THE GROUP RING $\mathbb{K} F$ OF RICHARD THOMPSON'S GROUP F HAS NO MINIMAL NON-ZERO IDEALS

John Donnelly

Abstract

We use a total order on Thompson's group F to show that the group ring $\mathbb{K} F$ has no minimal non-zero ideals.

1. Introduction

We define Richard Thompson's group F to be the group of right fractions of the monoid P which is given by the presentation

$$
\left.\left\langle x_{0}, x_{1}, x_{2}, \ldots\right| x_{n} x_{m}=x_{m} x_{n+1} \text { for } n>m\right\rangle .
$$

Geoghegan has conjectured that the group F is an example of a finitely presented, nonamenable group which has no free subgroup on two generators [2]. In [1], Brin and Squier show that the group F has no free subgroup on two generators. However, the question of whether or not the group F is amenable has been open for over twenty years [2].

Let \mathbb{K} denote a field. It is shown in [1] that the group F is totally ordered. Using this fact we can show that the group ring $\mathbb{K} F$ is cancellative, and consequently does not have any zero-divisors. Thus, the set of all nonzero elements in $\mathbb{K} F$ forms a multiplicative monoid \mathcal{H} whose identity is the identity 1_{F} of the group F. We leave it to the reader to check that if \mathcal{H} is (left/right) amenable, then the group F is amenable.

Thus, one can ask whether or not the multiplicative monoid \mathcal{H} is right amenable. In [3], Frey gives necessary conditions that any minimal ideal of a semigroup S must satisfy for S to be right amenable. In particular, Frey shows that if S is a right amenable semigroup, \mathcal{L} is a minimal left ideal of S, and \mathcal{R} is a minimal right ideal of S, then
(i) \mathcal{L} is a two-sided ideal of S.
(ii) $\mathcal{R} \subseteq \mathcal{L}$.
(iii) \mathcal{R} is a group.
(iv) There exists a semigroup T such that \mathcal{L} is isomorphic to $\mathcal{R} \oplus T$, and such that for all $z_{1}, z_{2} \in T, z_{1} z_{2}=z_{1}$.

[^0]Frey also shows that if S is a semigroup containing a minimal left ideal \mathcal{L} and a minimal right ideal \mathcal{R}, then S is right amenable if and only if \mathcal{R} is an amenable group.

Thus, one can ask what the minimal ideals of \mathcal{H} are, and whether or not they satisfy the conditions stated above. In this paper, we use a total ordering on the group F to show that \mathcal{H} has no minimal left, right, or two-sided ideals.

2. A total ordering on the group F

We denote the set of generators $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ of P (and consequently, of F) by Σ, and we define the set $\Sigma_{n}=\left\{x_{m} \in \Sigma \mid m \geq n\right\}$. Given an element $q \in P$, we let $|q|$ denote the length of a word over Σ representing q. Every element of the group F can be represented uniquely by a normal form

$$
x_{i_{1}}^{b_{1}} x_{i_{2}}^{b_{2}} x_{i_{3}}^{b_{3}} \ldots x_{i_{m}}^{b_{m}} x_{j_{k}}^{-d_{k}} \ldots x_{j_{3}}^{-d_{3}} x_{j_{2}}^{-d_{2}} x_{j_{1}}^{-d_{1}}
$$

where
(i) for each t, and for each r, we have that $b_{t}, d_{r}>0$;
(ii) $i_{1}<i_{2}<\cdots<i_{m}$ and $j_{1}<j_{2}<\cdots<j_{k}$;
(iii) if there exists some i such that both x_{i} and x_{i}^{-1} are generators in the normal form, then x_{i+1} or x_{i+1}^{-1} is a generator in the normal form as well.
Given two generators x_{i} and x_{j} of P, then we define $x_{i}<x_{j}$ if and only if $i<j$. We can now use the shortlex ordering on the set of normal forms for the elements of the monoid P to get a total ordering $<_{P}$ on the monoid P. We use the ordering $<_{P}$ on P to define an ordering $<_{F}$ on all of the group F in the following way: Given $g \in F$ such that g has normal form $x y^{-1}$, with $x, y \in P$, then $g<_{F} 1_{F}$ if and only if $x<_{P} y$. We extend this to compare all elements of the group F by defining for each distinct pair $g, h \in F$ that $g<_{F} h$ if and only if $g h^{-1}<_{F} 1_{F}$. We will prove that $<_{F}$ is a well defined total ordering on the group F.

Let $g, h \in F$. Assume that $g h^{-1}$ has normal form $a b^{-1}$, where $a, b \in P$. Since $a b^{-1}$ is in normal form, then $b a^{-1}$ is in normal form. Moreover, since $h g^{-1}=$ $\left(g h^{-1}\right)^{-1}=\left(a b^{-1}\right)^{-1}=b a^{-1}$, then $h g^{-1}$ has normal form $b a^{-1}$. Note that in case (i) below, since $a=b$ and $a b^{-1}$ is in normal form, then a and b are empty words and consequently $a b^{-1}$ is the identity element of F. Therefore, if $g h^{-1}$ has normal form $a b^{-1}$, where $a, b \in P$, then
(i) $g=h$ if and only if $a=b$;
(ii) $g h^{-1}<_{F} 1_{F}$ if and only if $a<_{P} b$;
(iii) $h g^{-1}<_{F} 1_{F}$ if and only if $b<_{P} a$.

Since for each pair of elements $a, b \in P$, exactly one of $a=b, a<_{P} b$, or $b<_{P} a$ must hold, then given two elements $g, h \in F$, exactly one of $g=h, g h^{-1}<_{F} 1_{F}$, or $h g^{-1}<_{F} 1_{F}$ must hold. Thus, given two distinct elements $g, h \in F$, then either $g h^{-1}<_{F} 1_{F}$, in which case $g<_{F} h$, or else $h g^{-1}<_{F} 1_{F}$, in which case $h<_{F} g$.

Thus, it follows that $<_{F}$ is well defined and linear.
Lemma 1. Let $w_{1}, w_{2} \in P$ be such that $w_{1}<_{P} w_{2}$. If x_{m} is any generator of the monoid P, then $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Proof. Let $\left|w_{1}\right|=h$ and $\left|w_{2}\right|=k$. If $\left|w_{1}\right|<\left|w_{2}\right|$, then we see that $\left|x_{m} w_{1}\right|=$ $h+1<k+1=\left|x_{m} w_{2}\right|$, which implies that $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Assume that $\left|w_{1}\right|=k=\left|w_{2}\right|$. Let w_{1} have normal form $v x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}$, and let w_{2} have normal form $v x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$, where v is a (possibly empty) word over Σ, and $a_{1}<b_{1}$.

Assume that $k=1$. In this case, v is empty, $w_{1}=x_{a_{1}}$, and $w_{2}=x_{b_{1}}$, with $a_{1}<b_{1}$. First assume that $m \leq a_{1}<b_{1}$. In this case, $x_{m} w_{1}$ has normal form $x_{m} x_{a_{1}}$ and $x_{m} w_{2}$ has normal form $x_{m} x_{b_{1}}$. Since $a_{1}<b_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$. Next assume that $a_{1}<m \leq b_{1}$. In this case $x_{m} w_{1}$ has normal form $x_{a_{1}} x_{m+1}$, and $x_{m} w_{2}$ has normal form $x_{m} x_{b_{1}}$. Since $a_{1}<m$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$. Finally, assume that $a_{1}<b_{1}<m$. In this case $x_{m} w_{1}$ has normal form $x_{a_{1}} x_{m+1}$, and $x_{m} w_{2}$ has normal form $x_{b_{1}} x_{m+1}$. Since $a_{1}<b_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Now assume that $k \geq 2$, and that for each $j \in\{1, \ldots k-1\}$, if $u_{1}, u_{2} \in P$ are such that $\left|u_{1}\right|=\left|u_{2}\right|=j$ and $u_{1}<_{P} u_{2}$, then for each generator x_{m} of P, $x_{m} u_{1}<_{P} x_{m} u_{2}$.

Assume that $|v| \geq 1$, and that $x_{m} v=v x_{m+|v|}$. Since $a_{1}<b_{1}$, then it follows that $x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}<_{P} x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$. Therefore, by our induction hypothesis we have that $x_{m+|v|} x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}<_{P} x_{m+|v|} x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$. Thus, $x_{m+|v|} x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}$ has normal form $\sigma x_{i_{1}} x_{i_{2}} \ldots x_{i_{q}}$. Similarly, we see that $x_{m+|v|} x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$ has normal form $\sigma x_{j_{1}} x_{j_{2}} \ldots x_{j_{q}}$, where σ is a (possibly empty) word over Σ, and $i_{1}<j_{1}$. Therefore, $x_{m} w_{1}$ has normal form $v \sigma x_{i_{1}} x_{i_{2}} \ldots x_{i_{q}}$, and $x_{m} w_{2}$ has normal form $v \sigma x_{j_{1}} x_{j_{2}} \ldots x_{j_{q}}$. Since $i_{1}<j_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Now Assume that $|v| \geq 1$, and that $x_{m} v=u x_{m+|u|} z$, where z is some nonempty word over $\Sigma_{m+|u|}$, and where u is some (possibly empty) word over Σ. In this case, $x_{m} w_{1}$ has normal form $u x_{m+|u|} z x_{a_{1}} x_{a_{2}} \ldots x_{a_{t}}$, and $x_{m} w_{2}$ has normal form $u x_{m+|u|} z x_{b_{1}} x_{b_{2}} \ldots x_{b_{t}}$. Since $a_{1}<b_{1}$, then it follows that $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Finally, assume that v is empty. In this case, w_{1} has normal form $x_{a_{1}} x_{a_{2}} \ldots x_{a_{k}}$, and w_{2} has normal form $x_{b_{1}} x_{b_{2}} \ldots x_{b_{k}}$, where $a_{1}<b_{1}$. First assume that $m \leq$ $a_{1}<b_{1}$. In this case, $x_{m} w_{1}$ has normal form $x_{m} x_{a_{1}} x_{a_{2}} \ldots x_{a_{k}}$, and $x_{m} w_{2}$ has normal form $x_{m} x_{b_{1}} x_{b_{2}} \ldots x_{b_{k}}$. Since $a_{1}<b_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$. Next assume that $a_{1}<m \leq b_{1}$. In this case, $x_{m} w_{1}$ has normal form $x_{a_{1}} \beta$, where β is a word over $\Sigma_{a_{1}}$ of length k, and $x_{m} w_{2}$ has normal form $x_{m} x_{b_{1}} x_{b_{2}} \ldots x_{b_{k}}$. Since $a_{1}<m$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$. Finally, assume that $a_{1}<b_{1}<m$. In this case, $x_{m} w_{1}$ has normal form $x_{a_{1}} \rho_{1}$, where ρ_{1} is a word over $\Sigma_{a_{1}}$ of length k, and $x_{m} w_{2}$ has normal form $x_{b_{1}} \rho_{2}$, where ρ_{2} is a word over $\Sigma_{b_{1}}$ of length k. Since $a_{1}<b_{1}$, then $x_{m} w_{1}<_{P} x_{m} w_{2}$.

Lemma 2. Let $w_{1}, w_{2} \in P$ be such that $w_{1}<_{P} w_{2}$. If x_{m} is any generator of the monoid P, then $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Proof. Let $\left|w_{1}\right|=h$ and $\left|w_{2}\right|=k$. If $\left|w_{1}\right|<\left|w_{2}\right|$, then we see that $\left|w_{1} x_{m}\right|=$ $h+1<k+1=\left|w_{2} x_{m}\right|$, which implies that $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Assume that $\left|w_{1}\right|=k=\left|w_{2}\right|$. Let w_{1} have normal form $x_{a_{1}} x_{a_{2}} \ldots x_{a_{k}}$, and let w_{2} have normal form $x_{b_{1}} x_{b_{2}} \ldots x_{b_{k}}$. First assume that $k=1$. In this case, $w_{1}=x_{a_{1}}$ and $w_{2}=x_{b_{1}}$, with $a_{1}<b_{1}$. If $m<a_{1}<b_{1}$, then $w_{1} x_{m}$ has normal form $x_{m} x_{a_{1}+1}$, and $w_{2} x_{m}$ has normal form $x_{m} x_{b_{1}+1}$, which implies that $w_{1} x_{m}<_{P} w_{2} x_{m}$. Assume
that $a_{1} \leq m<b_{1}$. Thus, $w_{1} x_{m}$ has normal form $x_{a_{1}} x_{m}$, and $w_{2} x_{m}$ has normal form $x_{m} x_{b_{1}+1}$. If $a_{1}<m$, then $w_{1} x_{m}=x_{a_{1}} x_{m}<_{P} x_{m} x_{b_{1}+1}=w_{2} x_{m}$. If $a_{1}=m$, then $w_{1} x_{m}=x_{m} x_{m}<_{P} x_{m} x_{b_{1}+1}=w_{2} x_{m}$. Assume that $a_{1}<b_{1} \leq m$. In this case, we see that $w_{1} x_{m}$ has normal form $x_{a_{1}} x_{m}$, and $w_{2} x_{m}$ has normal form $x_{b_{1}} x_{m}$, which implies that $w_{1} x_{m}=x_{a_{1}} x_{m}<_{P} x_{b_{1}} x_{m}=w_{2} x_{m}$.

Now assume that $k \geq 2$, and that for each $j \in\{1, \ldots k-1\}$, if $u_{1}, u_{2} \in P$ are such that $\left|u_{1}\right|=\left|u_{2}\right|=j$ and $u_{1}<_{P} u_{2}$, then for each generator x_{m} of P, $u_{1} x_{m}<_{P} u_{2} x_{m}$.

Assume that $a_{1}=b_{1} \leq m$. In this case, w_{1} has normal form $x_{a_{1}} \sigma_{1}$, and w_{2} has normal form $x_{a_{1}} \sigma_{2}$, where σ_{1} and σ_{2} are words over $\Sigma_{a_{1}}$. Since $x_{a_{1}} \sigma_{1}=$ $w_{1}<_{P} w_{2}=x_{a_{1}} \sigma_{2}$, then it must be the case that $\sigma_{1}<_{P} \sigma_{2}$. Therefore, it follows by our induction hypothesis that $\sigma_{1} x_{m}<_{P} \sigma_{2} x_{m}$. Thus, $\sigma_{1} x_{m}$ has normal form $v x_{c_{1}} x_{c_{2}} \ldots x_{c_{t}}$, and $\sigma_{2} x_{m}$ has normal form $v x_{e_{1}} x_{e_{2}} \ldots x_{e_{t}}$, where v is a word over $\Sigma_{a_{1}}$, and $c_{1}<e_{1}$. Therefore, $x_{a_{1}} \sigma_{1} x_{m}$ has normal form $x_{a_{1}} v x_{c_{1}} x_{c_{2}} \ldots x_{c_{t}}$, and $x_{a_{1}} \sigma_{2} x_{m}$ has normal form $x_{a_{1}} v x_{e_{1}} x_{e_{2}} \ldots x_{e_{t}}$, where $c_{1}<e_{1}$. Since $w_{1} x_{m}=$ $x_{a_{1}} \sigma_{1} x_{m}$ and $w_{2} x_{m}=x_{a_{1}} \sigma_{2} x_{m}$, then it follows that $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Now assume that $a_{1}<b_{1} \leq m$. In this case $w_{1} x_{m}$ has normal form $x_{a_{1}} \beta_{1}$, where β_{1} is a word over $\Sigma_{a_{1}}$, and $w_{2} x_{m}$ has normal form $x_{b_{1}} \beta_{2}$, where β_{2} is a word over $\Sigma_{b_{1}}$. Thus, $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Assume that $a_{1}=m<b_{1}$. In this case, $w_{1} x_{m}$ has normal form $x_{m} x_{m} \rho$, where ρ is a word over Σ_{m}, and $w_{2} x_{m}$ has normal form $x_{m} x_{b_{1}+1} x_{b_{2}+1} \ldots x_{b_{k}+1}$. Since $m<b_{1}<b_{1}+1$, then $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Assume that $a_{1}<m<b_{1}$. In this case, $w_{1} x_{m}$ has normal form $x_{a_{1}} \alpha$, where α is a word over $\Sigma_{a_{1}}$, and $w_{2} x_{m}$ has normal form $x_{m} x_{b_{1}+1} x_{b_{2}+1} \ldots x_{b_{k}+1}$. Since $a_{1}<m$, then $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Finally, assume that $m<a_{1}<b_{1}$. In this case, $w_{1} x_{m}$ has normal form $x_{m} x_{a_{1}+1} x_{a_{2}+1} \ldots x_{a_{k}+1}$, and $w_{1} x_{m}$ has normal form $x_{m} x_{b_{1}+1} x_{b_{2}+1} \ldots x_{b_{k}+1}$. This implies that $w_{1} x_{m}<_{P} w_{2} x_{m}$.

Given $a, b, c \in P$, with $a<_{P} b$, then by using Lemmas 1 and 2 as induction base steps, one can use induction on the length $|c|$ to show that $c a<_{P} c b$ and $a c<_{P} b c$. We now extend this property to the ordering $<_{F}$ by showing that for all $g, h, d \in F$, if $g<_{F} h$, then $d g<_{F} d h$ and $g d<_{F} h d$. Again, we note that in case (i) below, since $a=b$ and $a b^{-1}$ is in normal form, then a and b are empty words and consequently $a b^{-1}$ is the identity element 1_{P} of P.
Lemma 3. Let $a, b, c, d \in P$ be such that $a b^{-1}=c d^{-1}$, and such that $a b^{-1}$ is in normal form. Then
(i) $a=b$ if and only if $c=d$;
(ii) $a<_{P} b$ if and only if $c<_{P} d$;
(iii) $b<_{P} a$ if and only if $d<_{P} c$.

Proof. Let 1_{P} denote the identity element of the monoid P. Since $a=b$ if and only if $c d^{-1}=a b^{-1}=1_{P}$, and since $c d^{-1}=1_{P}$ if and only if $c=d$, then $a=b$ if and only if $c=d$.

Assume that $a \neq b$. When rewriting the normal form $a b^{-1}$ to get the word $c d^{-1}$, we multiply a on the right by a (possibly empty) word u over Σ, and we multiply
b^{-1} on the left by the (possibly empty) word u^{-1} over Σ^{-1}. In particular, the word u consists of all the generators from c that cancel when we multiply c with d^{-1}, and then simplify to rewrite $c d^{-1}$ in the normal form $a b^{-1}$. Thus, $c=a u$ and $d=b u$. If $a<_{P} b$, then it follows by the comments above that $c=a u<_{P} b u=d$. If $b<_{P} a$, then again it follows by the comments above that $d=b u<_{P} a u=c$.

Now assume that $c<_{P} d$. Since $<_{P}$ is a linear ordering on P, then exactly one of the following is true: $a<_{P} b, a=b$, or $b<_{P} a$. If $a=b$, then $c=d$, a contradiction. If $b<_{P} a$, then it follows from the argument given above that $d<_{P} c$, a contradiction. Thus, $a<_{P} b$. A similar argument shows that if $d<_{P} c$, then $b<_{P} a$.

Lemma 4. Let $c, d \in P$. Then $c<_{P} d$ if and only if $c<_{F} d$.
Proof. Let $c d^{-1}$ have normal form $a b^{-1}$, where $a, b \in P$. Assume that $c<_{P} d$. Since $c<_{P} d$ and $c d^{-1}$ has normal form $a b^{-1}$, then it follows by Lemma 3 that $a<_{P} b$. Thus, by definition of $<_{F}$, we have that $a b^{-1}<_{F} 1_{F}$, which implies that $c d^{-1}<_{F} 1_{F}$, which in turn implies that $c<_{F} d$.

Conversely, assume that $c<_{F} d$. By definition of $<_{F}$, we have that $c d^{-1}<_{F} 1_{F}$. Since $a b^{-1}=c d^{-1}$, then $a b^{-1}<_{F} 1_{F}$, which implies that $a<_{P} b$. Therefore, by Lemma 3 we have that $c<_{P} d$.

Lemma 5. Let $g, h \in F$ be such that $g<_{F} h$. Then for any $d \in F, g d<_{F} h d$.
Proof. Since $g<_{F} h$, then it follows by definition of $<_{F}$ that $g h^{-1}<_{F} 1_{F}$. Thus, we see that $(g d)\left(d^{-1} h^{-1}\right)=g h^{-1}<_{F} 1_{F}$, which implies that $g d<_{F} h d$.

Lemma 6. Let $g \in F$ and $c, d \in P$. If $g<_{F} c$ and $c<_{F} d$, then $g<_{F} d$.
Proof. Let g have normal form $a b^{-1}$, where $a, b \in P$. Since $a b^{-1}<_{F} c$, then it follows by Lemma 5 that $a<_{F} c b$. Since $a<_{F} c b$, then it follows that $a<_{P} c b$. Similarly, since $c<_{F} d$, then $c<_{P} d$. Since $a<_{P} c b$ and $c<_{P} d$, then $a<_{P} c b<_{P} d b$. Therefore, by definition of $<_{F}$, we have that $a b^{-1} d^{-1}<_{F} 1_{F}$, which implies that $a b^{-1}<_{F} d$. Hence, $g<_{F} d$.

Lemma 7. Let $g, h \in F$. If $g<_{F} h$ and $h<_{F} 1_{F}$, then $g<_{F} 1_{F}$.
Proof. Let g have normal form $a b^{-1}$, where $a, b \in P$, and let h have normal form $c d^{-1}$, where $c, d \in P$. Since $c d^{-1}<_{F} 1_{F}$, then $c<_{F} d$. Since $a b^{-1}<_{F} c d^{-1}$, then it follows by Lemma 5 that $a b^{-1} d<_{F} c$. Since $a b^{-1} d<_{F} c$ and $c<_{F} d$, then it follows by Lemma 6 that $a b^{-1} d<_{F} d$. Thus, by Lemma 5 we have that $a b^{-1}<_{F} 1_{F}$. Hence, $g<{ }_{F} 1_{F}$.

Lemma 8. Let $g, h, d \in F$. If $g<_{F} h$ and $h<_{F} d$, then $g<_{F} d$.
Proof. Since $g<_{F} h$, then it follows by Lemma 5 that $g d^{-1}<_{F} h d^{-1}$. Since $h<_{F} d$, then it follows that $h d^{-1}<_{F} 1_{F}$. Therefore, it follows by Lemma 7 that $g d^{-1}<_{F} 1_{F}$. Thus, it follows by definition of $<_{F}$ that $g<_{F} d$.

Lemma 9. Let $g, h \in F$, and let $b \in P$. If $g<_{F} h$, then $b g<_{F} b h$.

Proof. Let $g h^{-1}$ have normal form $c d^{-1}$, where $c, d \in P$. Since $g<_{F} h$, then it follows that $g h^{-1}<_{F} 1_{F}$. Since $g h^{-1}$ has normal form $c d^{-1}$, then it follows that $c d^{-1}<_{F} 1_{F}$. Therefore, $c<_{F} d$, which implies that $c<_{P} d$. Thus, it follows that $b c<_{P} b d$, which implies that $b c<_{F} b d$, and therefore that $b c d^{-1} b^{-1}<_{F} 1_{F}$. Again, since $g h^{-1}$ has normal form $c d^{-1}$, then it follows that $b g h^{-1} b^{-1}<_{F} 1_{F}$, and therefore that $b g<_{F} b h$.

Lemma 10. Let $g, h \in F$, and let $b \in P$. If $g<_{F} h$, then $b^{-1} g<_{F} b^{-1} h$.
Proof. If $b^{-1} g=b^{-1} h$, then $g=h$, a contradiction. Thus, $b^{-1} g \neq b^{-1} h$. Suppose that $b^{-1} h<_{F} b^{-1} g$. Thus, it follows by Lemma 9 that $b\left(b^{-1} h\right)<_{F} b\left(b^{-1} g\right)$, which implies that $h<_{F} g$, a contradiction. Hence, $b^{-1} g<_{F} b^{-1} h$.

Lemma 11. Let $g, h, u \in F$. If $g<_{F} h$, then $u g<_{F} u h$.
Proof. Let u have normal form $a b^{-1}$, where $a, b \in P$. Since $g<_{F} h$, then it follows by Lemma 10 that $b^{-1} g<_{F} b^{-1} h$. Therefore, since $b^{-1} g<_{F} b^{-1} h$, then it follows by Lemma 9 that $a b^{-1} g<_{F} a b^{-1} h$. Hence, $u g<_{F} u h$.

Lemma 12. Let $g_{1}, g_{2}, h_{1}, h_{2} \in F$ be such that $g_{1}<_{F} g_{2}$ and $h_{1}<_{F} h_{2}$. Then it follows that $g_{1} h_{1}<_{F} g_{2} h_{2}$.

Proof. Since $g_{1}<_{F} g_{2}$, then it follows by Lemma 5 that $g_{1} h_{1}<_{F} g_{2} h_{1}$. Similarly, since $h_{1}<_{F} h_{2}$, then it follows by Lemma 11 that $g_{2} h_{1}<_{F} g_{2} h_{2}$. Therefore, since $g_{1} h_{1}<_{F} g_{2} h_{1}$ and $g_{2} h_{1}<_{F} g_{2} h_{2}$, then it follows by Lemma 8 that $g_{1} h_{1}<_{F}$ $g_{2} h_{2}$.

3. The main result

Lemma 13. Let $g_{1}, g_{2} \in F$. Assume that g_{1} has normal form $a_{1} b_{1}^{-1}$, and that g_{2} has normal form $a_{2} b_{2}^{-1}$, where $a_{1}, a_{2}, b_{1}, b_{2} \in P$. If $\left|a_{1}\right|+\left|b_{2}\right|<\left|a_{2}\right|+\left|b_{1}\right|$, then $g_{1}<_{F} g_{2}$.

Proof. Let $b_{1}^{-1} b_{2}$ have normal form $c d^{-1}$, where $c, d \in P$. Each generator x_{i} in the normal form of b_{2} which cancels when multiplying b_{1}^{-1} and b_{2} to put $b_{1}^{-1} b_{2}$ in normal form will cancel with exactly one of the generators x_{j}^{-1} in the normal form of b_{1}^{-1}. That is, any generators from b_{2} and b_{1}^{-1} which cancel when transforming $b_{1}^{-1} b_{2}$ into normal form will cancel in pairs. Thus, if k generators cancel from the normal form of b_{2}, then k generators cancel from the normal form of b_{1}^{-1}. Therefore, we see that $|c|=\left|b_{2}\right|-k$, and that $|d|=\left|b_{1}\right|-k$. Since $a_{1}, c \in P$, then there is no cancellation of generators when multiplying a_{1} and c. Thus, we see that $\left|a_{1} c\right|=\left|a_{1}\right|+|c|$. Similarly, we see that $\left|a_{2} d\right|=\left|a_{2}\right|+|d|$. Therefore, we have that $\left|a_{1} c\right|=\left|a_{1}\right|+|c|=\left|a_{1}\right|+\left|b_{2}\right|-k<\left|a_{2}\right|+\left|b_{1}\right|-k=\left|a_{2}\right|+|d|=\left|a_{2} d\right|$. Since $\left|a_{1} c\right|<\left|a_{2} d\right|$, then it follows that $a_{1} c<_{F} a_{2} d$. Thus, $a_{1} b_{1}^{-1} b_{2}=a_{1} c d^{-1}<_{F} a_{2}$, which implies that $a_{1} b_{1}^{-1}<_{F} a_{2} b_{2}^{-1}$. Hence, $g_{1}<_{F} g_{2}$.

Theorem 1. Let \mathcal{H} denote the multiplicative monoid of nonzero elements in the group ring $\mathbb{K} F$. Then \mathcal{H} has no minimal ideals.

Proof. Suppose, to the contrary, that \mathcal{I} is a minimal two-sided ideal of \mathcal{H}. Since \mathcal{H} is a cancellative monoid, then \mathcal{I} is a principal ideal. Let $\hat{g}=\sum_{i=1}^{m} r_{i} g_{i} \in \mathcal{H}$ be such that $\mathcal{I}=\mathcal{H} \hat{g} \mathcal{H}$. By renumbering if necessary, we may assume that $g_{1}<_{F}$ $g_{2}<_{F} \cdots<_{F} g_{m}$. Since $\sum_{i=1}^{m} r_{i} g_{i}=g_{1} \sum_{i=1}^{m} r_{i}\left(g_{1}^{-1} g_{i}\right)$, then $\mathcal{I}=\mathcal{H} \sum_{i=1}^{m} r_{i}\left(g_{1}^{-1} g_{i}\right) \mathcal{H}$. In particular, we may assume that $g_{1}=1_{F}$. Let g_{m} have normal form $c d^{-1}$, where $c, d \in P$. Let $\mathcal{J}=\mathcal{H}(\hat{g})\left(1_{F}+c\right) \mathcal{H}=\mathcal{H}\left(\sum_{i=1}^{m} r_{i} g_{i}+\sum_{i=1}^{m} r_{i}\left(g_{i} c\right)\right) \mathcal{H}$. Since $1_{F}=g_{1}<_{F} g_{m}=c d^{-1}$, then $1_{F} \leq_{F} d<_{F} c$. Thus, 1_{F} and $g_{m} c$ are the smallest and largest elements, respectively, of F used to write $(\hat{g})\left(1_{F}+c\right)$ as a sum in the group ring $\mathbb{K} F$. Since $(\hat{g})\left(1_{F}+c\right) \in \mathcal{I}$, then \mathcal{J} is a subideal of \mathcal{I}. Since \mathcal{I} is minimal, then it must be the case that $\hat{g} \in \mathcal{I}=\mathcal{J}$. Thus, there exist $\sum_{j=1}^{l} s_{j} h_{j}, \sum_{k=1}^{e} t_{k} q_{k} \in \mathcal{H}$ such that $\hat{g}=\left(\sum_{j=1}^{l} s_{j} h_{j}\right)(\hat{g})\left(1_{F}+c\right)\left(\sum_{k=1}^{e} t_{k} q_{k}\right)$. Again, by renumbering if necessary, we may assume that $h_{1} \leq_{F} h_{2} \leq_{F} \cdots \leq_{F} h_{l}$ and $q_{1} \leq_{F} q_{2} \leq_{F} \cdots \leq_{F} q_{e}$. Since F is totally ordered, and since 1_{F} and g_{m} are the smallest and largest elements, respectively, of F used to write \hat{g} as a sum in the group ring $\mathbb{K} F$, then it follows that $h_{1} q_{1}=1_{F}$, and $h_{l} g_{m} c q_{e}=g_{m}$. This implies that $h_{1}=q_{1}^{-1}$.

First assume that $h_{1}=q_{1}=1_{F}$. Since $1_{F}<_{F} c, 1_{F}=q_{1} \leq_{F} q_{e}$, and $1_{F}=$ $h_{1} \leq_{F} h_{l}$, then $g_{m}<_{F} h_{l} g_{m} c q_{e}$, a contradiction. Therefore, $q_{1} \neq 1_{F}$. In this case we have that $1_{F}<_{F} q_{1}$ or $1_{F}<_{F} h_{1}$. We may assume that $1_{F}<_{F} q_{1}$ (the proof for the case that $1_{F}<_{F} h_{1}$ is similar). Since $1_{F}<_{F} q_{1}$, then $h_{1}=q_{1}^{-1}<_{F} 1_{F}$. Let h_{l} have normal form $a b^{-1}$, and let q_{e} have normal form $y x^{-1}$, where a, b, x, $y \in P$. Since $1_{F}<_{F} q_{1} \leq_{F} q_{e}$, then $|x| \leq|y|$. Similarly, since $1_{F}<_{F} c$, then $|c| \geq 1$. Since $h_{l} g_{m} c q_{e}=g_{m}$, then $h_{l}=g_{m} q_{e}^{-1} c^{-1} g_{m}^{-1}=\left(c d^{-1}\right)\left(x y^{-1}\right)\left(c^{-1}\right)\left(d c^{-1}\right)$. As in the proof of Lemma 13 when transforming h_{l} into normal form, any generators which cancel must cancel in pairs. Thus, if k generators cancel in c, x, or d, then k generators must cancel in d^{-1}, y^{-1}, or either of the copies of c^{-1}. Thus, $|a|=|c|+|x|+|d|-k$, and $|b|=|d|+|y|+2|c|-k$. Therefore, we see that $|a|+|y|=(|c|+|x|+|d|-k)+|y|<|d|+|y|+2|c|+|x|-k=|b|+|x|$. It follows by Lemma 13 that $h_{l}=a b^{-1}<_{F} x y^{-1}=q_{e}^{-1}$. Thus, it follows that $h_{l}<_{F} q_{e}^{-1} \leq_{F} q_{1}^{-1}=h_{1}$, which is a contradiction. Hence, \mathcal{H} does not have a minimal two-sided ideal.

A similar argument shows that \mathcal{H} has neither a minimal left ideal nor a minimal right ideal.

References

[1] Brin, M., Squier, C., Groups of piecewise linearhomeomorphisms of the real line, Invent. Math. 79 (3) (1985), 485-498.
[2] Cannon, J.W., Floyd, W.J., Parry, W.R., Introductory notes on Richard Thompson's groups, Enseign. Math. 42 3-4) (1996), 215-256.
[3] Frey, A.H., Studies on Amenable Semigroups, Ph.D. thesis, University of Washington, 1960.

Department of Mathematics,
University of Southern Indiana,
8600 University Boulevard,
Evansville, Indiana 47712
E-mail: jrdonnelly@usi.edu

[^0]: 2010 Mathematics Subject Classification: primary 20N99.
 Key words and phrases: Thompson's Group F, amenability, minimal ideal.
 Received December 4, 2016, revised November 2018. Editor J. Trlifaj.
 DOI: 10.5817/AM2019-1-23

