ON THE γ -EQUIVALENCE OF SEMIHOLONOMIC JETS

MIROSLAV DOUPOVEC AND IVAN KOLÁŘ

ABSTRACT. It is well known that the concept of holonomic r-jet can be geometrically characterized in terms of the contact of individual curves. However, this is not true for the semiholonomic r-jets, [5], [8]. In the present paper, we discuss systematically the semiholonomic case.

In [5], the second author introduced the concept of equivalence with respect to curves, or γ -equivalence, of semiholonomic *r*-jets, when he studied the contact of spaces with higher order connection according to C. Ehresmann, [4]. In the present paper, we study the general form of this problem. In Section 5, we describe how to discuss the γ -equivalence of two arbitrary semiholonomic *r*-jets. We use an original concept of *k*-sesquiholonomic *r*-jet, that generalizes an idea by P. Libermann, [8].

Unless otherwise specified, we use the terminology and notation from the book [6].

1. Semiholonomic r-jets

The *r*-th semiholonomic prolongation $\overline{J}^r Y \to M$ of a fibered manifold $p: Y \to M$ is defined as follows. By induction, we have constructed a projection $\pi_{r-1}^{r-2}: \overline{J}^{r-1}Y \to \overline{J}^{r-2}Y$. The elements of $\overline{J}^r Y$ are 1-jets $j_x^1 s$ of the local sections $s: M \to \overline{J}^{r-1}Y$ satisfying

(1)
$$s(x) = j_x^1(\pi_{r-1}^{r-2} \circ s).$$

If x^i , y^p are some local fiber coordinates on Y and $y^p_i, \ldots, y^p_{i_1 \ldots i_{r-1}}$ are the induced local coordinates on $\overline{J}^{r-1}Y$ arbitrary in all subscripts, then the induced local coordinates on $\overline{J}^r Y \to \overline{J}^{r-1}Y$ are

(2)
$$y_{i_1...i_r}^p(j_x^1s) = \frac{\partial y_{i_1...i_{r-1}}^p(s)}{\partial x^{i_r}}(x).$$

Hence even $y_{i_1...i_r}^p$ are arbitrary in all subscripts. The *r*-th holonomic prolongation $J^r Y$ is a subbundle of $\overline{J}^r Y$, whose all coordinates are symmetric in all subscripts. The space $\overline{J}^r(M, N)$ of semiholonomic *r*-jets of *M* into *N* is defined as the *r*-th

²⁰¹⁰ Mathematics Subject Classification: primary 58A20; secondary 58A32.

Key words and phrases: jet bundle, semiholonomic r-jet.

The second author was supported by GA ČR under the grant GA17-01171F.

Received April 2, 2019. Editor J. Slovák.

DOI: 10.5817/AM2019-4-261

semiholonomic prolongation of the product fibered manifold $Y = M \times N \to M$. We write α or β for the source or target projection.

The semiholonomic r-jets are endowed with the restriction of the composition of nonholonomic r-jets by Ehresmann, [3]. If $X = j_x^1 f \in \overline{J}^r(M, N)$ and $Y = j_y^1 g \in \overline{J}^r(N, Q)$, $y = \beta X$, then

(3)
$$Y \circ X = j_x^1 \left(g \left(\beta f(u) \right) \circ f(u) \right) \in \overline{J}^r(M, Q) \,, \quad u \in M \,,$$

with the composition of semiholonomic (r-1)-jets on the right hand side. The composition of holonomic r-jets coincides with the classical one.

2. The equivalence with respect to curves

In [5], the second author introduced a special version of this idea, when he investigated the contact of spaces with higher order connection in the sense of Ehresmann, [4]. In the general situation, we define

Definition 1. Two *r*-jets $B, C \in \overline{J}_x^r(M, N)_y$ are equivalent by curves, or γ -equivalent, if

(4)
$$B \circ A = C \circ A$$
 for all $A = j_0^r \gamma, \ \gamma \colon \mathbb{R} \to M, \ \gamma(0) = x$.

We shall write $B \sim_{\gamma} C$.

It is well known that two holonomic r-jets $B, C \in J_x^r(M, N)_y$ are equivalent by curves, if and only if B = C. But in the semiholonomic case, the situation is different.

In the simpliest case $B, C \in \overline{J}_0^2(\mathbb{R}^m, \mathbb{R}^n)_0$, $B = (y_i^p, y_{ij}^p)$, $C = (z_i^p, z_{ij}^p)$ and $A = (a_1^i, a_2^i) \in J_0^2(\mathbb{R}, \mathbb{R}^m)_0$, $B \circ A = C \circ A$ for all A means

(5)
$$(y_i^p a_1^i, y_{ij}^p a_1^i a_1^j + y_i^p a_2^i) = (z_i^p a_1^i, z_{ij}^p a_1^i a_1^j + z_i^p a_2^i),$$

i.e. $y_i^p = z_i^p$ and $y_{(ij)}^p = z_{(ij)}^p$. This proves that $B, C \in \overline{J}_x^2(M, N)_y$ are γ -equivalent if and only if the symmetrizations of B and C in $J_x^2(M, N)_y$ coincide.

3. The k-sesquiholonomic r-jets

According to P. Libermann, [8], $\overline{J}^r(M, N)$ is a pullback of $TN \otimes \otimes^r T^*M$ over $\overline{J}^{r-1}(M, N)$. (We remark that the fact $J^r(M, N)$ is a pullback of $TN \otimes S^r T^*M$ over $J^{r-1}(M, N)$ was deduced in [6].) Further, she defined the *r*-th sesquiholonomic prolongation $\check{J}^r(M, N) \subset \overline{J}^r(M, N)$ by

(6)
$$X \in \check{J}^{r}(M, N) \quad \text{means} \quad \pi_{r}^{r-1}X \in J^{r-1}(M, N) \,.$$

So, $\check{J}^r(M, N)$ is the pullback of $TN \otimes \otimes^r T^*M$ over $J^{r-1}(M, N)$. Further, the tensor symmetrization $TN \otimes \otimes^r T^*M \to TN \otimes S^r T^*M$ induces a map $\rho_r : \check{J}^r(M, N) \to J^r(M, N)$, see also [2]. Analogously to (5), one verifies that $B, C \in \check{J}^r_x(M, N)_y$ are γ -equivalent, if and only if $\pi_r^{r-1}B = \pi_r^{r-1}C$ and

(7)
$$\rho_r(B) = \rho_r(C) \in J^r_x(M, N)_y.$$

We generalize the concept of sesquiholonomic r-jet as follows.

Definition 2. A jet $X \in \overline{J}^r(M, N)$ is called k-sesquiholonomic, k < r, if $\pi_r^k X \in J^k(M, N)$.

We shall write $X \in \check{J}^{r,k}(M,N)$. So sesquiholonomic in the sense of Libermann means (r-1)-sesquiholonomic under our approach.

Proposition 1. B, $C \in \check{J}_x^r(M, N)_y$ are γ -equivalent, if and only if $\pi_r^{r-1}B = \pi_r^{r-1}C$ and $\rho_r(B) = \rho_r(C)$.

Proof. The highest order coordinates of B or C are $y_{i_1...i_r}^p$ or $z_{i_1...i_r}^p$, respectively. One finds easily that $B \sim_{\gamma} C$ means

(8)
$$z_{i_1...i_r}^p a_1^{i_1} \dots a_1^{i_r} = y_{i_1...i_r}^p a_1^{i_1} \dots a_1^{i_r}.$$

This is the coordinate form of $\rho_r(B) = \rho_r(C)$.

4. The case
$$r = 3$$

It is useful to discuss this special case separately.

Proposition 2. $B, C \in \overline{J}_0^3(M, N)_0$ are γ -equivalent, if and only if $\pi_3^2 B = \pi_3^2 C \in J_0^2(M, N)_0$ and $\rho_3(B) = \rho_3(C) \in J_0^3(M, N)_0$.

Proof. Let $B = (y_i^p, y_{ij}^p, y_{ijk}^p), C = (z_i^p, z_{ijk}^p, z_{ijk}^p)$ and $A = (a_1^i, a_2^i, a_3^i) \in J_0^3(\mathbb{R}, \mathbb{R}^m)_0$. From (3), we deduce for $C \circ A = B \circ A$

(10)
$$z_{ij}^p a_1^i a_1^j + z_i^p a_2^i = y_{ij}^p a_1^i a_1^j + y_i^p a_2^i$$

(11)
$$z_{ijk}^{p}a_{1}^{i}a_{1}^{j}a_{1}^{k} + z_{ij}^{p}(a_{2}^{i}a_{1}^{j} + a_{1}^{i}a_{2}^{j}) + z_{ij}^{p}a_{2}^{i}a_{1}^{j} + z_{i}^{p}a_{3}^{i} = \{y\},$$

where $\{y\}$ in (11) means that all z's on the left hand side are replaced by the corresponding y's. Since a_1^i are arbitrary quantities, (9)–(11) imply

(12)
$$z_i^p = y_i^p, \quad z_{(ij)}^p = y_{(ij)}^p, \quad z_{(ijk)}^p = y_{(ijk)}^p$$

Further, for $a_2^i = 1$, $a_1^j = 1$ and other a's equal to zero, we obtain from (11) the additional conditions

(13)
$$z_{(ij)}^p + z_{ij}^p = y_{(ij)}^p + y_{ij}^p,$$

what implies $z_{ij}^p = y_{ij}^p$. This proves our assertion.

We remark that the coordinate formula for the composition $Y \circ X$ of two arbitrary semiholonomic *r*-jets is deduced in [1]. However, in our case the coordinate form of X = A is very special. So we find more suitable the direct use of (3) than the specialization of the general formula from [1].

5. The general situation

Consider two k-sesquiholonomic r-jets $B, C \in \check{J}^{r,k}(M,N)$. If $B \sim_{\gamma} C$, then $\pi_r^s B \sim_{\gamma} \pi_r^s C$ for all $s \geq k$. In the case s = k, these jets are holonomic and $\pi_r^k B \sim_{\gamma} \pi_r^k C$ is equivalent to $\pi_r^k B = \pi_r^k C$. Then $\pi_r^{k+1} B, \pi_r^{k+1} C \in \check{J}^{k+1}(M,N)$ and $\pi_r^{k+1} B \sim_{\gamma} \pi_r^{k+1} C$ is equivalent to $\rho_{k+1}(\pi_r^{k+1}B) = \rho_{k+1}(\pi_r^{k+1}C)$. On the other hand, if the last equation is not satisfied, we do not have $\pi_r^{k+1} B \sim_{\gamma} \pi_r^{k+1} C$. Hence even $B \sim_{\gamma} C$ cannot be true.

The situation r = 3 is specific in that sense, that we can deduce $\pi_3^2 B = \pi_3^2 C$ directly from (11) with no additional conditions on B and C.

References

- Cabras, A., Kolář, I., Prolongation of tangent valued forms, Arch. Math. (Brno) 38 (2002), 243–254.
- [2] Doupovec, M., Mikulski, W.M., Holonomic extension of connections and symmetrization of jets, Rep. Math. Phys. 60 (2007), 299–316.
- [3] Ehresmann, C., Extension du calcul des jets aux jets non holonomes, CRAS Paris 239 (1954), 1762–1764.
- [4] Ehresmann, C., Sur les connexions d'ordre supériour, Atti del V. Cong. dell Unione Mat. Italiana, Roma Cremonese (1956), 326–328.
- [5] Kolář, I., The contact of spaces with connection, J. Differential Geometry 7 (1972), 563–570.
- [6] Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993.
- [7] Libermann, P., Prolongations des fibrés principaux et groupoides différentiables, Sémin. Analyse Globale Montréal, 1969, pp. 7–108.
- [8] Libermann, P., Introduction to the theory of semiholonomic jets, Arch. Math. (Brno) 33 (1997), 173–189.
- [9] Libermann, P., Charles Ehresmann's concepts in differential geometry, Banach Center Publications 76 (2007), 35–50, Polish Academy of Sciences, Warszawa.

DEPARTMENT OF MATHEMATICS, BRNO UNIVERSITY OF TECHNOLOGY, BRNO, CZECH REPUBLIC *E-mail*: doupovec@fme.vutbr.cz

DEPARTMENT OF MATHEMATICS AND STATISTICS, FACULTY OF SCIENCE, MASARYK UNIVERSITY, BRNO, CZECH REPUBLIC *E-mail*: kolar@math.muni.cz