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CALCULUS ON SYMPLECTIC MANIFOLDS

Michael Eastwood and Jan Slovák

Abstract. On a symplectic manifold, there is a natural elliptic complex
replacing the de Rham complex. It can be coupled to a vector bundle with
connection and, when the curvature of this connection is constrained to be
a multiple of the symplectic form, we find a new complex. In particular, on
complex projective space with its Fubini–Study form and connection, we can
build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand
complexes from parabolic differential geometry.

1. Introduction

Throughout this article M will be a smooth manifold of dimension 2n equipped
with a symplectic form Jab. Here, we are using Penrose’s abstract index notation [15]
and non-degeneracy of this 2-form says that there is a skew contravariant 2-form
Jab such that JabJac = δb

c where δbc is the canonical pairing between vectors and
co-vectors.

Let ∧k denote the bundle of k-forms on M . The homomorphism

∧k → ∧k−2 given by φabc···d 7→ Jabφabc···d

is surjective for 2 ≤ k ≤ n with non-trivial kernel, corresponding to the irreducible
representation

• • · · · • • • · · · • • •〈0 0 0 1 0 0 0 0

6k
th node

of Sp(2n,R) ⊂ GL(2n,R) .

Denoting this bundle by ∧k
⊥, there is a canonical splitting of the short exact

sequence
0→ ∧k

⊥ �
π

∧k → ∧k−2 → 0
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and an elliptic complex [2, 9, 11, 16, 18]

(1)
0 → ∧0 d−→ ∧1 d⊥−→ ∧2

⊥
d⊥−→ ∧3

⊥
d⊥−→ · · · d⊥−→ ∧n

⊥yd2
⊥

0 ← ∧0 d⊥←− ∧1 d⊥←− ∧2
⊥

d⊥←− ∧3
⊥

d⊥←− · · · d⊥←− ∧n
⊥

where
– d : ∧0 → ∧1 is the exterior derivative,
– for 1 ≤ k < n, the operator d⊥ : ∧k

⊥ → ∧k+1
⊥ is the composition

∧k
⊥ ↪→ ∧k d−→ ∧k+1 π−→ ∧k+1

⊥ ,

a first order operator,
– d⊥ : ∧k+1

⊥ → ∧k
⊥ are canonically defined first order operators, which may be

seen as adjoint to d⊥ : ∧k
⊥ → ∧k+1

⊥ ,
– d2
⊥ : ∧n

⊥ → ∧n
⊥ is the composition

∧n
⊥

d⊥−−→ ∧n−1
⊥

d⊥−−→ ∧n
⊥ ,

a second order operator.
More explicitly, formulæ for these operators may be given as follows. Firstly, it is
convenient to choose a symplectic connection ∇a, namely a torsion-free connection
such that ∇aJbc = 0, equivalently ∇aJbc = 0. As shown in [12], for example,
such connections always exist and if ∇a is one such, then the general symplectic
connection is

∇̂aφb = ∇aφb + JcdΞabcφd where Ξabc = Ξ(abc) .

Then, for 1 ≤ k < n, the operator d⊥ : ∧k
⊥ → ∧k+1

⊥ is given by

(2) φdef ···g 7−→ ∇[cφdef ···g] − k
2(n+1−k)J

ab(∇aφb[ef ···g)Jcd]

and d⊥ : ∧k+1
⊥ → ∧k

⊥ is given by

(3) ψcdef ···g 7−→ Jbc∇bψcdef ···g .
Now suppose E is a smooth vector bundle on M and ∇ : E → ∧1 ⊗ E is a

connection. Choosing any torsion-free connection on ∧1 induces a connection on
∧1 ⊗ E and, as is well-known, the composition

∧1 ⊗ E → ∧1 ⊗∧1 ⊗ E → ∧2 ⊗ E
does not depend on this choice. (It is the second in a well-defined sequence of
differential operators

(4) E
∇−−→ ∧1 ⊗ E ∇−−→ ∧2 ⊗ E ∇−−→ · · · ∇−−→ ∧2n−1 ⊗ E ∇−−→ ∧2n ⊗ E

known as the coupled de Rham sequence.) In particular, we may define a homomor-
phism Θ: E → E by

Jab∇a∇bΣ = 1
2nΘΣ for Σ ∈ Γ(E).

It is part of the curvature of ∇ and if this is the only curvature, then
(5) (∇a∇b −∇b∇a)Σ = 2JabΘΣ,
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and we shall say that ∇ is symplectically flat. Looking back at (1), it is easy to see
that there are coupled operators

E ∇−→←−∇⊥ ∧1 ⊗ E ∇⊥−→←−∇⊥ ∧2
⊥ ⊗ E

∇⊥−→←−∇⊥ · · ·
∇⊥−→←−∇⊥ ∧n−1

⊥ ⊗ E ∇⊥−→←−∇⊥ ∧n
⊥ ⊗ E,

explicit formulæ for which are just as in the uncoupled cases (2) and (3). To
complete the coupled version of (1) let us use
(6) ∇2

⊥ − 2
nΘ : ∧n

⊥ ⊗ E −→ ∧n
⊥ ⊗ E

for the middle operator. It is evident that

E
∇−→ ∧1 ⊗ E ∇⊥−−−→ ∧2

⊥ ⊗ E
is a complex if and only if ∇ is symplectically flat. The reason for the curvature
term in (6) is that this feature propagates as follows.

Theorem 1. Suppose E ∇−−→ ∧1 ⊗E is a symplectically flat connection and define
Θ: E → E by (5). Then the coupled version of (1)

0 → E
∇−→ ∧1 ⊗ E ∇⊥−→ ∧2

⊥ ⊗ E
∇⊥−→ · · · ∇⊥−→ ∧n

⊥ ⊗ Ey∇2
⊥ − 2

nΘ

0 ← E
∇⊥←− ∧1 ⊗ E ∇⊥←− ∧2

⊥ ⊗ E
∇⊥←− · · · ∇⊥←− ∧n

⊥ ⊗ E
is a complex. It is locally exact except near the beginning where

ker∇ : E → ∧1 ⊗ E and ker∇⊥ : ∧1 ⊗ E → ∧2
⊥ ⊗ E

im∇ : E → ∧1 ⊗ E
may be identified with the kernel and cokernel, respectively, of Θ as locally constant
sheaves.

More precision and a proof of Theorem 1 will be provided in §2. Our next theorem
yields some natural symplectically flat connections.

Theorem 2. Suppose M is a 2n-dimensional symplectic manifold with symplectic
connection ∇a. Then there is a natural vector bundle T on M of rank 2n + 2
equipped with a connection, which is symplectically flat if and only if the curvature
Rab

c
d of ∇a has the form

(7) Rab
c
d = δa

cPbd − δbcPad + JadPbeJce − JbdPaeJce + 2JabPdeJce ,
for some symmetric tensor Pab.

In particular, the Fubini–Study connection on complex projective space is symplectic
for the standard Kähler form and its curvature is of the form (7) for Pab = gab,
the standard metric. More generally, if the symplectic connection ∇a arises from a
Kähler metric, then we shall see that (7) holds precisely in the case of constant
holomorphic sectional curvature.

After proving Theorems 1 and 2, the remainder of this article is concerned with
the consequences of Theorem 1 for the vector bundle T and those bundles, such
as
⊙kT , induced from it. In particular, these consequences pertain on complex

projective space where we shall find a series of elliptic complexes closely following
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the Bernstein-Gelfand-Gelfand complexes on the sphere S2n+1 as a homogeneous
space for the Lie group Sp(2n+ 2,R).

This article is based on our earlier work [11] but here we focus on the simpler
case where we are given a symplectic structure as background. This results in fewer
technicalities and in this article we include more detail, especially in constructing
the BGG-like complexes in §5. Further indications justifying the shape of our
complexes can be found in [3, 4, 5, 6, 7].

2. The Rumin–Seshadri complex

By the Rumin–Seshadri complex , we mean the differential complex (1) after [16].
However, the 4-dimensional case is due to R.T. Smith [17] and the general case is
also independently due to Tseng and Yau [18]. In this section we shall derive the
coupled version of this complex as in Theorem 1, our proof of which includes (1)
as a special case. The following lemma is also the key step in [11].

Lemma 1. Suppose E is a vector bundle on M with symplectically flat connection
∇ : E → ∧1 ⊗ E. Define Θ : E → E by (5). Then Θ has constant rank and the
bundles ker Θ and coker Θ acquire from ∇, flat connections defining locally constant
sheaves ker Θ and coker Θ, respectively. There is an elliptic complex

E
∇−→ ∧1 ⊗ E ∇−→ ∧2 ⊗ E ∇−→ ∧3 ⊗ E ∇−→ ∧4 ⊗ E
Q
Qs ⊕ �

�3Q
Qs ⊕ �

�3Q
Qs ⊕ �

�3Q
Qs ⊕ · · · ,

E −→ ∧1 ⊗ E −→ ∧2 ⊗ E −→ ∧3 ⊗ E
where the differentials are given by

Σ 7→
[
∇Σ
ΘΣ

] [
φ
η

]
7→
[
∇φ− J ⊗ η
∇η −Θφ

] [
ω
ψ

]
7→
[
∇ω + J ∧ ψ
∇ψ + Θω

]
· · · .

It is locally exact save for the zeroth and first cohomologies, which may be identified
with ker Θ and coker Θ, respectively.

Proof. From (5) the Bianchi identity for ∇ reads
0 = ∇[a

(
Jbc]Θ

)
= J[ab∇c]Θ

and non-degeneracy of Jab implies that ∇aΘ = 0. Consequently, the homomorphism
Θ has constant rank and the following diagram with exact rows commutes

0 → ker Θ → E
Θ−→ E → coker Θ → 0

↓∇ ↓∇
0 → ∧1 ⊗ ker Θ → ∧1 ⊗ E Θ−→ ∧1 ⊗ E → ∧1 ⊗ coker Θ → 0

and yields the desired connections on ker Θ and coker Θ, which are easily seen to
be flat. Ellipticity of the given complex is readily verified and, by definition, the
kernel of its first differential is ker Θ. To identify the higher local cohomology of
this complex the key observation is that locally we may choose a 1-form τ such
that dτ = J and, having done this, the connection

Γ(E) 3 Σ ∇̃7−→ ∇Σ− τ ⊗ΘΣ ∈ Γ(∧1 ⊗ E)
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is flat. The rest of the proof is diagram chasing, using exactness of

E
∇̃−−→ ∧1 ⊗ E ∇̃−−→ ∧2 ⊗ E ∇̃−−→ ∧3 ⊗ E ∇̃−−→ ∧4 ⊗ E ∇̃−−→ · · · .

If needed, the details are in [11]. �

Proof of Theorem 1. In [11], the corresponding result [11, Theorem 4] is proved
by invoking a spectral sequence. Here, we shall, instead, prove two typical cases
‘by hand,’ leaving the rest of the proof to the reader.

For our first case, let us suppose n ≥ 3 and prove local exactness of

∧1 ⊗ E ∇⊥−−−→ ∧2
⊥ ⊗ E

∇⊥−−−→ ∧3
⊥ ⊗ E .

Thus, we are required to show that if ωab has values in E and
ωab = ω[ab] Jabωab = 0 ∇[cωde] = 1

n−1J
ab(∇aωb[c)Jde] ,

then locally there is φa ∈ Γ(∧1 ⊗ E) such that
ωcd = ∇[cφd] − 1

2nJ
ab(∇aφb)Jcd.

If we set ψc ≡ − 1
n−1J

ab∇aωbc, then ∇[cωde] + J[cdψe] = 0 so
0 = ∇[b∇cωde] + J[bc∇dψe] = J[bcΘωde] + J[bc∇dψe]

and since J ∧ : ∧2 → ∧4 is injective it follows that
∇[cψd] + Θωcd = 0 .

In other words, we have shown that
∇ω + J ∧ ψ = 0
∇ψ + Θω = 0

and Lemma 1 locally yields φa ∈ Γ(∧1 ⊗ E) and η ∈ Γ(E) such that
∇[aφb] − Jabη = ωab ,

∇aη −Θφa = ψa .

In particular,
Jab∇aφb − 2nη = Jab

(
∇aφb − Jabη

)
= Jabωab = 0

and, therefore,
∇[cφd] − 1

2nJ
ab(∇aφb)Jcd = ∇[cφd] − ηJcd = ωcd ,

as required.
Our second case is more involved. It is to show that

(8) ∧n
⊥ ⊗ E

∇2
⊥− 2

nΘ
−−−−−−→ ∧n

⊥ ⊗ E
∇⊥−−−→ ∧n−1

⊥ ⊗ E

is locally exact. As regards ∇⊥ : ∧n
⊥ ⊗ E → ∧n−1

⊥ ⊗ E, notice that

Jbc∇bψcdef ···g = n+1
2 Jbc∇[bψcdef ···g]

and that if φdef ···g ∈ Γ(∧k ⊗ E), then

(9) JbcJ[bcφdef ···g] = 4(n−k)
(k+1)(k+2)φdef ···g + k(k−1)

(k+1)(k+2)J[deφf ···g]bcJ
bc
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so if φdef ···g ∈ Γ(∧n−1
⊥ ⊗ E), then

JbcJ[bcφdef ···g] = 4
n(n+1)φdef ···g .

Therefore, ∇⊥ψ ∈ Γ(∧n−1
⊥ ⊗ E) is characterised by

(10) J ∧∇⊥ψ = 2
n∇ψ

as an equation in ∧n+1 ⊗ E. In particular, in ∧n+2 ⊗ E we find

J ∧∇∇⊥ψ = ∇(J ∧∇⊥ψ) = 2
n∇

2ψ = J ∧Θψ = 0

whence ∇∇⊥ψ already lies in ∧n ⊗ E and there is no need to remove the trace as
in (2) to form ∇2

⊥ψ. Therefore, invoking (10) once again, the composition

∧n
⊥ ⊗ E

∇⊥−−−→ ∧n−1
⊥ ⊗ E ∇⊥−−−→ ∧n

⊥ ⊗ E
∇⊥−−−→ ∧n−1

⊥ ⊗ E

is characterised by

J ∧∇3
⊥ψ = 2

n∇∇
2
⊥ψ = 2

n∇
2∇⊥ψ = 2

nJ ∧Θ∇⊥ψ = 2
nJ ∧∇⊥Θψ

and, since J ∧ : ∧n−1 → ∧n+1 is an isomorphism, we conclude that ∇3
⊥ψ =

2
n∇⊥Θψ, equivalently that (8) is a complex.

Before proceeding, let us remark on another consequence of (9), namely that for
νcdef ···g ∈ Γ(∧n ⊗ E),

(11) J[abνcdef ···g] = 0 ⇐⇒ Jcdνcdef ···g = 0 .

Now to establish local exactness, suppose ν ∈ Γ(∧n
⊥ ⊗ E) satisfies ∇⊥ν = 0.

Equivalently, according to (10) and (11)

ν ∈ Γ(∧n ⊗ E) satisfies ∇ν = 0 and J ∧ ν = 0 .

Lemma 1 implies that locally there are

φ ∈ Γ(∧n ⊗ E)
η ∈ Γ(∧n−1 ⊗ E) such that ∇φ− J ∧ η = 0

∇η −Θφ = ν.

Since
0→ ∧n−2 J∧−−−→ ∧n → ∧n

⊥ → 0
is exact, we can write φ uniquely as

φ = ψ + J ∧ τ ,

where ψ ∈ Γ(∧n
⊥ ⊗ E) and τ ∈ Γ(∧n−2 ⊗ E). We conclude that

∇ψ − J ∧ η̂ = 0
∇η̂ −Θψ = ν,

(where η̂ = η −∇τ) .

However, as discussed above, these equations say exactly that

∇2
⊥ψ − 2

nΘψ = ν ,

and exactness is shown. �
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3. Tractor bundles

For the rest of the article we suppose that we are given, not only a manifold
M with symplectic form Jab, but also a torsion-free connection ∇a on the tangent
bundle (and hence on all other tensor bundles) such that ∇aJbc = 0. This is
sometimes called a Fedosov structure [12] on M . The curvature Rab

c
d of ∇a,

characterised by
(∇a∇b −∇b∇a)Xc = Rab

c
dX

d ,

satisfies
Rab

c
d = R[ab]

c
d R[ab

c
d] = 0 Rab

c
dJce = Rab

c
eJcd

and enjoys the following decomposition into irreducible parts
Rab

c
d = Vab

c
d + δa

cPbd − δbcPad + JadPbeJce − JbdPaeJce + 2JabPdeJce,
for some symmetric Pab, where Vabad = 0 (reflecting the branching

= ⊥ ⊕
of representations under GL(2n,R) ⊃ Sp(2n,R)). Notice that
(12) Pbd = 1

2(n+1)Rab
a
d = 1

4(n+1)J
aeRae

c
bJcd .

We define the standard tractor bundle to be the rank 2n+ 2 vector bundle T ≡
∧0 ⊕∧1 ⊕∧0 with its tractor connection

∇a

 σ
µb
ρ

 =

 ∇aσ − µa
∇aµb + Jabρ+ Pabσ
∇aρ− PabJbcµc + Saσ

, where Sa ≡ 1
2n+1J

bc∇cPab .

Readers familiar with conformal differential geometry may recognise the form of
this connection as following the tractor connection in that setting [1]. If needs
be, we shall write symplectic tractor connection to distinguish the connection just
defined from any alternatives. We shall need the following curvature identities.

Lemma 2. Let Yabc ≡ 1
2n+1∇cVab

c
d. Then

(13) Yabc = 2∇[aPb]c − 2Jc[aSb] + 2JabSc
and

Jad∇aYbcd = JadVbc
e
aPed + 4n(JadPbaPcd −∇[bSc])

+ 2JbcJad(∇aSd − JefPaePdf ) .(14)

Proof. Writing the Bianchi identity ∇[aRbc]
d
e = 0 in terms of Vabcd and Pab yields

∇[aVbc]
d
e = −2δ[bd∇aPc]e + 2JdfJe[b∇aPc]f − 2JdfJ[bc∇a]Pef .

and contracting over ad gives
1
3∇aVbc

a
e = 4(n−1)

3 ∇[bPc]e + 2
3
[
∇[bPc]e − (2n+ 1)Je[bSc]

]
+ 2

3
[
(2n+ 1)JbcSe + 2∇[bPc]e

]
,



272 M. EASTWOOD AND J. SLOVÁK

which is easily rearranged as (13). For (14), firstly notice that

JadRab
e
d = JedRab

a
d = 2(n+ 1)JedPbd

and the Bianchi symmetry may be written as Ra[b
e
c] = − 1

2Rbc
e
a. Thus,

Jad∇a∇bPcd = ∇bJad∇aPcd − JadRabecPed − JadRabedPce

= −(2n+ 1)∇bSc − JadRabecPed + 2(n+ 1)JdePbdPce
and so

Jad∇a∇[bPc]d = −(2n+ 1)∇[bSc] + 1
2J

adRbc
e
aPed + 2(n+ 1)JdePbdPce .

From (13) we see that

Jad∇aYbcd = 2Jad∇a∇[bPc]d + 2∇[bSc] + 2JbcJad∇aSd .

Therefore,

Jad∇aYbcd = JadRbc
e
aPed − 4n∇[bSc] + 4(n+ 1)JdePbdPce + 2JbcJad∇aSd .

Finally,

JadRbc
e
aPed = JadVbc

e
aPed − 4JadPbaPcd − 2JbcJadJefPaePdf ,

so

Jad∇aYbcd = JadVbc
e
aPed + 4nJadPbaPcd − 2JbcJadJefPaePdf

− 4n∇[bSc] + 2JbcJad∇aSd ,

which may be rearranged as (14). �

Proposition 1. The tractor connection T → ∧1⊗T preserves the non-degenerate
skew form 〈 σ

µb
ρ

 ,
 σ̃
µ̃c
ρ̃

〉 ≡ σρ̃+ Jbcµbµ̃c − ρσ̃

and its curvature is given by

(∇a∇a −∇b∇a)

σµd
ρ

=

 0
−Vabcdµc + Yabdσ

−YabcJcdµd + 1
2n (JcdVabecPde − Jcd∇cYabd)σ


+2Jab

 ρ
JcePcdµe − Sdσ

ScJ
cdµd + 1

2nJ
cd(∇cSd − JefPcePdf )σ

.
Proof. We expand〈

∇a

 σ
µb
ρ

 ,
 σ̃
µ̃c
ρ̃

〉+
〈 σ

µb
ρ

 ,∇a
 σ̃
µ̃c
ρ̃

〉
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to obtain

(∇aσ − µa)ρ̃+ σ(∇ρ̃− PabJbcµ̃c + Saσ̃)
+ Jbc(∇aµb + Jabρ+ Pabσ)µ̃c + Jbcµb(∇aµ̃c + Jacρ̃+ Pacσ̃)
− (∇aρ− PabJbcµc + Saσ)σ̃ − ρ(∇aσ̃ − µ̃a)

in which all terms cancel save for

(∇aσ)ρ̃+ σ∇ρ̃+ Jbc(∇aµb)µ̃c + Jbcµb∇aµ̃c − (∇aρ)σ̃ − ρ∇aσ̃ ,

which reduces to
∇a
(
σρ̃+ Jbcµbµ̃c − ρσ̃

)
,

as required. For the curvature, we readily compute

∇[a∇b]

 σ
µd
ρ

 =

 ∇[a∇b]σ − Jbaρ
∇[a∇b]µd + Jd[aPb]cJceµe − Pd[aµb] + Tabdσ
∇[a∇b]ρ− TabcJcdµd + (∇[aSb] − JcdPacPbd)σ

 ,
where Tabc ≡ ∇[aPb]c − Jc[aSb]. Lemma 2, however, states that

Tabc = 1
2Yabc − JabSc

and
4n(∇[aSb] − JcdPacPbd) = JcdVab

e
cPde − Jcd∇cYabd

+ 2JabJcd(∇cSd − JefPcePdf ) .
Therefore,

∇[a∇b]

 σ
µd
ρ

 =

 0
∇[a∇b]µd + Jd[aPb]cJceµe − Pd[aµb] + 1

2Yabdσ
− 1

2YabcJ
cdµd + 1

4n (JcdVabecPde − Jcd∇cYabd)σ


+ Jab

 ρ
−Sdσ

ScJ
cdµd + 1

2nJ
cd(∇cSd − JefPcePdf )σ

 .
Finally,

Rab
c
dµc = Vab

c
dµc − 2Pd[aµb] + 2Jd[aPb]cJceµe + 2JabPdeJceµc ,

so
∇[a∇b]µd + Jd[aPb]cJceµe − Pd[aµb] = − 1

2Vab
c
dµc − JabPdeJceµc

whence

∇[a∇b]

 σ
µd
ρ

 =

 0
− 1

2Vab
c
dµc + 1

2Yabdσ
− 1

2YabcJ
cdµd + 1

4n (JcdVabecPde − Jcd∇cYabd)σ


+ Jab

 ρ
JcePcdµe − Sdσ

ScJ
cdµd + 1

2nJ
cd(∇cSd − JefPcePdf )σ

 ,
as required. �
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Corollary 1. The tractor connection is symplectically flat if and only if the
curvature tensor Vabcd vanishes.

4. Kähler geometry

Kähler manifolds provide a familiar source of symplectic manifolds equipped
with a compatible torsion-free connection as in §3. In this case, the connection ∇a
is the Levi-Civita connection of a metric gab and Jab ≡ Jacgbc is an almost complex
structure on M whose integrability is equivalent to the vanishing of ∇aJbc. In
Kähler geometry, the Riemann curvature tensor decomposes into three irreducible
parts:

(15)

Rab
c
d = Uab

c
d

+ δa
cΞbd − δbcΞad − gadΞbc + gbdΞac

+ Ja
cΣbd − JbcΣad − JadΣbc + JbdΣac + 2JabΣcd + 2JcdΣab

+ Λ(δacgbd − δbcgad + Ja
cJbd − JbcJad + 2JabJcd) ,

where indices have been raised using gab and
– Uab

c
d is totally trace-free with respect to gab, Jab, and Jab,

– Ξab is trace-free symmetric whilst Σab ≡ JacΞbc is skew.
Computing the Ricci curvature from this decomposition, we find

Rbd ≡ Rabad = 2(n+ 2)Ξbd + 2(n+ 1)Λgbd

and therefore from (12) conclude that

Pab = n+2
n+1Ξab + Λgab .

Hence

Jc
aRab

c
d = Jc

aVab
c
d − JbdPaa − 2JbaPda

= Jc
aVab

c
d − 2n+ 2

n+ 1Σbd − 2(n+ 1)ΛJbd .

On the other hand, from (15) we find

Jc
aRab

c
d = −2(n+ 2)Σbd − 2(n+ 1)ΛJbd

and, comparing these two expressions gives

Jc
aVab

c
d − 2n+2

n+1Σbd = −2(n+ 2)Σbd

and we have established the following.

Proposition 2. Concerning the symplectic curvature decomposition on a Kähler
manifold,

Jc
aVab

c
d = −2n(n+2)

n+1 Σbd .

Corollary 2. The symplectic tractor connection on a Kähler manifold is symplec-
tically flat if and only if the metric has constant holomorphic sectional curvature.
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Proof. According to Corollary 1, we have to interpret the constraint Vabcd = 0 in
the Kähler case. From (15) it is already clear that Uabcd = 0 and Proposition 2
implies that also Σab = 0 so (15) reduces to

Rab
c
d = Λ(δacgbd − δbcgad + Ja

cJbd − JbcJad + 2JabJcd) ,
which is exactly the constancy of holomorphic sectional curvature. �

5. BGG-like complexes on CPn
Fix a real vector space g−1 of dimension 2n, let g1 denotes its dual, and fix

a non-degenerate 2-form Jab ∈ ∧2g1. The (2n + 1)-dimensional Heisenberg Lie
algebra may be realised as

h = R⊕ g−1 ,

where the first summand is the 1-dimensional centre of h and the Lie bracket on
g−1 is given by

[X,Y ] = 2JabXaY b ∈ R ↪→ h .

We should admit right away that the reason for this seemingly arcane notation is
that we shall soon have occasion to write
(16) sp(2n+ 2,R) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

‖ ‖ ‖
R sp(2n,R)⊕ R R

(a |2|-graded Lie algebra as in [8, §4.2.6]) and, in particular, regard h = R⊕ g−1 =
g−2 ⊕ g−1 as a Lie subalgebra of sp(2n+ 2,R). Be that as it may, let us suppose
that V is a finite-dimensional representation of h. The Lie algebra cohomology
Hr(h,V) may be realised as the cohomology of the Chevalley-Eilenberg complex
(17) 0→ V→ h∗ ⊗ V→ · · · → ∧rh∗ ⊗ V→ ∧r+1h∗ ⊗ V→ · · ·
as, for example, in [13, Chapter IV]. We shall require, however, the following
alternative realisation.

Lemma 3. There is a complex

(18)
0 → V ∂−→ g1 ⊗ V ∂⊥−→ ∧2

⊥g1 ⊗ V ∂⊥−→ · · · ∂⊥−→ ∧n
⊥g1 ⊗ Vy

0 ← V ∂⊥←− g1 ⊗ V ∂⊥←− ∧2
⊥g1 ⊗ V ∂⊥←− · · · ∂⊥←− ∧n

⊥g1 ⊗ V
whose cohomology realises Hr(h,V). Here, we are writing

∧r
⊥g1 ≡ {ωabc···d ∈ ∧rg1 | Jabωabc···d = 0},

where Jab ∈ ∧2g−1 is the inverse of Jab ∈ ∧2g1 (let’s say normalised so that
JabJ

ac = δb
c).

Proof. Notice that any representation ρ : h → End(V) is determined by its
restriction to g−1 ⊂ h. Indeed, writing ∂a : g−1 → End(V) for this restriction, to
say that ρ is a representation of h is to say that

(19) (∂a∂b − ∂b∂a)v = 2Jabθv
(∂aθ − θ∂a)v = 0

}
∀ v ∈ V ,
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where θ ∈ End(V) is ρ(1) for 1 ∈ R ⊂ h.
The splitting h∗ = g1 ⊕ R allows us to write (17) as

(20)

V −→ h∗ ⊗ V −→ ∧2h∗ ⊗ V −→ ∧3h∗ ⊗ V −→ · · ·
‖ ‖ ‖ ‖
V −→ g1 ⊗ V −→ ∧2g1 ⊗ V −→ ∧3g1 ⊗ V −→ · · · ,
Q
Qs ⊕ �

�3Q
Qs ⊕ �

�3Q
Qs ⊕ �

�3Q
Qs

V −→ g1 ⊗ V −→ ∧2g1 ⊗ V −→ · · ·

where the differentials are given by

v 7→
[
∂av
θv

] [
φa
η

]
7→
[
∂[aφb] − Jabη
∂aη − θφa

] [
ωab
ψa

]
7→
[
∂[aωbc] + J[abψc]
∂[aψb] + θωab

]
et cetera. In particular, notice that the homomorphisms

(21) ∧r−1g1 3 ψ 7−→ ±J ∧ ψ ∈ ∧r+1g1

are
– independent of the representation on V,
– injective for 1 ≤ r < n,
– an isomorphism for r = n,
– surjective for n < r ≤ 2n− 1.

Note that ∧r+1
⊥ g1 is complementary to the image of (21) for 1 ≤ r < n. Also note

the isomorphisms

∧2n+1−rg1
J∧J∧···∧J−−−−−−−→ ∧r−1g1, for n < r ≤ 2n+ 1 ,

under which the kernel of (21) may be identified with

∧2n+1−r
⊥ g1, for n < r ≤ 2n− 1 .

Diagram chasing in (20) (or the spectral sequence of a filtered complex) finishes
the proof. �

Remark. Evidently, the equations (19) are algebraic versions of

(∇a∇b −∇b∇a)Σ = 2JabΘΣ
(∇aΘ−Θ∇a)Σ = 0

}
∀Σ ∈ Γ(E) ,

which hold for a symplectically flat connection ∇a on smooth vector bundle E
on M . Also (20) is the evident algebraic counterpart to the differential complex of
Lemma 1. It follows that explicit formulæ for the operators ∂⊥ in the complex (18)
follow the differential versions (2) and (3) with ∧n

⊥g⊗ V→ ∧n
⊥g⊗ V being given

by ∂2
⊥ − 2

nθ.
Let us now consider the tractor connection on CPn. According to Theorem 2, the

remarks following its statement, and the discussions in §3, this is the connection
on T = ∧0 ⊕∧1 ⊕∧0 given by

∇a

 σ
µb
ρ

 =

 ∇aσ − µa
∇aµb + Jabρ+ gabσ
∇aρ− Jabµb

 =

 ∇aσ
∇aµb + gabσ
∇aρ− Jabµb

+

 −µaJabρ
0

 .
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The induced operator ∇ : ∧1 ⊗ T → ∧2 ⊗ T is σb
µbc
ρb

 7−→
 ∇[aσb]
∇[aµb]c + gc[aσb]
∇[aρb] − J[a

cµb]c

+

 µ[ab]
−Jc[aρb]

0


but Corollary 2 says the tractor connection on CPn is symplectically flat so we
should contemplate ∇⊥ : ∧1 ⊗ T → ∧2

⊥ ⊗ T from Theorem 1, viz. σb
µbc
ρb

 7−→
 ∇[aσb] − 1

2nJ
cd∇cσdJab

. . .

. . .

+

 µ[ab] − 1
2nJ

cdµcdJab
−Jc[aρb] − 1

2nρcJab
0

 .
From these formulæ, let us focus attention on the homomorphisms

(22)

0 → T → ∧1 ⊗ T → ∧2
⊥ ⊗ T → · · · σ

µb
ρ

 7→

 −µaJabρ
0


 σb
µbc
ρb

 7→

 µ[ab] − 1
2nJ

cdµcdJab
−Jc[aρb] − 1

2nρcJab
0


It is evident that this is a complex and that its cohomology so far is

∧0 in degree 0 and
⊙2

∧1 in degree 1 .

On the other hand, one may check that the defining representation of the Lie
algebra sp(2n+ 2,R) on R2n+2 = R⊕R2n⊕R restricts via (16) to a representation
of the Heisenberg Lie algebra h = R⊕ g−1, given explicitly by

R2n+2 θ−→ R2n+2 σ
µb
ρ

 7−→

 ρ0
0


and R2n+2 ∂a−−→ g1 ⊗ R2n+2 σ

µb
ρ

 7−→

 −µaJabρ
0


(noticing that equations (19) hold, as they must). We may also find θ as part of
the curvature of the tractor connection on CPn. Specifically, the formula from
Proposition 1 reduces to

(23) (∇a∇a −∇b∇a)

 σ
µd
ρ

 = 2Jab

 ρ
Jd
eµe
−σ


and we find θ as the top component of Θ: T → T where Θ is defined by (5). If we
now consider the entire complex from Theorem 1, with filtration induced by

∧0 ⊂ ∧1 ⊕∧0 ⊂ ∧0 ⊕∧1 ⊕∧0 = T 0
0
ρ

  0
µb
ρ

  σ
µb
ρ
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of T , then the associated spectral sequence (or corresponding diagram chasing)
yields (22) continuing as in (18) including the middle operator ∇2

⊥− 2
nθ : ∧n

⊥ → ∧n
⊥.

The same reasoning pertains for any Fedosov structure with Vab
c
d = 0 as in

Corollary 1. Evidently, this sequence of vector bundle homomorphisms is induced
by the complex (18) and, together with Lemma 3, the spectral sequence of a filtered
complex (or the appropriate diagram chasing) immediately yields the following.
Theorem 3. Suppose ∇a is a torsion-free connection on a symplectic manifold
(M,Jab), such that ∇aJbc = 0 and so that the corresponding curvature tensor Vabcd
vanishes. Fix a finite-dimensional representation E of Sp(2n + 2,R) and let E
denote the associated ‘tractor bundle’ induced from the standard tractor bundle
and the representation E (so that the standard representation of Sp(2n + 2,R)
on R2n+2 yields the standard tractor bundle). In accordance with Corollary 1, the
induced ‘tractor connection’ ∇ : E → ∧1 ⊗ E is symplectically flat and we may
define Θ : E → E by (5). Having done this, there are complexes of differential
operators

0 → H0(h, E) → H1(h, E) → H2(h, E) → · · · → Hn(h, E)y
0 ← H2n+1(h, E) ← H2n(h, E) ← H2n−1(h, E) ← · · · ← Hn+1(h, E)

where Hr(h, E) denotes the tensor bundle on M that is induced by the cohomology
Hr(h,E) as a representation of Sp(2n,R). This complex is locally exact except near
the beginning where

ker : H0(h, E)→ H1(h, E) and ker : H1(h, E)→ H2(h, E)
im : H0(h, E)→ H1(h, E)

may be identified with the locally constant sheaves ker Θ and coker Θ, respectively.
In particular, for CPn with its Fubini–Study connection, these sheaves vanish and
the complex is locally exact everywhere.
Proof. It remains only to observe that for the Fubini–Study connection we see
from (23) that Θ : T → T is an isomorphism. �

The main point about Theorem 3, however, is that if the representation E of
Sp(2n+ 2,R) is irreducible, then the representations Hr(h,E) of Sp(2n,R) are also
irreducible and are computed by a theorem due to Kostant [14]. Specifically, if we
denote the irreducible representations of Sp(2n+ 2,R) and Sp(2n,R) by writing
the highest weight as a linear combination of fundamental weights and recording
the coefficients over the corresponding nodes of the Dynkin diagrams for Cn+1 and
Cn, as is often done, then Kostant’s Theorem says that

H0(h, • • • • · · · • 〈 •
a b c d e f

) = • • • · · · • 〈 •
b c d e f

H1(h, • • • • · · · • 〈 •
a b c d e f

) = • • • · · · • 〈 •
a+b+1 c d e f

H2(h, • • • • · · · • 〈 •
a b c d e f

) = • • • · · · • 〈 •
a b+c+1 d e f

H3(h, • • • • · · · • 〈 •
a b c d e f

) = • • • · · · • 〈 •
a b c+d+1 e f

...
Hn(h, • • • • · · · • 〈 •

a b c d e f
) = • • • · · · • 〈 •

a b c e+f+1
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and for r ≥ n+ 1, there are isomorphisms Hr(h,E) = H2n+1−r(h,E). Using the
same notation for the bundles Hr(h, E), the complexes of Theorem 3 become

• • • · · · • 〈 •
b c d e f ∇a+1

−−−−→ • • • · · · • 〈 •
a+b+1 c d e f

∇b+1

−−−−→ • • • · · · • 〈 •
a b+c+1 d e f

∇c+1

−−−−→ • • • · · · • 〈 •
a b c+d+1 e f

...
∇e+1

−−−−→ • • • · · · • 〈 •
a b c e+f+1

∇2f+2

−−−−−→ • • • · · · • 〈 •
a b c e+f+1

∇e+1

−−−−→ · · ·
...

∇a+1

−−−−→ • • • · · · • 〈 •
b c d e f

,

for arbitrary non-negative integers a, b, c, d, · · · , e, f . When all these integers are
zero, this is the Rumin–Seshadri complex. Just the first three terms in this complex,
in the special case when only a is non-zero, are already essential in [10]. For example,
if a = 1, then the first two differential operators are

σ 7→ ∇a∇bσ + Pabσ and φbc 7→
(
∇aφbc −∇bφac)⊥

where φbc is symmetric and ( )⊥ means to take the trace-free part with respect
to Jab. From the curvature decomposition and Bianchi identity we find that their
composition is

σ 7−→ Vab
d
c∇dσ + Yabcσ ,

which vanishes in case Vabcd = 0. In case Θ is invertible, as for the Fubini–Study
connection, we conclude that this sequence of differential operators is locally exact.
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