Δ-WEAK CHARACTER AMENABILITY OF CERTAIN BANACH ALGEBRAS

HAMID SADEGHI

ABSTRACT. In this paper we investigate Δ -weak character amenability of certain Banach algebras such as projective tensor product $A \otimes B$ and Lau product $A \times_{\theta} B$, where A and B are two arbitrary Banach algebras and $\theta \in \Delta(B)$, the character space of B. We also investigate Δ -weak character amenability of abstract Segal algebras and module extension Banach algebras.

1. INTRODUCTION

Let A be a Banach algebra and let $\varphi \in \Delta(A)$, consisting of all nonzero homomorphisms from A into \mathbb{C} . The concept of φ -amenability was first introduced by Kaniuth et al. in [6]. Specifically, A is called φ -amenable if there exist a $m \in A^{**}$ such that

(i) $m(\varphi) = 1;$

(ii) $m(f \cdot a) = \varphi(a)m(f) \ (a \in A, f \in A^*).$

Monfared in [10], introduced and studied the notion of character amenable Banach algebra. A was called character amenable if it has a bounded right approximate identity and it is φ -amenable for all $\varphi \in \Delta(A)$. Many aspects of φ -amenability have been investigated in [3, 6, 9].

Let A be a Banach algebra and $\varphi \in \Delta(A) \cup \{0\}$. Following [7], A is called Δ -weak φ -amenable if, there exists a $m \in A^{**}$ such that

(i) $m(\varphi) = 0;$

(ii) $m(\psi \cdot a) = \psi(a) \ (a \in \ker(\varphi), \ \psi \in \Delta(A)).$

In this paper we use above definition with a slight difference. In fact we say that A is Δ -weak φ -amenable if, there exists a $m \in A^{**}$ such that

(i) $m(\varphi) = 0;$

(ii) $m(\psi \cdot a) = \psi(a) \ (a \in A, \psi \in \Delta(A) \setminus \{\varphi\}).$

The aim of the present work is to study Δ -weak character amenability of certain Banach algebras such as projective tensor product $A \otimes B$, Lau product $A \times_{\theta} B$, where $\theta \in \Delta(B)$, abstract Segal algebras and module extension Banach algebras. Indeed, we show that $A \otimes B$ (resp. $A \times_{\theta} B$) is Δ -weak character amenable if and

²⁰¹⁰ Mathematics Subject Classification: primary 46H25; secondary 46M10.

Key words and phrases: Banach algebra, Δ -weak approximate identit, Δ -weak character amenability.

Received December 23, 2017, revised August 2019. Editor W. Kubiś.

DOI: 10.5817/AM2019-4-239

only if both A and B are Δ -weak character amenable. For abstract Segal algebra B with respect to A, we investigate relations between Δ -weak character amenability of A and B. Finally, for a Banach algebra A and A-bimodule X we show that $A \oplus_1 X$ is Δ -weak character amenable if and only if A is Δ -weak character amenable.

2. Δ -weak character amenability of $A \widehat{\otimes} B$

We commence this section with the following definition:

Definition 2.1. Let A be a Banach algebra. The net $(a_{\alpha})_{\alpha}$ in A is called a Δ -weak approximate identity if, $|\varphi(aa_{\alpha}) - \varphi(a)| \longrightarrow 0$, for each $a \in A$ and $\varphi \in \Delta(A)$.

Note that the approximate identity and Δ -weak approximate identity of a Banach algebra can be different. Jones and Lahr proved that if $S = \mathbb{Q}^+$ the semigroup algebra $l^1(S)$ has a bounded Δ -weak approximate identity, but it does not have any bounded or unbounded approximate identity (see [4]).

Definition 2.2. Let A be a Banach algebra and $\varphi \in \Delta(A) \cup \{0\}$. We say that A is Δ -weak φ -amenable if, there exists a $m \in A^{**}$ such that

- (i) $m(\varphi) = 0;$
- (ii) $m(\psi \cdot a) = \psi(a) \ (a \in A, \psi \in \Delta(A) \setminus \{\varphi\}).$

Definition 2.3. Let A be a Banach algebra. We say that A is Δ -weak character amenable if it is Δ -weak φ -amenable for every $\varphi \in \Delta(A) \cup \{0\}$.

Lemma 2.4. Let A be a Banach algebra such that $0 < |\Delta(A)| \le 2$. Then A is Δ -weak character amenable.

Proof. If A has only one character, the proof is easy. Let $\Delta(A) = \{\varphi, \psi\}$, where $\varphi \neq \psi$. Hence, by the proof of Theorem 3.3.14 of [5], there exists a $a_0 \in A$ with $\varphi(a_0) = 0$ and $\psi(a_0) = 1$. Put $m = \hat{a_0}$. Then $m(\varphi) = \hat{a_0}(\varphi) = \varphi(a_0) = 0$ and for every $a \in A$, we have

$$m(\psi \cdot a) = \widehat{a_0}(\psi \cdot a) = \psi \cdot a(a_0) = \psi(aa_0) = \psi(a)$$
 .

So, A is Δ -weak φ -amenable. A Similar argument shows that A is Δ -weak ψ -amenable. Therefore A is Δ -weak character amenable.

The proof of the following theorem is omitted, since it can be proved in the same direction as Theorem 2.2 of [7].

Theorem 2.5. Let A be a Banach algebra and $\varphi \in \Delta(A) \cup \{0\}$. Then A is Δ -weak φ -amenable if and only if there exists a net $(a_{\alpha})_{\alpha} \subseteq \ker(\varphi)$ such that $|\psi(aa_{\alpha}) - \psi(a)| \longrightarrow 0$, for each $a \in A$ and $\psi \in \Delta(A) \setminus \{\varphi\}$.

Example 2.6. (i) Let A be a Banach algebra with a bounded approximate identity. By Theorem 2.5, A is Δ -weak 0-amenable.

(ii) Let $S = \mathbb{Q}^+$. Then the semigroup algebra $l^1(S)$ has a bounded Δ -weak approximate identity (see [4]). So, Theorem 2.5, implies that $l^1(S)$ is Δ -weak 0-amenable.

Example 2.7. Let X be a Banach space and let $\varphi \in X^* \setminus \{0\}$ with $\|\varphi\| \leq 1$. Define a product on X by $ab = \varphi(a)b$ for all $a, b \in X$. With this product X is a Banach algebra which is denoted by $A_{\varphi}(X)$ (see [11]). Clearly, $\Delta(A_{\varphi}(X)) = \{\varphi\}$. Therefore by Lemma 2.4, $A_{\varphi}(X)$ is Δ -weak φ -amenable.

Example 2.8. Let A be a Banach algebra and $\varphi \in \Delta(A) \cup \{0\}$. Suppose that A is a φ -amenable and has a bounded right approximate identity. By Corollary 2.3 of [6], ker(φ) has a bounded right approximate identity. Let $(e_{\alpha})_{\alpha}$ be a bounded right approximate identity. Let $(e_{\alpha})_{\alpha}$ be a bounded right approximate identity for ker(φ). If there exists $a_0 \in A$ with $\varphi(a_0) = 1$ and $\lim_{\alpha} |\psi(a_0e_{\alpha}) - \psi(a_0)| = 0$ for all $\psi \in \Delta(A) \setminus \{\varphi\}$, then A is Δ -weak φ -amenable. For seeing this suppose that m is w^* -lim $_{\alpha}(\widehat{e_{\alpha}})$. Now, we have

$$m(\varphi) = \lim_{\alpha} \widehat{e_{\alpha}}(\varphi) = \lim_{\alpha} \varphi(e_{\alpha}) = 0,$$

and for every $\psi \in \Delta(A) \setminus \{\varphi\}$ and $a \in \ker(\varphi)$,

$$m(\psi \cdot a) = \lim_{\alpha} \widehat{e_{\alpha}}(\psi \cdot a) = \lim_{\alpha} \psi \cdot a(e_{\alpha}) = \lim_{\alpha} \psi(ae_{\alpha}) = \psi(a).$$

Let $a \in A$. Then $a - \varphi(a)a_0 \in \ker(\varphi)$ and for every $\psi \in \Delta(A) \setminus \{\varphi\}$, we have

$$m(\psi \cdot (a - \varphi(a)a_0)) = \psi(a - \varphi(a)a_0).$$

Therefore $m(\psi \cdot a) = \psi(a)$. So A is Δ -weak φ -amenable.

For $f \in A^*$ and $g \in B^*$, let $f \otimes g$ denote the element of $(A \widehat{\otimes} B)^*$ satisfying $(f \otimes g)(a \otimes b) = f(a)g(b)$ for all $a \in A$ and $b \in B$. Then, with this notion,

$$\Delta(A \otimes B) = \{ \varphi \otimes \psi : \varphi \in \Delta(A), \psi \in \Delta(B) \}.$$

Theorem 2.9. Let A and B be Banach algebras and let $\varphi \in \Delta(A) \cup \{0\}$ and $\psi \in \Delta(B) \cup \{0\}$. Then $A \widehat{\otimes} B$ is Δ -weak ($\varphi \otimes \psi$)-amenable if and only if A is Δ -weak φ -amenable and B is Δ -weak ψ -amenable.

Proof. Suppose that $A \widehat{\otimes} B$ is Δ -weak ($\varphi \otimes \psi$)-amenable. So, there exists $m \in (A \widehat{\otimes} B)^{**}$ such that

$$m(arphi\otimes\psi)=0\,,\;\;migl((arphi'\otimes\psi')\cdot(a\otimes b)igr)=(arphi'\otimes\psi')(a\otimes b)\,,$$

for all $a \otimes b \in A \widehat{\otimes} B$ and $(\varphi' \otimes \psi') \in \Delta(A \widehat{\otimes} B) \setminus \{\varphi \otimes \psi\}$. Choose $b_0 \in B$ such that $\psi(b_0) = 1$, and define $m_{\psi} \in A^{**}$ by $m_{\psi}(f) = m(f \otimes \psi)$ $(f \in A^*)$. Then $m_{\psi}(\varphi) = m(\varphi \otimes \psi) = 0$ and for every $a \in A$ and $\varphi' \in \Delta(A) \setminus \{\varphi\}$, we have

$$m_{\psi}(\varphi' \cdot a) = m(\varphi' \cdot a \otimes \psi) = m(\varphi' \cdot a \otimes \psi \cdot b_0)$$

= $m((\varphi' \otimes \psi) \cdot (a \otimes b_0)) = \varphi' \otimes \psi(a \otimes b_0)$
= $\varphi'(a)$.

Thus A is Δ -weak φ -amenable. By a similar argument one can prove that B is Δ -weak ψ -amenable.

Conversely, assume that A is Δ -weak φ -amenable and B is Δ -weak ψ -amenable. By Theorem 2.5, there are bounded nets $(a_{\alpha})_{\alpha}$ and $(b_{\beta})_{\beta}$ in ker (φ) and ker (ψ) , respectively, such that $|\varphi'(aa_{\alpha}) - \varphi'(a)| \longrightarrow 0$ and $|\psi'(bb_{\beta}) - \psi'(b)| \longrightarrow 0$ for all $a \in A, b \in B, \varphi' \in \Delta(A) \setminus \{\varphi\}$ and $\psi' \in \Delta(B) \setminus \{\psi\}$. Consider the bounded net $((a_{\alpha} \otimes b_{\beta}))_{(\alpha,\beta)}$ in $A \widehat{\otimes} B$. Let $||a_{\alpha}|| \leq M_1$, $||b_{\beta}|| \leq M_2$ and let $F = \sum_{i=1}^N c_i \otimes d_i \in A \widehat{\otimes} B$. For every $\varphi' \in \Delta(A) \setminus \{0\}$ and $\psi' \in \Delta(B) \setminus \{0\}$, we have

$$\begin{aligned} \left| \varphi' \otimes \psi'(F \cdot (a_{\alpha} \otimes b_{\beta})) - \varphi' \otimes \psi'(F) \right| \\ &= \left| \sum_{i=1}^{N} \left[\left(\varphi'(c_{i}a_{\alpha}) - \varphi'(c_{i}) \right) \psi'(d_{i}b_{\beta}) + \varphi'(c_{i}) \left(\psi'(d_{i}b_{\beta}) - \psi'(d_{i}) \right) \right] \right| \\ &\leq \sum_{i=1}^{N} M_{2} \|d_{i}\| \|\psi'\| \left| \varphi'(c_{i}a_{\alpha}) - \varphi'(c_{i}) \right| + \sum_{i=1}^{N} \|\varphi'\| \|c_{i}\| \left| \psi'(d_{i}b_{\beta}) - \psi'(d_{i}) \right| \\ &\longrightarrow 0. \end{aligned}$$

Now let $G \in A \widehat{\otimes} B$, so there exist sequences $(c_i)_i \subseteq A$ and $(d_i)_i \subseteq B$ such that $G = \sum_{i=1}^{\infty} c_i \otimes d_i$ with $\sum_{i=1}^{\infty} \|c_i\| \|d_i\| < \infty$. Let $\varepsilon > 0$ be given, we choose $N \in \mathbb{N}$ such that $\sum_{i=N+1}^{\infty} \|c_i\| \|d_i\| < \varepsilon/4M_1M_2 \|\varphi'\| \|\psi'\|$. Put $F = \sum_{i=1}^{N} c_i \otimes d_i$. Since $|\varphi' \otimes \psi'(F \cdot a_\alpha \otimes b_\beta) - \varphi' \otimes \psi'(F)| \longrightarrow 0$, it follows that there exists (α_0, β_0) such that $|\varphi' \otimes \psi'(F \cdot a_\alpha \otimes b_\beta) - \varphi' \otimes \psi'(F)| < \varepsilon/2$ for all $(\alpha, \beta) \ge (\alpha_0, \beta_0)$. Now for such a (α, β) , we have

$$\begin{aligned} \left| \varphi' \otimes \psi'(G \cdot a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(G) \right| \\ &= \left| \varphi' \otimes \psi'(F \cdot a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(F) + \sum_{i=1+N}^{\infty} \left(\varphi'(c_{i}a_{\alpha})\psi'(d_{i}b_{\beta}) - \varphi'(c_{i})\psi'(d_{i}) \right) \right| \\ &\leq \varepsilon/2 + 2M_{1}M_{2} \|\varphi'\| \|\psi'\| \sum_{i+N}^{\infty} \|c_{i}\| \|d_{i}\| \leq \varepsilon/2 + \varepsilon/2 = \varepsilon \,. \end{aligned}$$

Hence $|\varphi' \otimes \psi'(G \cdot a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(G)| \longrightarrow 0$. Also, clearly $|\varphi' \otimes \psi'(G \cdot a_{\alpha} \otimes b_{\beta}) - \varphi' \otimes \psi'(G)| \longrightarrow 0$ for $\varphi' = 0$ and $\psi' = 0$ and it is easy to see that $((a_{\alpha} \otimes b_{\beta}))_{(\alpha,\beta)} \subset \ker(\varphi \otimes \psi)$. Therefore $A \widehat{\otimes} B$ is Δ -weak $(\varphi \otimes \psi)$ -amenable, again by Theorem 2.5. \Box

Corollary 2.10. Let A and B be Banach algebras. Then $A \otimes B$ is Δ -weak character amenable if and only if both A and B are Δ -weak character amenable.

By using above corollary and Theorem 2.9, we can proof following proposition.

Proposition 2.11. Let A and B be Banach algebras. Then $A \widehat{\otimes} B$ is Δ -weak character amenable if and only if $B \widehat{\otimes} A$ is Δ -weak character amenable.

3. Δ -weak character amenability of $A \times_{\theta} B$

Let A and B be Banach algebras with $\Delta(B) \neq \emptyset$ and $\theta \in \Delta(B)$. Then the set $A \times B$ equipped with the multiplication

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2 + \theta(b_2) a_1 + \theta(b_1) a_2, b_1 b_2) \quad (a_1, a_2 \in A, b_1, b_2 \in B),$$

and the norm ||(a, b)|| = ||a|| + ||b|| $(a \in A, b \in B)$, is a Banach algebra which is called the θ -Lau product of A and B and is denoted by $A \times_{\theta} B$. Lau product was introduced by Lau [8] for certain class of Banach algebras and was extended by Monfared [9] for the general case.

We note that the dual space $(A \times_{\theta} B)^*$ can be identified with $A^* \times B^*$, via

$$\langle (f,g),(a,b)\rangle = \langle a,f\rangle + \langle b,g\rangle \ (a\in A,f\in A^*,b\in B,g\in B^*)\,.$$

Moreover, $(A \times_{\theta} B)^*$ is a $(A \times_{\theta} B)$ -bimodule with the module operations given by (3.1) $(f, q) \cdot (a, b) = (f \cdot a + \theta(b) f, f(a)\theta + q \cdot b)$,

and

(3.2)
$$(a,b) \cdot (f,g) = \left(a.f + \theta(b)f, f(a)\theta + b \cdot g\right),$$

for all $a \in A$, $b \in B$, $f \in A^*$ and $g \in B^*$.

Proposition 3.1. Let A be a unital Banach algebra and B be a Banach algebra and $\theta \in \Delta(B)$. Then $A \times_{\theta} B$ has a Δ -weak approximate identity if and only if B has a Δ -weak approximate identity.

Proof. Let $((a_{\alpha}, b_{\alpha}))_{\alpha}$ be a Δ -weak approximate identity for $A \times_{\theta} B$. For every $\psi \in \Delta(B)$ and $b \in B$ we have,

$$\left|\psi(bb_{\alpha}) - \psi(b)\right| = \left|(0,\psi)\big((0,b)(a_{\alpha},b_{\alpha})\big) - (0,\psi)(0,b)\right| \longrightarrow 0$$

Then $(b_{\alpha})_{\alpha}$ is a Δ -weak approximate identity for B.

Conversely, let e_A be the identity of A and $(b_\beta)_\beta$ be a Δ -weak approximate identity for B. We claim that $((e_A - \theta(b_\beta)e_A, b_\beta))_\beta$ is a Δ -weak approximate identity for $A \times_{\theta} B$. In fact for every $a \in A, b \in B$ and $\varphi \in \Delta(A)$, we have

$$\begin{aligned} \left| (\varphi, \theta) \big((a, b) (e_A - \theta(b_\beta) e_A, b_\beta) \big) - (\varphi, \theta) (a, b) \right| \\ &= \left| (\varphi, \theta) \big(a + \theta(b) e_A - \theta(bb_\beta) e_A, bb_\beta) \big) - (\varphi, \theta) (a, b) \right| \\ &= 0. \end{aligned}$$

Also for every $a \in A$, $b \in B$ and $\psi \in \Delta(B)$, we have

$$\left| (0,\psi) \big((a,b)(e_A - \theta(b_\beta)e_A, b_\beta) \big) - (0,\psi)(a,b) \right| = \left| \psi(bb_\beta) - \psi(b) \right| \longrightarrow 0.$$

Therefore $((e_A - \theta(b_\beta)e_A, b_\beta))_\beta$ is a Δ -weak approximate identity for $A \times_{\theta} B$. \Box

Theorem 3.2. Let A be a unital Banach algebra and B be a Banach algebra and $\theta \in \Delta(B)$. Then $A \times_{\theta} B$ is Δ -weak character amenable if and only if both A and B are Δ -weak character amenable.

Proof. Suppose that $A \times_{\theta} B$ is Δ -weak character amenable. Let $\varphi \in \Delta(A) \cup \{0\}$. Then there exists $m \in (A \times_{\theta} B)^{**}$ such that $m(\varphi, \theta) = 0$ and m(h.(a, b)) = h(a, b) for all $(a, b) \in A \times_{\theta} B$ and $h \in \Delta(A \times_{\theta} B)$, where $h \neq (\varphi, \theta)$. Let e_A be the identity of A and define $m_{\psi} \in A^{**}$ by $m_{\psi}(f) = m(f, f(e_A)\theta)(f \in A^*)$. For every $a \in A$ and $\varphi' \in \Delta(A) \setminus \{\varphi\}$, we have

$$m_{\psi}(\varphi' \cdot a) = m(\varphi' \cdot a, (\varphi' \cdot a)(e_A)\theta)$$

= $m(\varphi' \cdot a, \varphi'(a)\theta)$
= $m((\varphi', \theta) \cdot (a, 0))$
= $(\varphi', \theta)(a, 0)$
= $\varphi'(a)$.

Also $m_{\psi}(\varphi) = m(\varphi, \theta) = 0$. Thus A is a Δ -weak φ -amenable. Therefore A is Δ -weak character amenable.

Let $\psi \in \Delta(B) \cup \{0\}$. From the Δ -weak character amenability of $A \times_{\theta} B$ it follows that there exists a $m \in (A \times_{\theta} B)^{**}$ such that $m(0, \psi) = 0$ and $m(h \cdot (a, b)) = h(a, b)$ for all $(a, b) \in A \times_{\theta} B$ and $h \in \Delta(A \times_{\theta} B)$, where $h \neq (0, \psi)$. Define $m_{\varphi} \in B^{**}$ by $m_{\varphi}(g) = m(0, g)$. So $m_{\varphi}(\psi) = m(0, \psi) = 0$ and

$$m_{\varphi}(\psi' \cdot b) = m(0, \psi' \cdot b) = m\big((0, \psi') \cdot (0, b)\big) = (0, \psi')(0, b') = \psi'(b),$$

for all $b \in B$ and $\psi' \in \Delta(B) \setminus \{\psi\}$. Therefore B is Δ -weak character amenable.

Conversely, let A and B be Δ -weak character amenable. We show that for every $h \in \Delta(A \times_{\theta} B)$, $A \times_{\theta} B$ is Δ -weak h-amenable. To see this we first assume that $h = (0, \psi)$, where $\psi \in \Delta(B)$. Since B is Δ -weak character amenable, by Theorem 2.5 there exists a net $(b_{\beta})_{\beta} \subseteq \ker \psi$ such that $|\psi'(bb_{\beta}) - \psi'(b)| \longrightarrow 0$, for all $b \in B$ and $\psi' \in \Delta(B)$, where $\psi' \neq \psi$. Consider the bounded net $((e_A - \theta(b_{\beta})e_A, b_{\beta}))_{\beta} \subseteq A \times_{\theta} B$. A similar argument as in the proof of Proposition 3.1, shows that

$$|(\varphi,\theta)((a,b)(e_A-\theta(b_\beta)e_A,b_\beta))-(\varphi,\theta)(a,b)|\longrightarrow 0,$$

and

$$\left| (0,\psi) \big((a,b)(e_A - \theta(b_\beta)e_A, b_\beta) \big) - (0,\psi)(a,b) \right| \longrightarrow 0,$$

for all $\varphi \in \Delta(A), \psi \in \Delta(B)$ and $a \in A, b \in B$. Also one can easily check that $((e_A - \theta(b_\beta)e_A, b_\beta))_\beta \subseteq \ker h$. So, by Theorem 2.5, $A \times_{\theta} B$ is Δ -weak $(0, \psi)$ -amenable.

Now let $h = (\varphi, \theta)$, where $\varphi \in \Delta(A)$. Since A is Δ -weak φ -amenable, by Theorem 2.5 there exists a net $(a_{\alpha})_{\alpha} \subseteq \ker \varphi$ such that $|\varphi'(aa_{\alpha}) - \varphi'(a)| \longrightarrow 0$, for all $a \in A$ and $\varphi' \in \Delta(A)$, where $\varphi' \neq \varphi$. Also since B is Δ -weak θ -amenable again by Theorem 2.5, there exists a net $(b_{\beta})_{\beta} \subseteq \ker(\theta)$ such that $|\psi'(bb_{\beta}) - \psi'(b)| \longrightarrow 0$, for all $b \in B$ and $\psi' \in \Delta(B)$, where $\psi' \neq \theta$. Consider the bounded net $((a_{\alpha}, b_{\beta}))_{(\alpha,\beta)} \subseteq A \times_{\theta} B$. It is easy to see that $((a_{\alpha}, b_{\beta}))_{(\alpha,\beta)} \subseteq \ker(\varphi, \theta)$. For every $a \in A, b \in B$ and $\psi' \in \Delta(B)$, we have

$$\left| (0,\psi') \big((a,b)(a_{\alpha},b_{\beta}) \big) - (0,\psi') \big(a,b \big) \right| = \left| \psi'(bb_{\beta}) - \psi'(b) \right| \longrightarrow 0,$$

and for every $\varphi' \in \Delta(A)$,

$$\begin{aligned} \left| (\varphi', \theta) \big((a, b)(a_{\alpha}, b_{\beta}) \big) - (\varphi', \theta) \big((a, b) \big) \right| \\ &= \left| \varphi'(aa_{\alpha}) + \theta(b_{\beta})\varphi'(a) + \theta(b)\varphi'(a_{\alpha}) + \theta(bb_{\beta}) - \varphi'(a) - \theta(b) \right| \\ &= \left| \varphi'(aa_{\alpha}) + \theta(b)\varphi'(a_{\alpha}) - \varphi'(a) - \theta(b) \right| \\ &\leq \left| \varphi'(aa_{\alpha}) - \varphi'(a) \right| + \left| \theta(b) \right| \left| \varphi'(a_{\alpha}e_{A}) - \varphi'(e_{A}) \right| \longrightarrow 0 \,. \end{aligned}$$

So, Theorem 2.5, yields that $A \times_{\theta} B$ is Δ -weak (φ, θ) -amenable. Therefore $A \times_{\theta} B$ is Δ -weak character amenable.

4. Δ -weak character amenability of abstract Segal algebras

We start this section with the basic definition of abstract Segal algebra; see [2] for more details. Let $(A, \|\cdot\|_A)$ be a Banach algebra. A Banach algebra $(B, \|\cdot\|_B)$ is an abstract Segal algebra with respect to A if:

(i) B is a dense left ideal in A;

(ii) there exists M > 0 such that $||b||_A \le M ||b||_B$ for all $b \in B$;

(iii) there exists C > 0 such that $||ab||_B \le C ||a||_A ||b||_B$ for all $a, b \in B$.

Several authors have studied various notions of amenability for abstract Segal algebras; see, for example, [1, 12].

To prove our next result we need to quote the following lemma from [1].

Lemma 4.1. Let A be a Banach algebra and let B be an abstract Segal algebra with respect to A. Then $\Delta(B) = \{\varphi|_B : \varphi \in \Delta(A)\}.$

Theorem 4.2. Let A be a Banach algebra and let B be an abstract Segal algebra with respect to A. If B is Δ -weak character amenable, then so is A. In the case that B^2 is dense in B and B has a bounded approximate identity the converse is also valid.

Proof. Let $\varphi \in \Delta(A)$. Since *B* is Δ -weak character amenable, by Lemma 4.1 *B* is Δ -weak $\varphi|_B$ -amenable. Now from the Theorem 2.5, it follows that there exists a bounded net $(b_{\alpha})_{\alpha}$ in ker $(\varphi|_B)$ such that

$$|\psi|_B(bb_\alpha) - \psi|_B(b)| \longrightarrow 0$$
,

for all $b \in B$ and $\psi \in \Delta(A)$, with $\psi \neq \varphi|_B$. Let $\psi \in \Delta(A)$ and $a \in A$. From the density of B in A it follows that there exists a net $(b_i)_i \subseteq B$ such that $\lim_i b_i = a$. So

$$\left|\psi(ab_{\alpha})-\psi(a)\right| = \lim_{i} \left|\psi|_{B}(b_{i}b_{\alpha})-\psi|_{B}(b_{i})\right| \longrightarrow 0.$$

Then Theorem 2.5 implies that A is Δ -weak φ -amenable. Therefore A is Δ -weak character amenable.

Conversely, suppose that A is Δ -weak character amenable. Let $\varphi|_B \in \Delta(B)$. By Theorem 2.5, there exists a bounded net $(a_{\alpha})_{\alpha}$ in ker (φ) such that $|\psi(aa_{\alpha}) - \psi(a)| \longrightarrow 0$, for all $a \in A$ and $\psi \in \Delta(A)$, with $\psi \neq \varphi$. Let $(e_i)_i$ be a bounded approximate identity for B with bound M > 0. Set $b_{\alpha} = \lim_i (e_i a_{\alpha} e_i)$, for all α . From the fact that B^2 is dense in B and the continuity of φ , we infer that $b_{\alpha} \subseteq \ker(\varphi|_B)$. Moreover, for every $b \in B$ and $\psi|_B \in \Delta(B)$, with $\psi \neq \varphi$, we have

$$\begin{aligned} \left|\psi|_{B}(bb_{\alpha}) - \psi|_{B}(b)\right| &= \lim_{i} \left|\psi|_{B}(be_{i}a_{\alpha}e_{i}) - \psi|_{B}(b)\right| \\ &= \lim_{i} \left|\psi|_{B}(be_{i}^{2}a_{\alpha}) - \psi|_{B}(b)\right| \\ &= \left|\psi|_{B}(ba_{\alpha}) - \psi|_{B}(b)\right| \longrightarrow 0 \,. \end{aligned}$$

Hence, B is Δ -weak $\varphi|_B$ -amenable by Theorem 2.5. Therefore B is Δ -weak character amenable.

5. Δ -weak character amenability of module extension Banach algebras

Let A be a Banach algebra and X be a Banach A-bimodule. The l^1 -direct sum of A and X, denoted by $A \oplus_1 X$, with the product defined by

$$(a, x)(a', x') = (aa', a \cdot x' + x \cdot a') \qquad (a, a' \in A, x, x' \in X),$$

is a Banach algebra that is called the module extension Banach algebra of A and X.

Using the fact that the element (0, x) is nilpotent in $A \oplus_1 X$ for all $x \in X$, it is easy to verify that

$$\Delta(A \oplus_1 X) = \{ \tilde{\varphi} : \varphi \in \Delta(A) \},\$$

where $\tilde{\varphi}(a, x) = \varphi(a)$ for all $a \in A$ and $x \in X$.

Theorem 5.1. Let A be a Banach algebra and X be a Banach A-bimodule. Then $A \oplus_1 X$ is Δ -weak character amenable if and only if A is Δ -weak character amenable.

Proof. Suppose that A is Δ -weak character amenable. Let $\tilde{\varphi} \in \Delta(A \oplus_1 X)$. By Theorem 2.5, there exists a bounded net $(a_{\alpha})_{\alpha}$ in ker (φ) such that $|\psi(aa_{\alpha}) - \psi(a)| \longrightarrow 0$, for all $a \in A$ and $\psi \in \Delta(A)$, with $\psi \neq \varphi$. Choose a bounded net $(a_{\alpha}, 0)_{\alpha}$ in $A \oplus_1 X$. Clearly, $(a_{\alpha}, 0)_{\alpha} \subseteq \ker(\tilde{\varphi})$. For every $a \in A$, $x \in X$ and $\tilde{\psi} \in \Delta(A \oplus_1 X)$, we have

$$\begin{aligned} \left| \tilde{\psi} \big((a, x)(a_{\alpha}, 0) \big) - \tilde{\psi}(a, x) \right| &= \left| \tilde{\psi} \big(aa_{\alpha}, x \cdot a_{\alpha} \big) - \tilde{\psi}(a, x) \right| \\ &= \left| \psi(aa_{\alpha}) - \psi(a) \right| \longrightarrow 0 \,. \end{aligned}$$

So, Theorem 2.5 implies that $A \oplus_1 X$ is Δ -weak $\tilde{\varphi}$ -amenable. Therefore $A \oplus_1 X$ is Δ -weak character amenable.

For the converse, let $\varphi \in \Delta(A)$. Again by Theorem 2.5 there exists a bounded net $(a_{\alpha}, x_{\alpha})_{\alpha}$ in ker $(\tilde{\varphi})$ such that $|\tilde{\psi}((a, x)(a_{\alpha}, x_{\alpha})) - \tilde{\psi}(a, x)| \longrightarrow 0$, for all $a \in A$, $x \in X$ and $\tilde{\psi} \in \Delta(A \oplus_1 X)$, with $\tilde{\psi} \neq \tilde{\varphi}$. So,

$$\begin{aligned} \left|\psi(aa_{\alpha}) - \psi(a)\right| &= \left|\tilde{\psi}(aa_{\alpha}, a \cdot x_{\alpha} + x \cdot a_{\alpha}) - \tilde{\psi}(a, x)\right| \\ &= \left|\tilde{\psi}((a, x)(a_{\alpha}, x_{\alpha})) - \tilde{\psi}(a, x)\right| \longrightarrow 0\,,\end{aligned}$$

for all $a \in A$ and $\psi \in \Delta(A)$. Moreover, $\varphi(a_{\alpha}) = \tilde{\varphi}(a_{\alpha}, x_{\alpha}) = 0$, for all α . Thus $(a_{\alpha})_{\alpha} \subseteq \ker(\varphi)$. By Theorem 2.5, A is Δ -weak φ -amenable. Therefore A is Δ -weak character amenable.

Acknowledgement. We are grateful to the Fereydan Branch of Islamic Azad University for their support.

References

- Alaghmandan, M., Nasr-Isfahani, R., Nemati, M., Character amenability and contractibility of abstract segal algebras, Bull. Austral. Math. Soc. 82 (2010), 274–281.
- [2] Burnham, J.T., Closed ideals in subalgebras of Banach algebras, I, Proc. Amer. Math. Soc. 32 (1972), 551–555.
- [3] Hu, Z., Sangani Monfared, M., Traynor, T., On character amenable Banach algebras, Studia Math. 193 (209), 53–78.
- [4] Jones, C.A., Lahr, C.D., Weak and norm approximate identities, Pacific J. Math. 72 (1977), 99–104.
- [5] Kaniuth, E., A course in commutative Banach algebras, Graduate Texts in Mmathematics, Springer Verlag, 2009.
- [6] Kaniuth, E., Lau, A.T., Pym, J., On φ-amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 85–96.

- [7] Laali, J., Fozoun, M., On Δ-weak φ-amenability of Banach algebras, Politehn. Univ. Bucharest Sci. Bull. Ser. A, Appl. Math. Phys. 77 (2015), 165–176.
- [8] Lau, A.T., Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161–175.
- [9] Monfared, M.S., On certain products of Banach algebras with application to harmonic analysis, Studia Math. 178 (2007), 277–294.
- [10] Monfared, M.S., Character amenability of Banach algebras, Math. Proc. Cambridge Philos. Soc. 144 (2008), 697–706.
- [11] Nasr-Isfahani, R., Nemati, M., Essential character amenability of Banach algebras, Bull. Aust. Math. Soc. 84 (2011), 372–386.
- [12] Samea, H., Essential amenability of abstract Segal algebras, Bull. Aust. Math. Soc. 79 (2009), 319–325.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, FEREYDAN BRANCH, ISLAMIC AZAD UNIVERSITY, ISFAHAN, IRAN *E-mail*: h.sadeghi97620gmail.com h.sadeghi@iaufr.ac.ir