphic functions defined on a
domain Ω of the complex plane C is said to be normal if from every sequences in
F we may extract a subsequence which converges compactly with respect to the
spherical metric to a meromorphic function or ∞ on Ω. The family F is said to be
quasinormal (of order v) if the above extracted sequences converge compactly on
Ω \ {a disceret set} (of at most v points).

One of the earliest criterion for normality of families of meromorphic functions
is given by Montel. He showed that a family F of meromorphic functions on Ω is
normal if all f ∈ F omit three distinct values a1, a2, a3 ∈ C. Moreover, he showed
a more general result on the quasinormality as follows.
Theorem A (see [3]). Let F be a family of meromorphic functions on a domain
in C which do not take a value a1 more than p times, a value a2 more than q times,
nor a value a3 more than r times, with p ≤ q ≤ r. Then F is quasinormal of order
at most q.

Over the last few decades, there have been many results generalizing and impro-
ving the above result of Montel. The theory on the normality and quasinormality of
meromorphic functions had grown into a huge theory with many contributions. We
refer readers to the articles [2, 7, 10, 11] and references therein for the development
of related subjects. Specially, Zalcmann [15] gave a famous criterion for the norma-
lity of the families of meromorphic functions. And then, his criterion is generalized
to the case of holomorphic mappings by Aladro-Krantz [1] and Thai-Trang-Huong
[14]. These criteria give the necessary and sufficient condition for the non-normality
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of a family of holomorphic mappings and play an essential role in the development
of the normal and quasinormal theory.

On the other hand, Fujimoto [5] introduced the notion of the meromorphic
convergence for meromorphic mappings as follows: “A sequence of meromorphic
mappings {fn}∞n=1 from a domain Ω of Cm into PN (C) is said to meromorphically
converge to a meromorphic mapping g if for each p ∈ Ω, there exist an open
neighborhood U of p, reduced representations f̃n = (fn0, . . . , fnN ) of fn, a repre-
sentation g̃ = (g0, . . . , gN ) of g on U such that {fnk}∞n=1 converges compactly (i.e.,
converges uniformly on every compact subsets) on U to gk for all 0 ≤ k ≤ N”.
With respect to the notion of meromorphic convergence, there are many results on
the meromorphic normality of meromorphic mappings established in some recent
years, e.g., [4, 6, 12].

Our purpose in this paper is to generalize the above result of Montel to the case
of holomorphic curves from C into projective spaces, and we also give a criterion
for the quasinormality of such curves with respect to the convergent notion of
Fujimoto. In order to state our results, we give the following definition.

Definition 1. Let F be a family of holomorphic curves from a domain Ω ⊂ C into
PN (C).

1) The family F is said to be weak normal if every sequence in F has a
subsequence which converges compactly (with respect to the Fubini-Study metric
on PN (C)) to a holomorphic curve on Ω \ S, where S is a discrete subset of Ω and
the limit curve is holomorphically extendable on Ω.

2) The family F is said to be quasinormal (resp. meromorphically quasinormal)
of order at most v (v may be +∞) if every sequence in F has a subsequence which
converges compactly (resp. meromorphically converges) to a holomorphic curve on
a domain Ω \S, where S is a discrete subset of at most v elements in Ω. If v = +∞
we will say that F is quasinormal (resp. meromorphically quasinormal).

Throughout this paper, we fix homogeneous coordinates (ω0 : · · · : ωN ) on
PN (C). Let H be a hypersurface of degree d in PN (C) defined by the equation∑

I∈Td

aIω
I = 0 ,

where Td = {(i0, . . . , iN ) ∈ ZN+1
+ ; i0 + · · · + iN = d}, ωI = ωi00 . . . ωiNN for

I = (i0, . . . , iN ). We define ||H|| = (
∑
I∈Td |aI |

2)1/2. Throughout this paper, we
always assume that the coefficients aI are chosen so that ||H|| = 1. Sometimes, we
identify the hypersurface H with its defining polynomial, i.e., we will write

H(ω0, . . . , ωN ) =
∑
I∈Td

aIω
I .

Let H1, . . . ,Hq(q ≥ N + 1) be q hypersurfaces of PN (C), which may be of
different degrees. We define

D(H1, . . . ,Hq) =
∏

1≤i1<i2<···<iN+1≤q

inf
z∈CN+1,‖z‖=1

(
|Hi1(z)|2 + · · ·+ |HiN+1(z)|2

)
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where ‖ z ‖=
√∑N

i=0 |zi|2.
Our results are stated as follows.

Main theorem. Let F be a family of holomorphic mappings of a subdomain Ω of
C into PN (C). Let q ≥ 2N + 1 be a non-negative integer and let p1, . . . , pN+1 be
N +1 positive integers with p1 ≤ · · · ≤ pN+1. For each f ∈ F , let H1(f), . . . ,Hq(f)
(depending on f) be hypersurfaces satisfying inf{D(H1(f), . . . ,Hq(f)) : f ∈ F} > 0.
Assume that for any compact subset K of Ω,

sup
f∈F

]{z ∈ K ; νf,Hi(f)(z) > 0} < +∞, ∀1 ≤ i ≤ q .

Then the following assertions hold:
(a) F is weak normal family.
(b) If for any compact subsets K of Ω, there exists an positive integer cK

satisfying
sup
f∈F

]{z ∈ K ; νf,Hi(f)(z) ≥ ck} ≤ pi, ∀1 ≤ i ≤ N + 1 ,

then F is meromorphically quasinormal of order at most pN+1 in Ω.
(c) If supf∈F ]{f−1(Hi(fn))} ≤ pi, ∀1 ≤ i ≤ N + 1, then F is quasinormal of

order at most pN+1 in Ω.

We would like to note that, in almost all recent results on the normality of
families of holomorphic mappings into PN (C) with 2N + 1 hypersurfaces, the
authors always assume that the inverse images of at least N + 1 hypersurfaces
counted with multiplicities are compactly bounded from above. This is an esential
condition in their proofs. In our above result, this condition is omitted.

2. Some definitions and lemmas

For p ∈ C and r > 0, we set
∆(p, r) = {z ∈ C ; |z − p| < r}

and

∆∗(p, r) = ∆(p, r) \ {p} .
Let Ω be a domain in C. A divisor ν on Ω is a formal sum

ν =
∑
i∈Λ

ai{zi} ,

where ai ∈ Z and {zi}i∈Λ is a discrete subset of Ω. We may regard the divisor ν as
a function with values in Z by setting

ν(z) =
{
ai if z = zi ,

0 if z 6= zi ∀i .

The support of ν will be defined by supp(ν) = {zi ; ai 6= 0}. Divisor ν is said to be
non-negative if ai ≥ 0 ∀i ∈ Λ, and we write ν ≥ 0. If ν ≥ 0 then for every compact
subset K of Ω, ]{z ; ν(z) > 0} ∩K ≤

∑
z∈K ν(z).
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Definition 2. A sequence of non-negative divisor {νi}∞i=1 is said to be bounded
compactly on Ω if for every compact subset K of Ω, there exits a positive constant
MK such that

∑
z∈K νi(z) ≤M for all i ≥ 1.

Let ω be the Fubini-Study form on PN (C). Then ω is defined by

ω = ddc log
( N∑
j=0

∣∣∣ωj
ωi

∣∣∣2)1/2

on the affine open set Ui = PN (C)\{ωi = 0}, where (ω0 : · · · : ωn) is a homogeneous
coordinates system of PN (C). Then for two distinct points p = (p0 : · · · : pN ) and
q = (q0 : · · · : qN ), the distance between p and q with respect to is given by

d(p, q) =
∑N
i,j=0 |piqj − pjqi|√∑N

i=0 |pi|2 ·
√∑N

i=0 |qi|2
.

For two hyperplanes H and G in PN (C) defined by the linear forms:

H : a0ω0 + · · · aNωn ,
G : b0ω0 + · · · bNωn ,

we regard H and G as two points in the dual space PN (C)∗ and define the “distance
d′(H,G) in PN (C)∗” between them by

d′(H,G) =
∑N
i,j=0 |aibj − ajbi|√∑N

i=0 |ai|2 ·
√∑N

i=0 |bi|2
.

Definition 3 (see [13]). Let M be a locally compact Hausdorff space. A point
a of M is called a limit point of the sequence {Ek}∞k=1 of closed subsets of M if
there exist a positive integer k0 and points ak ∈ Ek (k ≥ k0) such that a = lim ak.
A point of M is called a cluster point of {Ek}∞k=1 if it is a limit point of some
subsequence of {Ek}∞k=1. If the set E of limit points coincides with the set of cluster
points, {Ek}∞k=1 is said to converge to E and write lim Ek = E.

The following two lemmas on the convergence of closed subsets in Hausdorff
space are due to Stoll [13]. In this paper, we only state these lemmas for the case
of subsets of C.

Lemma 4 ([13, Proposition 4.11]). Let {Ni}∞i=1 be a sequence of discrete subsets
of a domain Ω in C. Assume that the numbers of elements of Ni ∩K (i = 1, 2, . . .)
regardless of multiplicities are bounded above for any fixed compact subset K of Ω
and {Ni}∞i=1 converges to N as a sequence of closed subsets of Ω. Then N is either
empty or a discrete subset of Ω.

Lemma 5 ([13, Proposition 4.12]). Let {Ni}∞i=1 be a sequence of discrete subsets
of a domain Ω in C. The numbers of elements of Ni ∩K (i = 1, 2, . . .) regardless
of multiplicities are bounded above for any fixed compact subset K of Ω, then {Ni}
is normal in the sense of the convergence of closed subsets in Ω.
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Definition 6 ([5, Definition 2.5]). Let {νi}∞i=1 be a sequence of non-negative
divisors on a domain Ω in C. It is said to converge to a non-negative divisor ν on
Ω if and only if any a ∈ Ω has a neighborhood U such that there exist nonzero
holomorphic functions h and hi on U with νi = νhi and ν = νh on U such that
{hi}∞i=1 converges compactly to h on U .

Lemma 7 ([13, Theorem 2.24]). A sequence {νi}∞i=1 of non-negative divisors on a
domain Ω in C is normal in the sense of the convergence of divisors on Ω if and
only if {νi}∞i=1 is compactly bounded on Ω.

Lemma 8 ([14, Theorem 2.5]). Let Ω be a domain in C and M be a compact
complex Hermitian space. Let F ⊂ Hol(Ω,M). Then the family F is not normal
if and only if there exist sequences {pj} ⊂ Ω with {pj} → p0 ∈ Ω, {fj} ⊂ F ,
{ρj} ⊂ R with ρj > 0 and {ρj} ↘ 0 such that the sequence

gj(z) := fj(pj + ρjz), z ∈ C

converges compactly on C to a nonconstant holomorphic map g : C→M .

Lemma 9 (see [4]). Let δ be a positive number and let q ≥ N + 1 be an integer.
Then there exists a positive constant M(δ, q,N) such that for any q hypersurfaces
H1, . . . ,Hq(q ≥ N + 1) in PN (C) with

D(H1, . . . ,Hq) > δ ,

we have max{degH1, . . . ,degHq} ≤M(δ, q,N).

Let f be a holomorphic mapping from a domain Ω ⊂ C into PN (C) and let H be
a hypersurface in Pn(C). We define the divisor νf,H as follows: for each point p ∈ Ω,
take an open neighborhood U of p in Ω such that f have a reduced representation
f̃ = (f0, . . . , fN ) on U , and define νf,H |U to be the zero divisor of the function
H(f̃) on U .

We have the following proposition due to Fujimoto.

Lemma 10 ([5, Proposition 3.5]). Let {fn}∞n=1 be a sequence of holomorphic
mappings from ∆ = {z ; |z| < r} into PN (C). Suppose that fn meromorphically
converges on ∆∗ = {|z| < r} − {0} to a holomorphic mapping g. Let H be
a hyperplane in PN (C). Assume that g(∆∗) 6⊂ H. If the sequence {νfn,H}∞n=1
converges to a divisor then {fn}∞n=1 meromorphic converges to a holomorphic
mapping g∗ on ∆ such that g∗|∆∗ = g.

3. Proof of Main theorem

In order to prove the Main theorem, we need the following lemmas.

Lemma 11. Let {fn}∞n=1 be a sequence of holomorphic mappings of a domain Ω
in C into PN (C). If {fn}∞n=1 holomorphically converges to a holomorphic mapping
g of Ω into PN (C) then {fn}∞n=1 meromorphically converges to g on Ω.

Proof. We fix a homogeneous coordinates (ω0 : · · · : ωN ) on PN (C). Suppose that
{fn}∞n=1 holomorphically converges to a holomorphic mapping g on Ω.
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Let p be an arbitrary point of Ω. Then, we may choose a neighborhood ∆(p, r) :=
{z ; |z−p| < r} ⊂ Ω, on which g has a reduced representation (g0 : · · · : gN ), where
r > 0. Since g is holomorphic, there exists an index i0 ∈ {0, 1, . . . , N}, for instance
i0 = 0, such that g0(p) 6= 0. Thus g(p) 6∈ H, where H is hyperplane defined by
H := {w0 = 0}. We choose an open neighborhood W of g(p) in PN (C) such that
W ⊂ PN (C)\H. Since g is holomorphic, by choosing r small enough, we may assume
that g(∆(p, r)) ⊂W . Then, g has a reduced representation g̃ = (1, g1

g0
, . . . , gNg0

) on
∆(p, r).

We now note that, the functions ωi
ω0

, 1 ≤ i ≤ N are continuous on PN (C) \H.
Hence, there exists

M = sup
ω∈W

(
1 +

∣∣ω1

ω0

∣∣2 + · · ·+ |ωN
ω0
|2
)
,

where ω = (ω0 : · · · : ωN ).
Since {fn}∞n=1 converges compactly to g on Ω, by reducing r if necessary we

may assume that fn(∆(p, r)) ⊂ W , and hence fn has a reduce representation
f̃n = (1, fn1, . . . , fnN ) on ∆(p, r). Then for every ε > 0, there exists a positive
integer n0 such that for all n > n0 we have

(12) max
z∈∆(p,r1)

∑N
k,l=0 |fnk(z)gl(z)− fnl(z)gk(z)|

‖ f̃n(z) ‖ · ‖ g(z) ‖
<

ε

M
,

where fn0 = g0 = 1. By the definition ofM , we have ‖ f̃n(z) ‖< M and ‖ g(z) ‖< M
for all z ∈ ∆(p, r1). Therefore, (12) implies that

max
z∈∆(p,r1)

N∑
k,l=0

|fnk(z)g0(z)− fn0(z)gk(z)| < ε, ∀n > n0 .

This yields that
max

z∈∆(p,r1)
|fnk − gk(z)| < ε , 1 ≤ k ≤ N, ∀n > n0.

This inequality shows that the sequence of holomorphic functions {fnk} converges
uniformly to gk on ∆(p, r1) for each 1 ≤ k ≤ N .

Hence, by the definition, we have that the sequence {fn}∞n=1 meromorphically
converges to g on Ω. The lemma is proved. �

Lemma 13. Let {fn}∞n=1 be a sequence of holomorphic mappings from ∆ = ∆(0, r)
into PN (C). Suppose that fn meromorphically converges on ∆∗ = ∆∗(0, r) to a
holomorphic mapping g. Let H be a hyperplane in PN (C). Assume that g(∆∗) 6⊂ H.
If fn(∆)∩H = ∅ (∀n ≥ 1) then {fn}∞n=1 holomorphically converges to a holomorphic
mapping g∗ on ∆ such that g∗|∆∗ = g.

Proof. By the assumption of the lemma, from Lemma 10, we have {fn}∞n=1
meromorphically converges on ∆ to a holomorphic mapping g∗ with g∗|∆∗ = g. In
order to prove that {fn}∞n=1 holomorphically converges to g∗ on ∆, it suffices for
us to prove that {fn}∞n=1 holomorphically converges to g∗ on a neighbourhood of
every point p ∈ ∆.



WEAK NORMAL AND QUASINORMAL FAMILIES OF HOLOMORPHIC CURVES 159

For an arbitrary point p ∈ ∆, there exist an open neighborhood U of p in ∆,
reduced representations f̃n = (fn0, . . . , fnN ) of fn (n ≥ 1) and a representation
g̃∗ = (g∗0 , . . . , g∗n) of g∗ on U such that {fnk}∞n=1 converges compactly to g∗k on U .
Then the sequence of functions {H(f̃n)} converges compactly to H(g̃∗) on U . Thus,
by the Hurwitz’s theorem, one of the following two assertions holds:

(1) H(g̃∗) ≡ 0 on U , i.e., g∗(U) ⊂ H, and hence it implies that g(∆∗) ⊂ H,
(2) H(g̃∗) 6= 0 on U , i.e., g∗(U) ∩H = ∅.

By the assumption of the lemma, the first assertion does not hold. Therefore,
g∗(U) ∩H = ∅. In particular g̃∗ is a reduced representation of g∗ on U . We take a
relative compact open subset W of U with p ∈W and put

M = inf
z∈W

H
(
g̃∗(z)

)
> 0 .

For each ε > 0, there exists a positive integer n0 such that for all n > n0 and
0 ≤ k ≤ N we have |fnk − g∗k| ≤ εM

2(N+1)2||H|| on W . Therefore, we have

N∑
k,l=0

|fnkg∗l − fnlg∗k|
‖f̃n‖ · ‖g̃∗‖

≤
N∑

k,l=0

|fnk| · |g∗l − fnl|+ |fnl| · |fnk − g∗k|
‖f̃n‖ · ‖g̃∗‖

≤
N∑

k,l=0

εM
2(N+1)2‖H‖ (|fnk|+ |fnl|)

‖f̃n‖ · ‖g̃∗‖
≤ ε

on W , where the last inequality follows from that |fnk| < ‖f̃‖, |fnl| ≤ ‖f̃‖ and
‖g̃∗‖ ≥ |H(g̃∗)|

‖H‖ ≥
M
‖H‖ . Hence, {fn}∞n=1 converges uniformly to g∗ on W as holo-

morphic mappings.
Therefore {fn}∞n=1 converges holomorphically to g∗ on ∆ with g∗|∆∗ = g. The

lemma is proved. �

Lemma 14. Let {fn}∞n=1 be a sequence of holomorphic mappings from ∆ =
{z ; |z| < r} into PN (C). Suppose that fn meromorphically converges on ∆∗ =
{z ; 0 < |z| < r} to a holomorphic mapping g. Let {Hn} be a sequence of
hypersurfaces and H be a hypersurface in PN (C) of the same degree Ω. Assume
that g(∆∗) 6⊂ H and {Hn} converges to H when we regard Hn and H as two points
in PN (C)∗. Then the following assertions hold:

(a) If fn(∆) ∩ Hn = ∅ ∀n ≥ 1 then {fn}∞n=1 holomorphically converges to a
holomorphic mapping g∗ on ∆ such that g∗|∆∗ = g.

(b) If {νfn,Hn}∞n=1 converges to a divisor ν on ∆ then {fn}∞n=1 meromorphically
converges to a holomorphic mapping g∗ on ∆ such that g∗|∆∗ = g.

Proof. (1) Assume that, fn has a reduced representation f̃ = (fn0, . . . , fnN ) on
∆ for each n = 1, 2, . . ., and g has a reduced representation g̃ = (g0, . . . , gN ) on
∆∗. We define Fn (n ≥ 1) (resp. G) the holomorphic mapping from ∆ (resp. ∆∗)
into PN+1(C) having the reduced representation F̃n = (fdn0, . . . , f

d
nN , Hn(f̃n)) (resp.

G̃ = (gd0 , . . . , gdN , H(g̃))) in a homogeneous coordinates system (W0 : · · · : WN+1) of
PN+1(C). We easily see that {Fn}∞n=1 meromorphically converges to G. Moreover,
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if we denote by P the hyperplane of PN+1(C) defined by the linear form
WN+1 = 0 ,

then Fn(∆) ∩ P = ∅ (n ≥ 1) and G(∆∗) ∩ P = ∅. Thus, by Lemma 13, G has a
holomorphic extension G∗ on ∆ and {Fn}∞n=1 holomorphic conveges to G∗ on ∆.
We denote by σ the holomorphic mapping from PN (C) into PN+1(C) defined by

σ(ω0 : · · · : ωN ) =
(
ωd0 : · · · : ωdN : H(ω0, . . . , ωN )

)
.

Since PN (C) is compact and σ is continuous, σ(PN (C)) is a close subset of PN+1(C).
Obvious, g∗(∆∗) = G(∆∗) ⊂ σ(Pn(C)). Thus G∗(∆) ⊂ σ(Pn(C)).

By the definition, it is clear that σ(PN (C)) ∩
⋂N
i=0{Wi = 0} = ∅. Hence, there

exists a hyperplane, for instance it is {W0 = 0}, such that G∗(0) 6∈ {W0 = 0}. Hence
there is a disk ∆(0, r) (0 < r < 1) such that G∗(∆(0, r)) is contained in a relative
conpact open subset of PN+1(C) \ {W0 = 0}. Since {Fn}∞n=1 holomorphically
conveges to G∗, there exist a positive number r1 < r and a positive integer n0
such that Fn(∆(0, r1)) ⊂ PN+1(C) \ {W0 = 0} for all n ≥ n0. This yields that
fn(∆(0, r1)) ∩ {ω0 = 0} = ∅ for all n > n0.

Also, since G∗(0) 6∈ {W0 = 0}, G(∆∗(0, r1)) 6⊂ {W0 = 0}, and hence g(∆∗(0, r1))
6⊂ {ω0 = 0}. Then, applying Lemma 10(a) for the sequence {fn|∆(0,r1)}∞n=n0

,
the mapping g|∆∗(0,r1) and the hyperplane {ω0 = 0} on ∆(0, r1), we have that
{fn|∆(0,r1)}∞n=n0

holomorphically converges to a holomorphic mapping g∗ on
∆(0, r1) with g∗|∆∗(0,r1) = g|∆∗(0,r1). Extending g∗ over ∆ by setting g∗(z) = g(z)
for all z ∈ ∆ \∆(0, r1), we obtain a holomorphic mapping g∗ from ∆ into PN (C).
Obviously, {fn}∞n=1 holomorphically converges to g∗ on ∆ and g∗|∆∗ = g. The
assertion (a) is proved.

(b) We will use the same notations and also repeat the similar argument as
above. By Lemma 10, G has a holomorphic extension G∗ on ∆ and {Fn}∞n=1
meromorphically conveges to G∗ on ∆. We see that, there exists an index i0, for
instance i0 = 0, such that G∗(∆) ⊂ {W0 = 0}. Denote by P the hyperplane
{W0 = 0}. Then the sequence {νFn,P }∞n=1 are compactly bounded. This implies
that the sequence {νfn,P ′}∞n=1 are compactly bounded, where P ′ is the hyperplane
{ω0 = 0}. From Lemma 10(b), {fn}∞n=1 meromorphically converges to g∗ on ∆ and
g∗|∆∗ = g. The assertion (b) is proved. �

Proof of Main theorem. (a) Take an arbitrary sequence {fn}∞n=1 ⊂ F . Then,
there exists a subsequence of {fn}∞n=1 (again denoted by {fn}∞n=1) such that

lim
n→∞

f−1
n (Hi(fn)) = Ei , ∀i ∈ {1, 2, . . . , q} ,

where all Ei are discrete subset of Ω. Set E =
⋃q
i=1Ei. Since inf{D(H1(f), . . . ,

Hq(f)) : f ∈ F} > 0, the degrees of Hi(f) (1 ≤ i ≤ q) for f ∈ F are bounded from
above. Then there exists a subsequence of {fn}∞n=1 (again denoted by {fn}∞n=1)
such that

degHi(fn) = di > 0 and limHi(fn) = Hi ∀1 ≤ i ≤ q .
We also note that D(H1, . . . ,Hq) ≥ inf{D(H1(f), . . . ,Hq(f)) : f ∈ F} > 0, i.e.,
{H1, . . . ,Hq} are in general position.
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Firstly, we will prove that we may extract from {fn} a subsequence which
converges compactly on Ω \E. Indeed, for any z0 ∈ Ω \E, there exist a relatively
compact neighborhoood Uz0 of z0 in Ω \ E and n0 ∈ N∗ such that for any n ≥ n0
we have

f−1
n (Hi(fn)) ∩ Uz0 = ∅ ∀i ∈ {1, 2, . . . , q} .

Then {fn|Uz0
}∞n=n0

⊂ Hol(Uz0 ,PN (C)). Suppose that the family {fn|Uz0
}∞n=n0

is
not holomorphically normal family. By Lemma 8, there exist a subsequence of
{fn|Uz0

}∞n=n0
(denoted again by {fn|Uz0

}∞n=n0
), p0 ∈ Uz0 , {pn} ⊂ Uz0 with pn → p0,

{ρn} ⊂ (0,∞) with ρn ↘ 0 such that the sequence of holomorphic maps

gn(z) = fn(pn + ρnz) : C→ PN (C)

converges compactly on C to a nonconstant holomorphic map g : C → PN (C).
Hence {gn}n≥n0 meromorphically converges to g on C.

Then for each p ∈ C, there exists a small enough open neighborhood U of
p in C, on which gn has a reduced representation g̃n = (gn0, . . . , gnN ) for all n
large enough satisfying that {gnk} converges compactly to a holomorphic function
gk and g̃ = (g0, . . . , gN ) is a representation of g on U . This implies that the se-
quence {(Hk(fn))(g̃n)} converges compactly to Hk(g̃) on U . Thus, by the Hurwitz’s
theorem, one of the following two assertions holds:

1. Hk(g̃) ≡ 0 on U , i.e., g(U) ⊂ Hk, and hence g(C) ⊂ Hk.
2. Hk(g̃) is nowhere vanishing on U , i.e., g(U) ∩Hk = ∅.

Then, we must have that either g(C) ⊂ Hk or g(C) ∩Hk = ∅ for all 1 ≤ k ≤ q.
Hence, there exists a subset I ⊂ {1, 2, . . . , q} such that g(C) ⊂ (

⋂
i∈I Hi)\(

⋃
i 6∈I Hi).

By [9, Corollary 1.4 (ii)], all irreducible component of (
⋂
i∈I Hi) \ (

⋃
i 6∈I Hi) is

hyperbolic, and hence g is constant. This is contraction.
Thus {fn}∞n=n0

is holomorphically normal on Uz0 . Therefore, by the usual
diagonal argument, we can find a subsequence (again denoted by {fn}∞n=1) which
converges compactly on Ω \ E to a holomorphic mapping f .

Now, we will show that f is holomorphically extendable over E. For each
z 6∈ E, we see that there exist an open neighborhood U of z in Ω \ E and a
positive integer n0 such that fn(U) ∩ Hi(fn) = ∅ (1 ≤ i ≤ q) for all n ≥ n0.
By using the same argument as above, we will have that either f(U) ⊂ Hi or
f(U)∩Hi = ∅ for all 1 ≤ i ≤ q. Hence, there exists a subset I ′ ⊂ {1, 2, . . . , q} such
that f(Ω \ E) ⊂ (

⋂
i∈I′ Hi) \ (

⋃
i 6∈I′ Hi) and ]I ′ = l ≤ N . By again [9, Corollary

1.4 (ii)], all irreducible component of (
⋂
i∈I′ Hi) \ (

⋃
i 6∈I′ Hi) is hyperbolic. Then f

is holomorphically extendable over E, by [8, Corollary 1.2.3].
This conclusion yields that F is a weak normal family. The assertion (a) is

proved.
(b) In order to prove the assertion (b), it suffices for us to prove that from

the last sequence {fn}∞n=1 obtained in the part (a) we may extract a subsequence
which meromorphically converges to f on an open neighborhood of each point
z for all z ∈ E except for at most pN+1 points. We see that there is an index
i0 ∈ {1, . . . , N + 1} such that f(Ω) 6⊂ Hi0 . Now, we set

S1 = {z ∈ E;∀ε > 0,∀M ∈ Z+,∃n′,∀n ≥ n′,∃z′ ∈ ∆(z, ε), νfn,Hi(fn)(z′) > M} ,
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and S2 = E \ S1. We will show that ]S1 ≤ pi0 . Indeed, suppose contrarily
that there exist z1, . . . , zpi0 +1 in S1. Take a compact neighborhood K of the
set {z1, . . . , zpi0 +1} in Ω. Then there exists a integer constant cK > 0 such that

sup
f∈F

]{z ∈ K ; νf,Hi0 (f)(z) ≥ ck} ≤ pi0 .(15)

Take a positive number ε > 0 such that ∆(zk, ε) ⊂ K. Then for all zk (1 ≤ k ≤ pi0 +
1), there exist an n large enough, z′k ∈ ∆(zk, ε) ⊂ K such that νfn,Hi0 (f)(z′k) ≥ cK .
Hence

]{z ∈ K ; νfn,Hi0 (fn)(z) > ck} ≥ pi0 + 1 .
This contradicts (15). Therefore, ]S1 ≤ pi0 .

We now only remains prove that: for each point p ∈ S2, we may extract a
subsequence of {fn}∞n=1 which converges compactly to f on an open neighbourhood
of p.

Take a fixed point p ∈ S2. Then, there exist ε > 0, M ∈ Z+, and a subsequence
of {fn}∞n=1 (we denote again by {fn}∞n=1) satisfying

(1) ∆(p, ε) ∩ E = {p},
(2) νfn,Hi0 (fn)(z) ≤M, ∀z ∈ ∆(p, ε).
From (2) and the assumption of the assertion (a), the sequence of divisors

{νfn,Hi0 (fn)} is bounded conpactly on ∆(p, ε). Then there is a subsequence of
{fn}∞n=1 (we denote again by {fn}∞n=1) converging to a divisor on ∆(p, ε). Then by
Lemma 10, {fn}∞n=1 meromorphically converges to f on ∆(p, ε).

Then by using the diagonal argument, we get a subsequence of {fn}∞n=1 mero-
morphically converges to f on Ω except for a set of at most pi0 ≤ pN+1 points.

Therefore F is meromorphically quasinormal of order at most pN+1. The asser-
tion (b) is proved.

(c) Similarly as above, we will show that the last sequence {fn}∞n=1 obtained
in the part (a) has a subsequence which converges compactly to f on an open
neighborhood of each point z for all z ∈ E except for at most pN+1 points. Take an
index i0 ∈ {1, . . . , N+1} such that f(Ω) 6⊂ Hi0 . Since ]{z ∈ Ω ; fn(z) ∈ Hi0} ≤ pi0
for all n ≥ 1, ]Ei0 ≤ pi0 ≤ pN+1.

It suffices for us to prove that: for an arbitrary point p ∈ E \ Ei0 , we may
extract a subsequence of {fn}∞n=1 which converges compactly to f on an open
neighborhood p. Indeed, there exist ε > 0 and a subsequence of {fn}∞n=1 (we denote
again by {fn}∞n=1) satisfying

(1) ∆(p, ε) ∩ E = {p},
(2) fn(∆(p, ε)) ∩Hi0(fn) = ∅.

From (2) and by Lemma 13, {fn}∞n=1 holomorphically converges to f on ∆(p, ε).
Hence by using the diagonal argument, we get a subsequence of {fn}∞n=1 holomor-
phically converges to f on Ω \ Ei0 , where ]Ei0 ≤ pN+1.

Therefore F is holomorphically quasinormal of order at most pN+1. The assertion
(c) is proved. �
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