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A VISCOSITY-PROXIMAL GRADIENT METHOD

WITH INERTIAL EXTRAPOLATION FOR SOLVING

CERTAIN MINIMIZATION PROBLEMS IN HILBERT SPACE

L.O. Jolaoso, H.A. Abass, and O.T. Mewomo

Abstract. In this paper, we study the strong convergence of the proximal
gradient algorithm with inertial extrapolation term for solving classical mi-
nimization problem and finding the fixed points of δ-demimetric mapping
in a real Hilbert space. Our algorithm is inspired by the inertial proximal
point algorithm and the viscosity approximation method of Moudafi. A strong
convergence result is achieved in our result without necessarily imposing
the summation condition

∑∞
n=1 βn‖xn−1 − xn‖ < +∞ on the inertial term.

Finally, we provide some applications and numerical example to show the
efficiency and accuracy of our algorithm. Our results improve and complement
many other related results in the literature.

1. Introduction

Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of H. Let T : H → H be a nonlinear mapping, a point x ∈ H is called a fixed point
of T if Tx = x. We denote the set of all fixed points of T by F (T ). Let D(T ) ⊂ H,
then T is said to be

(1) a contraction if there exists α ∈ [0, 1) such that

‖Tx− Ty‖ ≤ α‖x− y‖ , ∀x, y ∈ D(T ) .

If α = 1, then T is called a nonexpansive mapping;
(2) quasi-nonexpansive if F (T ) 6= ∅ and

‖Tx− p‖ ≤ ‖x− p‖ , x ∈ D(T ) and p ∈ F (T ) ;

(3) firmly nonexpansive if for all x, y ∈ D(T ), we have

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉 ;
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(4) β-inverse strongly monotone (shortly β-ism) if there exists β > 0 such that

〈x− y, Tx− Ty〉 ≥ β‖Tx− Ty‖2 , ∀x, y ∈ D(T ) ;

(5) k-strictly pseudo-contraction if there exists k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− Tx− (y − Ty)‖2 , ∀x, y ∈ D(T ) ;

(6) δ-demimetric, if there exist δ ∈ (−∞, 1) such that

(1.1) 〈x− p, x− Tx〉 ≥ 1− δ
2 ‖x− Tx‖2 , ∀x ∈ D(T ) and p ∈ F (T ) .

Equivalently, T is δ-demimetric, if there exists δ ∈ (−∞, 1) such that

(1.2) ‖Tx− p‖2 ≤ ‖x− p‖2 + δ‖x− Tx‖2 , ∀x ∈ D(T ) and p ∈ F (T ) .

It is easy to see that every firmly nonexpansive mapping is 1-ism. The class
of δ-demimetric was recently introduced by Takahashi [46] as a generalization
of k-strictly pseudo-contraction, firmly nonexpansive, quasi-nonexpansive and
nonexpansive mappings in a real Hilbert space.

We give the following examples of δ-demimetric mapping in real Hilbert space.

Example 1.1. Let H = R (the real line with usual metric). Define T : R→ R by
Tx = x

2 , for all x ∈ R. Clearly, F (T ) = {0}. Thus

〈x− p, x− Tx〉 = 〈x− 0, x− x

2 〉 = 〈x, x2 〉 = 1
2 〈x, x〉

= 1
2
∣∣x∣∣2 ≥ ∣∣x2 ∣∣2

= 1− δ
2
∣∣x
2
∣∣1− δ

2
∣∣x− Tx∣∣2 ,

where δ = −1. From (1.1), we see that T is −1-demimetric.

Example 1.2. Let H be the real line and C = [−2, 1]. Define

Tx =


x+ 9

10 , x ∈ [0, 1] ,
3 + x

4 , x ∈ [−2, 0) .

Obviously, F (T ) = {1}. We will show that there exists δ ∈ (−∞, 1) such that

|Tx− 1|2 ≤ |x− 1|2 + δ|x− Tx|2 , ∀x ∈ [−2, 1] .

Consider the following two cases:
Case (i): Let x ∈ [0, 1], then

|x− Tx|2 =
∣∣∣x− x+ 9

10

∣∣∣2 =
∣∣∣ 9
10(x− 1)

∣∣∣2 = 81
100 |x− 1|2.
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Also

|Tx− 1|2 =
∣∣∣x+ 9

10 − 1
∣∣∣2 = 1

100 |x− 1|2

= |x− 1|2 − 99
100 |x− 1|2

= |x− 1|2 − 99
81 ×

81
100 |x− 1|2

≤ |x− 1|2 + δ1.
81
100 |x− 1|2 ,

for any δ1 ∈ [− 99
81 , 1). Hence |Tx− 1|2 ≤ |x− 1|2 + δ1|x− Tx|2.

Case (ii): Let x ∈ [−2, 0), thus

|x− Tx|2 =
∣∣∣x− 3 + x

4

∣∣∣2 =
∣∣∣3(x− 1)

4

∣∣∣2 = 9
16 |x− 1|2 .

Then

|Tx− 1|2 =
∣∣∣3 + x

4 − 1
∣∣∣2 =

∣∣∣x− 1
4

∣∣∣2 = 1
16 |x− 1|2

= |x− 1|2 − 15
16 |x− 1|2

= |x− 1|2 − 15
9 ·

9
16 |x− 1|2

≤ |x− 1|2 + δ2 ·
9
16 |x− 1|2 ,

for any δ2 ∈ [− 15
9 , 1). Hence |Tx−1|2 ≤ |x−1|2 +δ1|x−Tx|2. In particular, choose

δ = min{δ1, δ2}. Thus, T is − 15
9 -demimetric.

Consider the following minimization problem
(1.3) minimize

{
g(x) + h(x)

}
,

where h : H → R∪ {+∞} is a proper, closed and convex function which is possibly
nonsmooth and g : H → R is a proper, closed, convex and continuously differentiable
function and its gradient ∇g(·) is Lipschitz continuous on H, i.e. there exists a
constant α > 0 such that

‖∇g(x)−∇g(y)‖ ≤ α‖x− y‖ , ∀x, y ∈ H .

Throughout this paper, we assume that Problem (1.3) has a solution and denote
its set of solutions by Ω. The Proximal Gradient Method (PGM) which has been
effective in approximating solutions of (1.3) can be formulate as follows: Given the
initial point x1 ∈ H, compute
(1.4) xn+1 = proxγnh(xn − γn∇g(xn)) , n ≥ 1 ,

where proxγnh(x) := argmin
u∈H

{h(x) + 1
2γn ||x − u||

2} and γn > 0 is a stepsize. The

proxγh operator is firmly nonexpansive and when g = 0 in (1.3), the PGM reduces
to the classical proximal point algorithm, see [18]. The PGM can be shown to
converge with rate O( 1

k ) when a fixed stepsize γn = γ ∈ (0, 1
α ] is used (see [14, 37]).
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If α is unknown, the stepsize γn can be found by line searching method (see [3]).
More so, if the condition

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2
α

is satisfied, then the sequence {xn} converges weakly to a point in Ω. The PGM
can also be interpreted as a fixed point iteration. A point x∗ is a solution of (1.3)
if and only if it is a fixed point of the operator proxγh(I − γ∇g) (see Section 4.2.1
in [37] and Proposition 3.2 in [50]).

When h = IC (the indicator function on a nonempty closed convex subset of
H), the PGM reduces to the well known gradient projection algorithm which is
defined as follows. For an initial guess x1 ∈ H,
(1.5) xn+1 = PC

(
xn − γn∇g(xn)

)
, n ≥ 1 ,

where PC is the metric projection from H onto C. The convergence of algorithm
(1.5) depends on the behaviour of the gradient ∇g. It is known that if ∇g is
ν-strongly monotone operator, i.e. there exists α > 0 such that

〈∇g(x)−∇g(y), x− y〉 ≥ ν‖x− y‖2, ∀ x, y ∈ C ,
then, the operator T := PC(I − γ∇g) is a contraction; hence, the sequence {xn}
defined by (1.5) converges strongly to a solution of (1.3) for h = IC . More general,
if the sequence {γn} is chosen to satisfy the property

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn <
2ν
α2 ,

then the sequence {xn} defined by (1.5) converges in norm to the unique solution
of (1.3) for h = IC . However, if the gradient ∇g fails to be strongly monotone,
then the operator T := PC(I − γ∇g) would fail to be a contraction. Consequently,
the sequence {xn} generated by (1.5) may fail to converge strongly (see Section 4
in [49]). The gradient projection algorithm (1.5) has been studied extensively by
many authors, see for instance [8, 9, 19, 20, 21, 44, 49] and reference therein.

In 2000, Moudafi [29] introduced the viscosity approximation method for ap-
proximating fixed points of nonexpansive mappings. Let f be a contraction on H,
starting with an arbitrary x0 ∈ H, define a sequence {xn} recursively by
(1.6) xn+1 = λnf(xn) + (1− λn)Txn , n ≥ 0 ,
where {λn} is a sequence in (0, 1). Xu [48] proved that if {λn} satisfies some certain
conditions, the sequence {xn} generated by (1.6) converges strongly to the unique
solution x† ∈ F (T ) of the variational inequality

〈(I − f)x†, x− x†〉 ≥ 0 , ∀x ∈ F (T ) .
Also, based on the heavy ball methods of the order-two time dynamical system,

Polyak [39] first proposed an inertial extrapolation as an acceleration process to
solve the smooth convex minimization. The inertial algorithm is a two-step iteration
where the next iterate is defined by making use of the previous two iterates. Recently,
alot of researchers have constructed some fast iterative algorithm by using inertial
extrapolation which includes inertial proximal method [2], inertial forward-backward
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method [23], inertial proximal ADMM [12] and fast iterative shrinkage thresholding
algorithm FISTA [4, 11]. Using the technique of inertial extrapolation, in 2008,
Mainge [24] introduced the following inertial Mann algorithm:

(1.7)
{
yn = xn + βn(xn − xn−1) ,
xn+1 = (1− λn)yn + λnTyn ,

for each n ≥ 1. Mainge [24] showed that the iterative sequence {xn} converges
weakly to a fixed point of T under the following conditions:

(A1) βn ∈ [0, α) for each n ≥ 1, where α ∈ [0, 1);
(A2)

∑∞
n=1 βn‖xn − xn−1||2 < +∞;

(A3) 0 < inf λn ≤ supλn < 1.
Moudafi and Oliny [30] proposed the following inertial proximal point algorithm

for finding the zero point of the sum of two monotone operators in real Hilbert
space: for x1 ∈ H,{

yn = xn + βn(xn − xn−1) ,

xn+1 = (I + λnB)−1(yn − λnAxn) , n ≥ 1 ,

where A : H → H and B : H → 2H are monotone operators and {βn} ⊂ [0, 1).
They obtained a weak convergence theorem provided 0 < λn <

2
c with c being the

Lipschitz constant of A and that the condition (A2) holds.
Note that for the condition (A2) to be satisfied, one needs to first calculate βn at

each step of the iterations (see [30]). Other iterative methods involving the inertial
extrapolation process which have been introduced include the works of Beck and
Teboulle [4], Bot et.al [5, 6] and Pesquet and Putselnik [38].

Recently, Chembolle and Dossel [11] proved the weak convergence of the following
modified PGM with inertial extrapolation term in a real Hilbert space

(1.8)


xn = T (yn−1),
yn =

(
1− 1

tn+1

)
xn + 1

tn+1
un ,

un = xn−1 + tn(xn − xn−1) , n ≥ 1 ,

equivalently, (1.8) can be written as

xn = T (yn−1) ,

yn = xn + αn(xn − xn−1) , αn = tn−1

tn+1
, for n ≥ 1 ,

where a > 2 is a positive real number, tn = n+a−1
a for all n ∈ N and Tx =

proxγh(x− γ∇g(x)).
More recently, Guo and Cui [17] proposed the following PGM with perturbations

for solving (1.3):

xn+1 = αnf(xn) + (1− αn) proxγnh(I − γn∇g)xn + en ,(1.9)

where {αn} ⊂ [0, 1], 0 < a ≤ lim infn→∞ γn < 2
α , f : H → H is a contraction

and e : H → H is a perturbation operator satisfying
∑∞
n=0 ‖e(xn)|| < +∞. They



172 L.O. JOLAOSO, H.A. ABASS AND O.T. MEWOMO

obtained a strong convergence theorem for the sequence generated by (1.9) for
approximating solution of (1.3) in a real Hilbert space.

Motivated by the above works, our interest in this paper is to introduce a new
relaxed proximal gradient algorithm for approximating a common solution of the
minimization problem (1.3) and fixed point of δ-demimetric mapping in a real
Hilbert space. Our algorithm is developed by combining the proximal gradient
algorithm (1.4) and the viscosity approximation method of Moudafi [29] with
an inertial extrapolation term. We obtain a strong convergence result for the
approximation of common solution of (1.3) and a fixed point of δ-demimetric
mapping in a real Hilbert space. Finally, we give a numerical example to illustrate
the effectiveness of our algorithm. Our results complement and improve some other
related results in the literature.

2. Preliminaries

In this section, we give some basic definitions and results which will be used
in the sequel. We denote the strong convergence of {xn} to z by xn → z and the
weak convergence of {xn} to z by xn ⇀ z.

Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of H. Recall that the metric projection of x ∈ H onto C is the necessarily unique
vector PCx ∈ C satisfying

‖PCx− x‖ ≤ ‖x− y‖ , ∀y ∈ C, x ∈ H .

It is well known that PC satisfies the following property,
〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2 , ∀x, y ∈ H .

Also, the metric projection have the following characterization.

Lemma 2.1. Let H be a real Hilbert space and let C be a nonempty, closed and
convex subset of H. Then for x ∈ H and w ∈ C, the following conditions are
equivalent:

(i) w = PC(x);
(ii) 〈x− w, y − w〉 ≤ 0, for all y ∈ C;
(iii) ‖x− w‖2 + ‖y − w‖2 ≤ ‖x− y‖2 for all y ∈ C.

Lemma 2.2. Let H be a real Hilbert space. Then the following hold: for all x,
y ∈ H,

(i) ‖x+ y‖2 ≤ ‖y‖2 + 2〈x, x+ y〉;
(ii) ‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2〈x, y〉;
(iii) ‖αx+ (1−α)y‖2 = α‖x‖2 + (1−α)‖y‖2−α(1−α)‖x− y‖2, for α ∈ (0, 1).

Let (X, d) be a complete metric space. A mapping f : X → X is called a
Meir-Keeler contraction [27] if for every ε > 0, there exists δ > 0 such that

d(x, y) < ε+ δ implies d
(
f(x), f(y)

)
< ε ,

for all x, y ∈ X. It is well-known that the Meir-Keeler contraction is a generalization
of the contraction.
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Lemma 2.3 ([27]). A Meir-Keeler contraction defined on a complete metric space
has a unique fixed point.

Lemma 2.4 ([45]). Let f be a Meir-Keeler contraction on a convex subset C of a
Banach space E. Then for every ε > 0, there exists rε ∈ (0, 1) such that

‖x− y‖ ≥ ε ⇒ ‖f(x)− f(y)‖ ≤ rε‖x− y‖
for all x, y ∈ C.

A point x∗ ∈ C is said to be an asymptotic fixed point of T if C contains a
sequence {xn} which converges weakly to x∗ and limn→∞ ‖xn − Txn‖ = 0. The
set of asymptotic fixed points of T is denoted by F̂ (T ).

A mapping T : H → H is said to be an α-averaged mapping if T = (1−α)I+αS,
where α ∈ (0, 1) and S : H → H is nonexpansive. Many nonlinear operators belong
to the class of averaged mapping. For instance, the class of firmly nonexpansive
mapping is 1

2 -averaged. The following lemmas will be used in the sequel.

Lemma 2.5 ([7, 13]). Let S, T , : H → H be given nonlinear operators:
(i) If T = (1− α)S + αV , for some α ∈ (0, 1) and if S is averaged and V is

nonexpansive, then T is averaged.
(ii) The composition of finitely many averaged mapping is averaged. In particu-

lar, if T1 is α1-averaged and T2 is α2-averaged, where α1, α2 ∈ (0, 1), then,
the composition T1T2 is α-averaged, where α = α1 + α2 − α1α2.

(iii) If {Ti} is a finite family of averaged mappings and have a common fixed
point, then

N⋂
i=1

F (Ti) = F (T1 . . . TN ) .

Lemma 2.6 ([7, 26]). Let U : H → H be a given operator, we have
(i) U is nonexpansive if and only if the complement I − U is 1

2 -ism.
(ii) If U is κ-ism, then for γ > 0, κU is κ

γ -ism.

(iii) U is averaged if and only if the complement I−U is κ-ism for some κ > 1
2 .

Indeed, for α ∈ (0, 1), U is averaged if and only if I − U is 1
2α -ism.

Lemma 2.7 ([16] (Demiclosedness Principle)). Let C be a closed and convex subset
of a Hilbert space H and T : C → C be a nonexpansive mapping with F (T ) 6= ∅.
If {xn} is a sequence in C weakly converging to p and if {(I − T )xn} converges
strongly to q, then (I − T )p = q. In particular, if q = 0, then p ∈ F (T ).

Lemma 2.8 ([24]). Let {αn} and {γn} be sequences of nonnegative real numbers
such that

αn+1 ≤ (1− δn)αn + βn + γn , n ≥ 1 ,
where {δn} is a sequence in (0, 1) and {βn} is a real sequence. Assume that∑∞
n=0 βn <∞. Then, the following results hold:

(i) If βn ≤ δnM for some M ≥ 0, then {αn} is a bounded sequence.
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(ii) If
∑∞
n=0 δn =∞ and lim supn→∞

βn
δn
≤ 0, then limn→∞ αn = 0.

Lemma 2.9 ([25]). Let {an} be a sequence of real numbers such that there exists
a subsequence {ni} of {n} with ani < ani+1 for all i ∈ N. Consider the integer
{mk} defined by

mk = max{j ≤ k : aj < aj+1} .
Then {mk} is a nondecreasing sequence verifying limn→∞mn = ∞, and for all
k ∈ N, the following estimate hold:

amk ≤ amk+1 and ak ≤ amk+1 .

3. Main result

In this section, we modify the proximal gradient algorithm combine with an
inertial extrapolation term and prove a strong convergence theorem for approxima-
ting solution of (1.3) and fixed point of δ-demimetric mapping in a real Hilbert
space. First, we proof the following lemma which plays a crucial role in the proof
of the main theorem.

Lemma 3.1. Assume that the minimization problem (1.3) is consistent and gra-
dient ∇g is Lipschitz continuous with Lipschitz constant L > 0. Let γ > 0 such
that 0 < γ < 2

L , then the following inequality holds:

(3.1) ‖ proxγh(I − γ∇g)x− x‖2 ≤ 2
〈
x− y, x− proxγh(I − γ∇g)x

〉
.

Proof. Since proxγh is firmly nonexpansive, then it is 1
2 -averaged. Also, the

Lipschitz condition on ∇g implies that ∇g is 1
L -ism and by Lemma 2.6(ii), γ∇g is

1
γL -ism. Hence, by Lemma 2.6(iii), we have that I − γ∇g is γL

2 -averaged. It follows
from Lemma 2.5(ii) that the proxγh(I − γ∇g) is averaged with constant 2+γL

4 . In
particular, proxγh(I − γ∇g) is nonexpansive. Then, for any x ∈ C and y ∈ Ω, we
have

‖ proxγh(I − γ∇g)x− y‖2 = ‖ proxγh(I − γ∇g)x− proxγh(I − γ∇g)y‖2

≤ ‖x− y‖2

= 〈x− y, x− proxγh(I − γ∇g)x
+ proxγh(I − γ∇g)x− y〉

= 〈x− y, x− proxγh(I − γ∇g)x〉
+ 〈x− y,proxγh(I − γ∇g)x− y〉 .

This implies that
〈proxγh(I − γ∇g)x− x, proxγh(I − γ∇g)x− y〉 ≤ 〈x− y, x− proxγh(I − γ∇g)x〉 .
Thus

〈proxγh(I − γ∇g)x− x, proxγh(I − γ∇g)x− x+ x− y〉
≤ 〈x− y, x− proxγh(I − γ∇g)x〉 ,
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which gives that

〈proxγh(I−γ∇g)x− x, proxγh(I−γ∇g)x−x〉≤〈x−y, x−proxγh(I−γ∇g)x〉
+ 〈x− y, x− proxγh(I − γ∇g)x〉,

therefore

‖ proxγh(I − γ∇g)x− x‖2 ≤ 2
〈
x− y, x− proxγh(I − γ∇g)x

〉
.

�

Theorem 3.2. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let g, h : H → R ∪ {+∞} be two proper convex lower semicontinuous
functions such that h is nonsmooth and the gradient ∇g is 1

L -ism with L > 0.
Let f : C → C be a Meir Keeler contraction mapping, B : C → H be a strongly
positive bounded linear operator with coefficient τ > 0 such that 0 < ξ < τ

2 and
T : C → C be a δ-demimetric mapping for δ ∈ (−∞, 1) and F̂ (T ) = F (T ). Suppose
Γ = Ω ∩ F (T ) 6= ∅, let αn ∈ [0, 1], βn ∈ [0, 1), wn, θn ∈ (0, 1) and γn > 0. Choose
initial points x0, x1 ∈ H arbitrarily and let {xn}, {yn} and {un} be generated by

(3.2)


yn = xn + βn(xn − xn−1) ,
un = (1− wn)yn + wn proxγnh(yn − γn∇g(yn)) ,
xn+1 = PC

(
αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun

)
, n ≥ 1 ,

where Tλn = (1− λn)I + λnT for λn ∈ (0, 1). Assume that the following conditions
are satisfied:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞,

(C2) limn→∞
βn
αn
‖xn − xn−1‖ = 0,

(C3) 0 < lim infn→∞ wn ≤ lim supn→∞ wn < 1,
(C4) 0 < lim infn→∞ γn ≤ lim supn→∞ γn <

2
L ,

(C5) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1− δ.
Then, {xn} converges strongly to a point x̄, where x̄ = PΓ(I − B + ξf)(x̄) is the
unique solution of the variational inequality

(3.3) 〈(B − ξf)x̄, x̄− y〉 ≤ 0 , y ∈ Γ .

Proof. Firstly, we show that {xn} is bounded. Let x∗ ∈ Γ and a number ε > 0.
Suppose ‖xn − x∗‖ ≤ ε, then we can easily see that {xn} is bounded. On the other
hand, let ‖xn − x∗‖ ≥ ε, then by Lemma 2.4, there exists ρε ∈ (0, 1) such that

(3.4) ‖f(xn)− f(x∗)‖ ≤ ρε‖xn − x∗‖ .

From (3.2), we have

‖yn − x∗‖ = ‖xn − x∗ + βn(xn − xn−1)‖
≤ ‖xn − x∗‖+ βn‖xn − xn−1‖ .(3.5)
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Also

‖un − x∗‖2 = ‖(1− wn)yn + wn proxγnh(I − γn∇g)yn − x∗‖2

= ‖(yn − x∗) + wn(proxγnh(I − γn∇g)yn − yn)‖2

= ‖yn − x∗‖2 + 2wn〈yn − x∗,proxγnh(I − γn∇g)yn − yn〉
+ w2

n‖ proxγnh(I − γn∇g)yn − yn‖2,(3.6)

and from Lemma 3.1, we have that

‖un − x∗‖2 ≤ ‖yn − x∗‖2 − wn(1− wn)‖ proxγnh(I − γn∇g)yn − yn‖2

≤ ‖yn − x∗‖2 .(3.7)

Moreover, from the definition of δ-demimetric (1.1), we have

‖Tλnun − x∗‖2 = ‖(un − x∗) + λn(Tun − un)‖2

= ‖un − x∗‖2 − 2λn〈un − x∗, un − Tun〉+ λ2
n‖un − Tun‖2

≤ ‖un − x∗‖2 − λn(1− δ)‖un − Tun‖2 + λ2
n‖un − Tun‖2

= ‖un − x∗‖2 − λn(1− δ − λn)‖un − Tun‖2 ,(3.8)

and by condition (C5), we get

(3.9) ‖Tλnun − x∗‖2 ≤ ‖un − x∗‖2 .

Thus, we have from (3.2) that

‖xn+1 − x∗‖ = ‖PC(αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun)− PCx∗‖
≤ ‖αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun − x∗‖
= ‖αn(ξf(xn)−Bx∗)+θn(xn−x∗)+((1−θn)I−αnB)(Tλnun−x∗)‖
≤ αn(ξ‖f(xn)− f(x∗)‖+ ‖ξf(x∗)−Bx∗‖) + θn‖xn − x∗‖

+ ((1− θn)I − αnτ)‖Tλnun − x∗‖
≤ αnξρε‖xn − x∗‖+ αn‖ξf(x∗)−Bx∗‖+ θn‖xn − x∗‖

+ ((1− θn)I − αnτ)‖un − x∗‖
≤ αnξρε‖xn − x∗‖+ αn‖ξf(x∗)−Bx∗‖+ θn‖xn − x∗‖

+ ((1− θn)I − αnτ)[‖xn − x∗‖+ βn‖xn − xn−1‖]
= (1− αn(τ − ξρε))‖xn − x∗‖+ αn‖ξf(x∗)−Bx∗‖

+ ((1− θn)I − αnτ)βn‖xn − xn−1‖
= (1− αn(τ − ξρε))‖xn − x∗‖+ αn(τ − ξρε)

×
{ξf(x∗)−Bx∗‖

τ − ξρε
+ ((1− θn)I − αnτ)βn‖xn − xn−1‖

αn(τ − ξρε)

}
.(3.10)

Putting

σn =
( (1− θn)I − αnτ

τ − ξρε

)βn
αn
‖xn − xn−1‖ ,
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from condition (C2), it is easy to see that limn→∞ σn = 0, which implies that the
sequence {σn} is bounded. Let

M = max
{‖ξf(x∗)−Bx∗‖

τ − ξρε
, sup
n∈N

σn

}
,

by using Lemma 2.8(i) and (3.10), we have that the sequence {‖xn − x∗‖} is
bounded. This shows that {xn} is bounded and consequently, {un} and {yn} are
bounded. Note that

‖yn − x∗‖2 = ‖xn − x∗ + βn(xn − xn−1)‖2

= ‖xn − x∗‖+ 2βn〈xn − x∗, xn − xn−1〉+ β2
n‖xn − xn−1‖2 ,(3.11)

and from Lemma 2.2(ii), we have

(3.12) 2〈xn − x∗, xn − xn−1〉 = ‖xn − x∗‖2 + ‖xn − xn−1‖2 − ‖xn−1 − x∗‖2 ,

therefore, by substituting (3.12) into (3.11), we have

‖yn − x∗‖2 = ‖xn − x∗‖2 + βn
[
‖xn − x∗‖2 + ‖xn − xn−1‖2 − ‖xn−1 − x∗‖2

]
+ β2

n‖xn − xn−1‖2 ≤ ‖xn − x∗‖2 + βn
[
‖xn − x∗‖2 − ‖xn−1 − x∗‖2

]
+ 2βn‖xn − xn−1‖2 .(3.13)

Now, put mn = αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun, using Lemma 2.2(i)
and (3.2), we have

‖xn+1 − x∗‖2 ≤ ‖αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun − x∗‖2

= ‖αn(ξf(xn)−Bx∗) + θn(xn − x∗)
+ ((1− θn)I − αnB)(Tλnun − x∗)‖2

≤ ‖((1− θn)I − αnB)(Tλnun − x∗) + θn(xn − x∗)‖2

+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉
= ‖((1− θn)I − αnB)(Tλnun − x∗)‖2 + θ2

n‖xn − x∗‖2

+ 2θn
〈
((1− θn)I − αnB)(Tλnun − x∗), xn − x∗

〉
+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉

≤ ((1− θn)I − αnτ)2‖Tλnun − x∗‖2 + θ2
n‖xn − x∗‖2

+ 2θn((1− θn)I − αnτ)‖Tλnun − x∗‖ ‖xn − x∗‖
+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉

≤ ((1− θn)I − αnτ)2‖Tλnun − x∗||2 + θ2
n‖xn − x∗‖2

+ θn((1− θn)I − αnτ)[‖Tλnun − x∗‖2 + ‖xn − x∗‖2]
+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉

≤ ((1− θn)I − αnτ)‖Tλnun − x∗‖2 + θn‖xn − x∗‖2

+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉 .(3.14)
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Thus, from (3.9) and (3.13), we have

‖xn+1 − x∗‖2 ≤ ((1− θn)I − αnτ)[‖un − x∗||2 − λn(1− λn − δ)‖un − Tun‖2]
+ θn‖xn − x∗‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ ((1− θn)I − αnτ)
×
{
‖xn − x∗‖2 + βn[‖xn − x∗‖2 − ‖xn−1 − x∗‖2]

+ 2βn‖xn − xn−1‖2
}
− λn(1− λn − δ)‖un − Tun‖2

+ θn‖xn − x∗‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ (1− αnτ)‖xn − x∗‖2 + βn

[
‖xn − x∗‖2 − ‖xn−1 − x∗‖2

]
+ 2βn‖xn − xn−1‖2 − λn(1− λn − δ)‖un
− Tun‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉 .(3.15)

Set Dn = ‖xn − x∗‖2 and consider the following two cases.
Case I: Suppose there exists a natural number N such that Dn+1 ≤ Dn for all
n ≥ N. In this case, {Dn} is convergent. Since {xn} is bounded, it is easy to see
that condition (C2) implies βn‖xn − xn−1‖ → 0.
From (3.15), we have

λn(1− λn − δ)‖un − Tun‖2 ≤ (1− αnτ)‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ βn[‖xn − x∗‖2 − ‖xn−1 − x∗‖2]
+ 2βn‖xn − xn−1‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉

= (Dn −Dn+1) + βn(Dn −Dn−1) + 2βn‖xn − xn−1‖2

− αnτDn + 2αn〈ξf(xn)−Bx∗,mn − x∗〉 .

Since {Dn} is convergent and αn → 0, we have

lim
n→∞

λn(1− λn − δ)‖un − Tun‖2 = 0 ,

hence, by using condition (C5), we have

(3.16) lim
n→∞

‖un − Tun‖ = 0 .

This implies that

lim
n→∞

‖Tλnun − un‖ = lim
n→∞

‖(1− λn)un + λnTun − un‖

= lim
n→∞

|λn| ‖un − Tun‖ = 0 .(3.17)
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Also, from (3.7) and (3.15), we see that

‖xn+1− x∗‖2 ≤ ((1−θn)I−αnτ)[‖un−x∗‖2−λn(1− λn − δ)‖un − Tun‖2]
+ θn‖xn − x∗‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ ((1− θn)I − αnτ)‖un − x∗‖2 + θn‖xn − x∗‖2

+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ ((1− θn)I − αnτ)[‖yn − x∗‖2 − wn(1− wn)‖
× proxγnh(I − γn∇g)yn − yn‖2]
+ θn‖xn − x∗‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ ((1−θn)I−αnτ)

{
‖xn−x∗‖2+βn[‖xn−x∗‖2−‖xn−1−x∗‖2]

+ 2βn‖xn − xn−1‖2
}

− wn(1− wn)‖ proxγnh(I − γn∇g)yn − yn‖2 + θn‖xn − x∗‖2

+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉
≤ (1− αnτ)‖xn − x∗‖2 + βn[‖xn − x∗‖2 − ‖xn−1 − x∗‖2]

+ 2βn‖xn−xn−1‖2−wn(1− wn)‖proxγnh(I−γn∇g)yn − yn‖2

+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉 .

Therefore,

wn(1− wn)‖ proxγnh(I − γn∇g)yn − yn‖2 ≤ (1− αnτ)‖xn − x∗‖2

− ‖xn+1 − x∗‖2 + βn[‖xn − x∗‖2 − ‖xn−1 − x∗‖2]
+ 2βn‖xn − xn−1‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉

= (Dn −Dn+1) + βn(Dn −Dn−1) + 2βn‖xn − xn−1‖2 − αnτ‖xn − x∗‖2

+ 2αn〈ξf(xn)−Bx∗,mn − x∗〉 .

Since {Dn} is convergent and αn → 0, we have that

lim
n→∞

wn(1− wn)‖ proxγnh(I − γn∇g)yn − yn||2 = 0 ,

and by using condition (C3), we obtain

(3.18) lim
n→∞

‖ proxγnh(I − γn∇g)yn − yn‖ = 0 .

Furthermore, it is easy to see from (3.2) that

(3.19) ‖yn − xn‖ ≤ βn‖xn − xn−1‖ → 0 , as n→∞ ,

and

‖un − yn‖ ≤ wn‖ proxγnh(I − γn∇g)yn − yn‖ → 0, as n→∞,

hence

lim
n→∞

‖un − xn‖ ≤ lim
n→∞

(‖un − yn‖+ ‖yn − xn‖) = 0 .(3.20)
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Also from (3.2), we have that
lim
n→∞

‖mn − un‖ ≤ lim
n→∞

(
αn‖ξf(xn)−Bun‖+ θn‖xn − un‖

+ ((1− θn)I − αnτ)‖Tλnun − un‖
)

= 0 ,

then from (3.20), we get
(3.21) ‖mn − xn‖ ≤ ‖mn − un‖+ ‖un − xn‖ → 0 , as n→∞ .

More so, by the firmly nonexpansivity of the PC and Lemma 2.1(iii), we have that
‖xn+1 − x∗‖2 = ‖PCmn − PCx∗‖2

≤ ‖mn − x∗‖2 − ‖PCmn −mn‖2 .(3.22)

Substituting (3.15) into (3.22), we get
‖xn+1 − x∗‖2 ≤ (1− αnτ)‖xn − x∗‖2 + βn

[
‖xn − x∗‖2 − ‖xn−1 − x∗‖2

]
+ 2βn‖xn−xn−1‖2+2αn〈ξf(xn)−Bx∗,mn−x∗〉−‖PCmn−mn‖2 ,

therefore
‖PCmn −mn‖2 ≤ (1− αnτ)‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ βn[‖xn − x∗‖2 − ‖xn−1 − x∗‖2]
+ 2βn‖xn − xn−1‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉

= (Dn −Dn+1) + βn(Dn −Dn−1)− αnτ‖xn − x∗‖2

+ 2βn‖xn − xn−1‖2 + 2αn〈ξf(xn)−Bx∗,mn − x∗〉 ,
then
(3.23) lim

n→∞
‖PCmn −mn‖ = 0 .

Thus, we have from (3.21) and (3.18)
(3.24) lim

n→∞
‖xn+1 − xn‖ = lim

n→∞
(‖xn+1 −mn‖+ ‖mn − xn‖) = 0 .

Since {xn} is bounded, there exists a subsequence {xnj} of {xn} such that
xnj ⇀ x̄ ∈ C. It follows from (3.19) and (3.20) that ynj ⇀ x̄ and unj ⇀ x̄ respec-
tively. Since proxγnh(I − γn∇g) is nonexpansive and limn→∞ ‖yn − proxγnh(I −
γn∇g)yn‖ = 0, so by Lemma 2.7, we have that x̄ ∈ F (proxγnh(I − γn∇g)). Hence,
x̄ is a solution of the minimization problem (1.3), that is, x̄ ∈ Ω. Also, since
limn→∞ ‖un − Tun‖ = 0 and F̂ (T ) = F (T ), we have that x̄ ∈ F (T ). Therefore
x̄ ∈ Ω ∩ F (T ).
We now show that lim supn→∞〈(B−ξf)z, z−xn+1〉 ≤ 0, where z = PΓ(I−B+ξf)z.
Since xnj ⇀ x̄ and from Lemma 2.1(ii), we have

lim sup
n→∞

〈(B − ξf)z, z − xn+1〉 = lim
j→∞
〈(B − ξf)z, z − xnj+1〉

= 〈(B − ξf)z, z − x̄〉 ≤ 0.(3.25)

Next, we show that xn → z as n → ∞. Assume that {xn} does not converges
strongly to z. Then, there exists ε > 0 and a subsequence {xnk} of {xn} such that
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‖xnk − z‖ ≥ ε for all k ∈ N and by Lemma 2.4, there exists a number rε ∈ (0, 1)
such that

‖f(xnk)− f(z)‖ ≤ rε‖xnk − z‖ .
Thus, we have

‖xnk+1 − z||2 = 〈PCmnk − z, PCmnk − z〉
= 〈PCmnk −mnk +mnk − z, PCmnk − z〉
= 〈PCmnk −mnk , PCmnk − z〉+ 〈mnk − z, xnk+1 − z〉
≤ 〈mnk − z, xnk+1 − z〉
= 〈αnkξf(xnk) +θnxnk + ((1−θnk)I−αnkB)Tλnkunk−z, xnk+1−z〉
= αnk〈ξf(xnk)− ξf(z), xnk+1 − z〉+ αnk〈ξf(z)−B(z), xnk+1 − z〉

+ θnk〈xnk−z, xnk+1−z〉
+ 〈((1− θnk)I−αnkB)(Tλnkunk − z), xnk+1−z〉
≤ αnkξrε‖xnk − z‖ ‖xnk+1 − z‖+ θnk‖xnk − z‖ ‖xnk+1 − z‖

+ ((1− θnk)I − αnkτ)‖Tλnunk − z‖ ‖xnk+1 − z‖
+ αnk〈ξf(z)−Bz, xnk+1 − z〉
≤ αnkξrε‖xnk − z‖ ‖xnk+1 − z‖+ θnk‖xnk − z‖ ‖xnk+1 − z‖

+ ((1− θnk)I − αnkτ)‖unk − z‖ ‖xnk+1 − z‖
+ αnk〈ξf(z)−Bz, xnk+1 − z〉
≤ αnkξrε‖xnk − z‖ ‖xnk+1 − z‖+ θnk‖xnk − z‖ ‖xnk+1 − z‖

+ ((1− θnk)I − αnkτ)[‖xnk − z‖+ βn‖xnk − xnk−1‖]‖xnk+1 − z‖
+ αn〈ξf(z)−Bz, xnk+1 − z〉

= (1− αnk(τ − ξrε))‖xnk − z‖ ‖xnk+1 − z‖+ ((1− θnk)I − αnkτ)
× βn‖xnk − xnk−1‖ ‖xnk+1 − z‖+ αnk〈ξf(z)−Bz, xnk+1 − z〉

≤ (1− αnk(τ − ξrε))
1
2(‖xnk − z‖2 + ‖xnk+1 − z‖2)

+ ((1− θnk)I − αnkτ)βnk‖xnk − xnk−1‖ ‖xnk+1 − z‖
+ αnk〈ξf(z)−Bz, xnk+1 − z〉 .

This implies that

‖xnk+1 − z‖2 ≤
(1− αnk(τ − ξrε))
1 + αnk(τ − ξrε)

‖xnk − z‖2 + 2((1− θnk)I − αnkτ)βnk
1 + αnk(τ − ξrε)

× ‖xnk − xnk−1‖ ‖xnk+1 − z‖+ 2αnk
1 + αnk(τ − ξrε)

〈ξf(z)−Bz, xnk+1 − z〉

≤ (1−αnk(τ− ξrε))‖xnk− z‖2+ 2βnk
1 + αnk(τ− ξrε)

‖xnk− xnk+1‖ ‖xnk+1− z‖

+ 2αnk
1 + αnk(τ − ξrε)

〈ξf(z)−Bz, xnk+1 − z〉



182 L.O. JOLAOSO, H.A. ABASS AND O.T. MEWOMO

= (1− αnk(τ − ξrε))‖xnk − z‖2 + 2αn(τ − ξrε)
(1 + αnk(τ − ξrε))(τ − ξrε)

×
(βnk
αnk
‖xnk − xnk−1‖ ‖xnk+1 − z‖+ 〈ξf(z)−Bz, xnk+1 − z〉

)
= (1− pnk)‖xnk − z‖2 + pnkqnk ,(3.26)

where pnk = αnk(τ − ξrε) and qnk =
(

2‖xnk+1−z‖
(1+αnk (τ−ξrε))(τ−ξrε)

)
βnk
αnk
‖xnk − xnk−1‖+

2
(1+αnk (τ−ξrε))(τ−ξrε) 〈ξf(z)−Bz, xnk+1−z〉. Applying Lemma 2.8 and using condi-
tions (C1), (C2) and (3.25), we conclude that the sequence {xnk} converges
strongly to z. The contradiction permits us to conclude that xn → z, where
z = PΓ(I − B + ξf)z which is the unique solution to the variational inequality
(3.3).

Case II: Suppose there exists a subsequence {ni} of {n} such that Dni ≤ Dni+1
for all i ∈ N. Then, by Lemma 2.9, there exists a decreasing sequence {mk} ⊂ N
such that mk →∞, Dmk < Dmk+1, for all k ∈ N. Let ε > 0 and ‖xmk − x∗‖ > ε,
then, by Lemma 2.4, there exists rε ∈ (0, 1) such that

‖f(xmk)− f(x∗)‖ ≤ rε‖xmk − x∗‖ .

Following similar argument as in Case I, we obtain ‖ymk−proxγmkh(I−γmk∇g)ymk‖
→ 0, ‖umk −Tumk‖ → 0, ‖umk −xmk‖ → 0 and ‖xmk+1−xmk‖ → 0. Since {xmk}
is bounded, there exists a subsequence of {xmk} still denoted by {xmk} which
converges weakly to x̄. Suppose {xmk} is such that

lim sup
k→∞

〈ξf(x∗)−Bx∗, xmk+1 − x∗〉 = lim
k→∞

〈ξf(x∗)−Bx∗, xmk+1 − x∗〉 .

It follows from Lemma 2.1 that

lim sup
k→∞

〈ξf(x∗)−Bx∗, xmk+1 − x∗〉 = lim
k→∞

〈ξf(x∗)−Bx∗, xmk+1 − x∗〉

= 〈ξf(x∗)−Bx∗, x̄− x∗〉 ≤ 0 .

Hence

(3.27) lim sup
k→∞

〈ξf(x∗)−Bx∗, xmk+1 − x∗〉 ≤ 0 .

Similarly as in (3.26), we obtain

‖xmk+1 − x∗‖2 ≤ (1− αmk(τ − ξrε))‖xmk − x∗‖2 + 2αmk
(1 + αmk(τ − ξrε))

×
(βmk
αmk
‖xmk − xmk+1‖ ‖xmk+1 − x∗‖+ 〈ξf(x∗)−Bx∗, xmk+1 − x∗〉

)
.(3.28)
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Since Dmk ≤ Dmk+1, then from (3.28), we have
0 ≤ ‖xmk+1 − x∗‖2 − ‖xmk − x∗‖2 ≤ (1− αmk(τ − ξrε))‖xmk − x∗‖2

+ 2αmk
(1 + αmk(τ − ξrε))

(βmk
αmk
‖xmk − xmk+1‖ ‖xmk+1 − x∗‖

+ 〈ξf(x∗)−Bx∗, xmk+1 − x∗〉
)
− ‖xmk − x∗‖2.

This implies that

αmk(τ − ξrε)‖xmk − x∗‖2 ≤
2αmk

(1 + αmk(τ − ξrε))

×
(βmk
αmk
‖xmk − xmk+1‖ ‖xmk+1 − x∗‖+ 〈ξf(x∗)−Bx∗, xmk+1 − x∗〉

)
.(3.29)

Hence, from condition (C2) and (3.27), we obtain
(3.30) lim

n→∞
‖xmk − x∗‖ = 0 .

As a consequence, we obtain
‖xmk+1 − x∗‖ ≤ ‖xmk+1 − xmk‖+ ‖xmk − x∗‖ → 0 ,

as n→∞. By Lemma 2.9, we have Dn ≤ Dmk+1 and thus
(3.31) Dn = ‖xn − x∗‖2 ≤ ‖xmk+1 − x∗‖2 → 0 ,
as n → ∞. This implies that {xn} converges strongly to x∗. This complete the
proof. �

The following consequences can easily be obtained from our main result.
1. Suppose h = iC , the indicator operator on C, and wn = 1, we obtain the
following result which improve and complement the results of Cai and Shehu [8]
and Tian and Huang [47].

Corollary 3.3. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let g : H → R∪ {+∞} be a proper convex lower semicontinuous function
such that the gradient ∇g is 1

L -ism with L > 0. Let f : C → C be a Meir Keeler
contraction mapping, B : C → H be a strongly positive bounded linear operator with
coefficient τ > 0 such that 0 < ξ < τ

ρ and T : C → C be a δ-demimetric mapping
for δ ∈ (−∞, 1). Suppose Γ = Ω ∩ F (T ) 6= ∅, let αn ∈ [0, 1], βn ∈ [0, 1), θn ∈ (0, 1)
and γn > 0. Choose initial points x0, x1 ∈ H arbitrarily and let {xn}, {yn} and
{un} be generated by

(3.32)


yn = xn + βn(xn − xn−1) ,
un = PC(yn − γn∇g(yn)) ,
xn+1 = PC [αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun] , n ≥ 1 ,

where Tλn = (1− λn)I + λnT for λn ∈ (0, 1). Assume that the following conditions
are satisfy:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞,

(C2) limn→∞
βn
αn
||xn − xn−1|| = 0,
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(C3) 0 < lim infn→∞ γn ≤ lim supn→∞ γn <
2
L ,

(C4) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1− δ.

Then, {xn} converges strongly to a point x̄, where x̄ = PΓ(I − B + ξf)(x̄) is the
unique solution of the variational inequality

(3.33) 〈(B − ξf)x̄, x̄− y〉 ≤ 0 , y ∈ Γ .

2. If h = iC , θn = 0, ξ = λn = wn = 1, B be identity operator on H and T : C → C
is nonexpansive, we obtain the following result from our Theorem 3.2 which improve
the corresponding results of Xu [49, Theorem 5.2] and Shehu [42, Theorem 1].

Corollary 3.4. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let g : H → R∪ {+∞} be a proper convex lower semicontinuous function
such that the gradient ∇g is 1

L -ism continuous with L > 0. Let f : C → C be a Meir
Keeler contraction mapping and T : C → C be a nonexpansive mapping. Suppose
Γ = Ω ∩ F (T ) 6= ∅, let αn ∈ [0, 1], βn ∈ [0, 1) and γn > 0. Choose initial points x0,
x1 ∈ H arbitrarily and let {xn}, {yn} and {un} be generated by

(3.34)


yn = xn + βn(xn − xn−1) ,
un = PC(yn − γn∇g(yn)) ,
xn+1 = PC [αnf(xn) + (1− αn)Tun] , n ≥ 1 .

Assume that the following conditions are satisfy:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞,

(C2) limn→∞
βn
αn
||xn − xn−1|| = 0,

(C3) 0 < lim infn→∞ γn ≤ lim supn→∞ γn <
2
L ,

(C4) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1− δ.

Then, {xn} converges strongly to a point x̄, where x̄ = PΓ(I − B + ξf)(x̄) is the
unique solution of the variational inequality

(3.35) 〈(I − f)x̄, x̄− y〉 ≤ 0 , y ∈ Γ .

3. Also in Theorem 3.2, we obtained a strong convergence result using a proximal
gradient algorithm with an inertial extrapolation term, this improve the weak
convergence result proved by Chambolle and Dossal in [11].

Remark 3.5. In [17], the authors proposed a modified proximal gradient algorithm
with perturbation for approximating solutions of the minimization problem (1.3),
where as in this paper, we presented a strong convergence result using a modified
proximal gradient algorithm with inertial extrapolation term without imposing
the summation condition (A2). This result improve other recent results on inertial
algorithms in the literature.
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4. Applications and numerical example

In this section, we present some applications of Theorem 3.2 and give a numerical
example to show the efficiency of the iterative scheme (4.10).

4.1 Application to monotone variational inequality problem
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The
Monotone Variational Inequality Problem (MVIP) can be formulated as finding a
point x∗ ∈ C such that

(4.1) 〈Mx∗, z − x∗〉 ≥ , ∀ z ∈ C ,

where M : C → H is a monotone operator. The set of solutions of the MVIP is
denoted by V IP (M,C). The MVIP was first initiated independently by Fichéra [15]
and Stampacchia [43] in the early 1960’s to study the problems in the elasticity and
potential theory respectively. However, the existence and uniqueness of solutions of
MVIP was proved by Lions and Stampacchia [22] in 1967.

One method for solving the MVIP (4.1) is by using the projection gradient
algorithm which generate a sequence {xn} in H starting with an arbitrary point
x0 ∈ H by the formula

xn+1 = PC(xn − λMxn) ,(4.2)

where λ > 0 is properly chosen as a stepsize. If M is ν-ism, then the iteration (4.2)
with 0 < λ < 2ν converges weakly to a point in V IP (M,C). The MVIP (4.1) is
equivalent to finding a point x∗ ∈ C such that (see [40])

0 ∈ (M +NC)x∗ ,

where NC is the normal cone operator of C. Note that the resolvent of the normal
cone is the projection operator and that if M is ν-ism, then the set V IP (M,C)
is closed and convex. Also, if M : C → R ∪ {+∞} is a proper, convex and lower
semicontinuous function, then, the sugradient ∂M which is defined by

∂M := {u ∈ C : M(y) ≥M(x) + 〈u, y − x〉 , ∀ y ∈ C}

is maximal monotone operator (see [41]). Thus, setting M = g and NC = h in
our Theorem 3.2, we get the following strong convergence theorem for finding a
common solution of MVIP (4.1) and fixed point of δ-demimetric mappings in a
real Hilbert space.

Theorem 4.1. Let C be a nonempty, closed and convex subset of a real Hilbert
space H. Let M : C → R∪{+∞} be a proper convex lower semicontinuous function
such that the gradient ∇M is 1

L -ism with L > 0. Let f : C → C be a Meir Keeler
contraction mapping, B : C → H be a strongly positive bounded linear operator with
coefficient τ > 0 such that 0 < ξ < τ

2 and T : C → C be a δ-demimetric mapping
for δ ∈ (−∞, 1) and F̂ (T ) = F (T ). Suppose Γ = V IP (M,C) ∩ F (T ) 6= ∅, let
αn ∈ [0, 1], βn ∈ [0, 1), {wn} and {θn} are sequences in (0, 1) and γn > 0. Choose
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initial points x0, x1 ∈ H arbitrarily and let {xn}, {yn} and {un} be generated by

(4.3)


yn = xn + βn(xn − xn−1) ,
un = (1− wn)yn + wn proxγnh(yn − γn∇M(yn)) ,
xn+1 = PC [αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun] , n ≥ 1 ,

where Tλn = (1− λn)I + λnT for λn ∈ (0, 1). Assume that the following conditions
are satisfy:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞,

(C2) limn→∞
βn
αn
||xn − xn−1|| = 0,

(C3) 0 < lim infn→∞ wn ≤ lim supn→∞ wn < 1,

(C4) 0 < lim infn→∞ γn ≤ lim supn→∞ γn <
2
L ,

(C5) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1− δ.
Then, {xn} converges strongly to a point x̄, where x̄ = PΓ(I − B + ξf)(x̄) is the
unique solution of the variational inequality

(4.4) 〈(B − ξf)x̄, x̄− y〉 ≤ 0 , y ∈ Γ .

4.2 Application to proximal split feasibility problem
Let H1 and H2 be real Hilbert spaces, C and Q be nonempty closed and convex
subset of H1 and H2 respectively. Let R : H1 → R∪{+∞} and S : H2 → R∪{+∞}
be proper, convex and lower semicontinuous functions and let A : H1 → H2 be a
bounded linear operator. The Proximal Split Feasibility Problem (PSFP) is to find
a point x∗ with the property

(4.5) x∗ ∈ argmin R such that Ax∗ ∈ argmin S ,

where

argmin S := {x ∈ H1 : S(x) ≤ S(y) , ∀ y ∈ H1} , and

argmin R := {u ∈ H2 : R(u) ≤ R(v) , ∀ v ∈ H2} .

We denote the solution set of the PSFP (4.5) by Λ. The PSFP was first introduced
by Moudafi and Thakur in [31]. By taking S = iC and R = iQ, the indicator
functions on C and Q respectively, the PSFP reduces to the split feasibility
problem introduced by Censor and Elfving [10]. The SFP have been applied to
model inverse problem arising in machine learning, signal processing, medical
radiation therapy, etc [10]. To solve the PSFP, it is very important to investigate
the following minimization problem: Find a solution x∗ ∈ H1 such that

(4.6) minimize
x∈H1

{R(x) + Sµ(Ax)} ,

where Sµ(y) = argmin
u∈H2

{S(u)+ 1
2µ‖u−y‖

2} stands for the Moreau-Yosida approxima-

tion of S with parameter µ [31]. By the differentiability of the Yosida approximation
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Sµ (see for instance [41]), we have the additive of the subdifferentials and thus, we
can write

∂(R(x) + Sµ(Ax)) = ∂R(x) +A∗∇Sµ(Ax)

= ∂R(x) +A∗
(I − proxµS

µ

)
(Ax) .

This implies that the optimality condition of (4.6) can then be written as
(4.7) 0 ∈ µ∂R(x) +A∗(I − proxµS)Ax ,
where ∂R stands for the subdifferential of R at x, i.e.

∂R := {u ∈ H1 : R(y) ≥ R(x) + 〈u, y − x〉, ∀y ∈ H1} .
This inclusion in (4.7) yields the following equivalent fixed point formulation (see
[31])
(4.8) proxγµR(x∗ − γA∗(I − proxµS))Ax∗ = x∗.

Hence, to solve (4.6), (4.8) suggest we consider the following split proximal algo-
rithm:
(4.9) xn+1 = proxγµR(xn − γnA∗(I − proxµS))Axn .
Several other iterative methods have been introduced for solving the PSFP in
Hilbert spaces, see for instance [1, 28, 33, 34, 35, 36] and references therein.

Setting ∇g(x) = A∗(I − proxµS)Ax in Theorem 3.2, then ∇g is 1
ν -ism with

ν = ‖A‖ (see [7], Page 113). This implies that we can apply Theorem 3.2 to obtain
solution of PSFP in real Hilbert space. Thus, we give the following result which
complement other results in literature on finding solution of PSFP.

Theorem 4.2. Let C and Q be nonempty, closed and convex subsets of real
Hilbert spaces H1 and H2 respectively. Let A : H1 → H2 be a bounded linear
operator, R : H1 → R ∪ {+∞} and S : H2 → R ∪ {+∞} be two proper convex
lower semicontinuous functions such that Λ 6= ∅. Let f : C → C be a Meir Keeler
contraction mapping, B : C → H be a strongly positive bounded linear operator
with coefficient τ > 0 such that 0 < ξ < τ

ρ and T : C → C be a δ-demimetric
mapping for δ ∈ (−∞, 1). Suppose Γ = Λ ∩ F (T ) 6= ∅, let αn ∈ [0, 1], βn ∈ [0, 1),
wn, θn ∈ (0, 1) and γn > 0. Choose initial points x0, x1 ∈ H1 arbitrarily and let
{xn}, {yn} and {un} be generated by

yn = xn + βn(xn − xn−1) ,
un = (1− wn)yn

+ wn proxµnγnR(yn − γnA∗(I − proxµnS)Ayn) ,
xn+1 = PC [αnξf(xn) + θnxn + ((1− θn)I − αnB)Tλnun] ,

n ≥ 1 ,

(4.10)

where Tλn = (1− λn)I + λnT for λn ∈ (0, 1). Assume that the following conditions
are satisfy:

(C1) limn→∞ αn = 0 and
∑∞
n=1 αn =∞,
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(C2) limn→∞
βn
αn
||xn − xn−1|| = 0,

(C3) 0 < lim infn→∞ wn ≤ lim supn→∞ wn < 1,

(C4) 0 < lim infn→∞ γn ≤ lim supn→∞ γn <
2
||A||2 ,

(C5) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 1− δ.
Then, {xn} converges strongly to a point x̄, where x̄ = PΓ(I − B + ξf)(x̄) is the
unique solution of the variational inequality
(4.11) 〈(B − ξf)x̄, x̄− y〉 ≤ 0 , y ∈ Γ .

4.3 Numerical example
In this subsection, we give a numerical example to show the efficiency and im-
plementation of our algorithm (4.10) for solving PSFP. All codes were written in
Matlab 2016(a) and run on HP EliteBook 6930p laptop.

Example 4.3. Let H1 = RN = H2 and S := ‖ · ‖2, the Euclidean norm on RN . It
is obvious that we can project onto the Euclidean unit ball Br as follows:

(4.12) PBr (x) =
{

x
‖x‖2

, if ‖x‖2 > 1 ,
x , if ‖x‖2 ≤ 1 .

In this case, the proximal operator is given by

(4.13) proxS(x) =
{(

1− 1
‖x‖2

)
x , if ‖x‖2 ≥ 1 ,

0 , if ‖x‖2 < 1 .
This proximal operator is called the block soft thresholding. Also, let xi ∈ R,
i = 1, 2, . . . , N . Define

ij(xj) = max
{
|xj | − 1, 0

}
, j = 1, 2, . . . , N ,

and

R(x) =
N∑
j=1

ij(xj) .

Then (see [14])

(4.14) proxij (xj) =


xj , if |xj | < 1,
sign(xj) , if 1 ≤ |xj | ≤ 2,
sign(xj − 1) , otherwise,

and
proxR(x) =

(
proxi1(x1),proxi2(x2), . . . ,proxiN (xN )

)
.

Suppose Ax = x ∈ RN . We consider the following PSFP:
(4.15) find x∗ ∈ argminR such that Ax∗ ∈ argmin S .

Chosen αn = 1
n+ 1 , βn = 1

(n+ 1)3 , θn = n

2(n+ 3) , wn = 1
5(1 + 1

n )
and λn =

n

2n+ 3 . Let f(x) = x
2 , B(x) = x, T (x) = x

2 , ξ = 1, x0 = 0.5 × randn(50, N) and
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Fig. 1: Example 4.3, Case (i): N = 100.

x1 = 2× randn(50, N) (randomly generated vectors in RN). Using ‖xn+1 − xn‖2
‖x2 − x1‖2

<

10−6 as the stopping criterion, we consider various values of N and choices of γn
as follows:
Case (i):N = 100, Case (ii):N = 500 , Case (iii):N = 1000, Case (iv):N = 2000 ,
and

Choice (i): γn = n

n+ 1 , Choice (ii) γn = n

5n+ 7 , Choice (iii) γn = 0.7 .

Remark 4.4. Figures 1, 2, 3, 4 and Table 1 show that there is no significant
change in the CPU time taken and the number of iterations for different values of
N and the stepsizes.
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Fig. 2: Example 4.3, Case (ii): N = 500.
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Fig. 3: Example 4.3, Case (iii), N = 1000.
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Fig. 4: Example 4.3, Case (iv), N = 2000.

 
 
 
 
 
 
 
 
 

 

 
    N 

  
Choice (i) 

 
Choice (ii) 

 
Choice (iii) 

 
 

100 

Number of Iter. 25 27 27 

CPU time (sec) 0.0356 0.0399 0.0476 

500 Number of Iter. 27 29 29 

CPU time (sec) 

0.2244 

0.3913 0.5061 

1000 Number of Iter. 29 30 30 

CPU time (sec) 0.4697 0.4095 0.5235 

2000 Number of Iter. 30 30 30 

CPU time (sec) 1.0731 1.0912 0.8785 

 

Table 1 : Showing the number of iteration and CPU time (sec) for each values 

of the stepsize and N in Example 4.3 
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