ON THE γ-EQUIVALENCE OF SEMIHOLONOMIC JETS

Miroslav Doupovec and Ivan Kolář

Abstract

It is well known that the concept of holonomic r-jet can be geometrically characterized in terms of the contact of individual curves. However, this is not true for the semiholonomic r-jets, 5 , 8 . In the present paper, we discuss systematically the semiholonomic case.

In [5], the second author introduced the concept of equivalence with respect to curves, or γ-equivalence, of semiholonomic r-jets, when he studied the contact of spaces with higher order connection according to C. Ehresmann, 4. In the present paper, we study the general form of this problem. In Section 5 we describe how to discuss the γ-equivalence of two arbitrary semiholonomic r-jets. We use an original concept of k-sesquiholonomic r-jet, that generalizes an idea by P. Libermann, 8].

Unless otherwise specified, we use the terminology and notation from the book [6].

1. SEMiholonomic r-JEts

The r-th semiholonomic prolongation $\bar{J}^{r} Y \rightarrow M$ of a fibered manifold $p: Y \rightarrow M$ is defined as follows. By induction, we have constructed a projection $\pi_{r-1}^{r-2}: \bar{J}^{r-1} Y \rightarrow$ $\bar{J}^{r-2} Y$. The elements of $\bar{J}^{r} Y$ are 1-jets $j_{x}^{1} s$ of the local sections $s: M \rightarrow \bar{J}^{r-1} Y$ satisfying

$$
\begin{equation*}
s(x)=j_{x}^{1}\left(\pi_{r-1}^{r-2} \circ s\right) . \tag{1}
\end{equation*}
$$

If x^{i}, y^{p} are some local fiber coordinates on Y and $y_{i}^{p}, \ldots, y_{i_{1} \ldots i_{r-1}}^{p}$ are the induced local coordinates on $\bar{J}^{r-1} Y$ arbitrary in all subscripts, then the induced local coordinates on $\bar{J}^{r} Y \rightarrow \bar{J}^{r-1} Y$ are

$$
\begin{equation*}
y_{i_{1} \ldots i_{r}}^{p}\left(j_{x}^{1} s\right)=\frac{\partial y_{i_{1} \ldots i_{r-1}}^{p}(s)}{\partial x^{i_{r}}}(x) . \tag{2}
\end{equation*}
$$

Hence even $y_{i_{1} \ldots i_{r}}^{p}$ are arbitrary in all subscripts. The r-th holonomic prolongation $J^{r} Y$ is a subbundle of $\bar{J}^{r} Y$, whose all coordinates are symmetric in all subscripts. The space $\bar{J}^{r}(M, N)$ of semiholonomic r-jets of M into N is defined as the r-th

[^0]semiholonomic prolongation of the product fibered manifold $Y=M \times N \rightarrow M$. We write α or β for the source or target projection.

The semiholonomic r-jets are endowed with the restriction of the composition of nonholonomic r-jets by Ehresmann, [3]. If $X=j_{x}^{1} f \in \bar{J}^{r}(M, N)$ and $Y=j_{y}^{1} g \in$ $\bar{J}^{r}(N, Q), y=\beta X$, then

$$
\begin{equation*}
Y \circ X=j_{x}^{1}(g(\beta f(u)) \circ f(u)) \in \bar{J}^{r}(M, Q), \quad u \in M \tag{3}
\end{equation*}
$$

with the composition of semiholonomic $(r-1)$-jets on the right hand side. The composition of holonomic r-jets coincides with the classical one.

2. The equivalence with respect to curves

In [5], the second author introduced a special version of this idea, when he investigated the contact of spaces with higher order connection in the sense of Ehresmann, 4]. In the general situation, we define

Definition 1. Two r-jets $B, C \in \bar{J}_{x}^{r}(M, N)_{y}$ are equivalent by curves, or γ-equivalent, if

$$
\begin{equation*}
B \circ A=C \circ A \quad \text { for all } \quad A=j_{0}^{r} \gamma, \gamma: \mathbb{R} \rightarrow M, \gamma(0)=x . \tag{4}
\end{equation*}
$$

We shall write $B \sim_{\gamma} C$.
It is well known that two holonomic r-jets $B, C \in J_{x}^{r}(M, N)_{y}$ are equivalent by curves, if and only if $B=C$. But in the semiholonomic case, the situation is different.

In the simpliest case $B, C \in \bar{J}_{0}^{2}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)_{0}, B=\left(y_{i}^{p}, y_{i j}^{p}\right), C=\left(z_{i}^{p}, z_{i j}^{p}\right)$ and $A=\left(a_{1}^{i}, a_{2}^{i}\right) \in J_{0}^{2}\left(\mathbb{R}, \mathbb{R}^{m}\right)_{0}, B \circ A=C \circ A$ for all A means

$$
\begin{equation*}
\left(y_{i}^{p} a_{1}^{i}, y_{i j}^{p} a_{1}^{i} a_{1}^{j}+y_{i}^{p} a_{2}^{i}\right)=\left(z_{i}^{p} a_{1}^{i}, z_{i j}^{p} a_{1}^{i} a_{1}^{j}+z_{i}^{p} a_{2}^{i}\right), \tag{5}
\end{equation*}
$$

i.e. $y_{i}^{p}=z_{i}^{p}$ and $y_{(i j)}^{p}=z_{(i j)}^{p}$. This proves that $B, C \in \bar{J}_{x}^{2}(M, N)_{y}$ are γ-equivalent if and only if the symmetrizations of B and C in $J_{x}^{2}(M, N)_{y}$ coincide.

3. The k-SESQUIHOLONOMIC r-JETS

According to P. Libermann, [8], $\bar{J}^{r}(M, N)$ is a pullback of $T N \otimes \otimes^{r} T^{*} M$ over $\bar{J}^{r-1}(M, N)$. (We remark that the fact $J^{r}(M, N)$ is a pullback of $T N \otimes S^{r} T^{*} M$ over $J^{r-1}(M, N)$ was deduced in [6].) Further, she defined the r-th sesquiholonomic prolongation $\check{J}^{r}(M, N) \subset \bar{J}^{r}(M, N)$ by

$$
\begin{equation*}
X \in \breve{J}^{r}(M, N) \quad \text { means } \quad \pi_{r}^{r-1} X \in J^{r-1}(M, N) \tag{6}
\end{equation*}
$$

So, $\breve{J}^{r}(M, N)$ is the pullback of $T N \otimes \otimes^{r} T^{*} M$ over $J^{r-1}(M, N)$. Further, the tensor symmetrization $T N \otimes \otimes^{r} T^{*} M \rightarrow T N \otimes S^{r} T^{*} M$ induces a map $\rho_{r}: \check{J}^{r}(M, N) \rightarrow$ $J^{r}(M, N)$, see also [2]. Analogously to (5), one verifies that $B, C \in \breve{J}_{x}^{r}(M, N)_{y}$ are γ-equivalent, if and only if $\pi_{r}^{r-1} B=\pi_{r}^{r-1} C$ and

$$
\begin{equation*}
\rho_{r}(B)=\rho_{r}(C) \in J_{x}^{r}(M, N)_{y} . \tag{7}
\end{equation*}
$$

We generalize the concept of sesquiholonomic r-jet as follows.

Definition 2. A jet $X \in \bar{J}^{r}(M, N)$ is called k-sesquiholonomic, $k<r$, if $\pi_{r}^{k} X \in$ $J^{k}(M, N)$.

We shall write $X \in \breve{J}^{r, k}(M, N)$. So sesquiholonomic in the sense of Libermann means ($r-1$)-sesquiholonomic under our approach.

Proposition 1. $B, C \in \breve{J}_{x}^{r}(M, N)_{y}$ are γ-equivalent, if and only if $\pi_{r}^{r-1} B=$ $\pi_{r}^{r-1} C$ and $\rho_{r}(B)=\rho_{r}(C)$.

Proof. The highest order coordinates of B or C are $y_{i_{1} \ldots i_{r}}^{p}$ or $z_{i_{1} \ldots i_{r}}^{p}$, respectively. One finds easily that $B \sim_{\gamma} C$ means

$$
\begin{equation*}
z_{i_{1} \ldots i_{r}}^{p} a_{1}^{i_{1}} \ldots a_{1}^{i_{r}}=y_{i_{1} \ldots i_{r}}^{p} a_{1}^{i_{1}} \ldots a_{1}^{i_{r}} \tag{8}
\end{equation*}
$$

This is the coordinate form of $\rho_{r}(B)=\rho_{r}(C)$.

4. The case $r=3$

It is useful to discuss this special case separately.
Proposition 2. $B, C \in \bar{J}_{0}^{3}(M, N)_{0}$ are γ-equivalent, if and only if $\pi_{3}^{2} B=\pi_{3}^{2} C \in$ $J_{0}^{2}(M, N)_{0}$ and $\rho_{3}(B)=\rho_{3}(C) \in J_{0}^{3}(M, N)_{0}$.

Proof. Let $B=\left(y_{i}^{p}, y_{i j}^{p}, y_{i j k}^{p}\right), C=\left(z_{i}^{p}, z_{i j}^{p}, z_{i j k}^{p}\right)$ and $A=\left(a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right) \in J_{0}^{3}\left(\mathbb{R}, \mathbb{R}^{m}\right)_{0}$. From (3), we deduce for $C \circ A=B \circ A$

$$
\begin{gather*}
z_{i}^{p} a_{1}^{i}=y_{i}^{p} a_{1}^{i} \tag{9}\\
z_{i j}^{p} a_{1}^{i} a_{1}^{j}+z_{i}^{p} a_{2}^{i}=y_{i j}^{p} a_{1}^{i} a_{1}^{j}+y_{i}^{p} a_{2}^{i}, \tag{10}\\
z_{i j k}^{p} a_{1}^{i} a_{1}^{j} a_{1}^{k}+z_{i j}^{p}\left(a_{2}^{i} a_{1}^{j}+a_{1}^{i} a_{2}^{j}\right)+z_{i j}^{p} a_{2}^{i} a_{1}^{j}+z_{i}^{p} a_{3}^{i}=\{y\}, \tag{11}
\end{gather*}
$$

where $\{y\}$ in means that all $z^{\prime} s$ on the left hand side are replaced by the corresponding $y^{\prime} s$. Since a_{1}^{i} are arbitrary quantities, (9)-11) imply

$$
\begin{equation*}
z_{i}^{p}=y_{i}^{p}, \quad z_{(i j)}^{p}=y_{(i j)}^{p}, \quad z_{(i j k)}^{p}=y_{(i j k)}^{p} \tag{12}
\end{equation*}
$$

Further, for $a_{2}^{i}=1, a_{1}^{j}=1$ and other $a^{\prime} s$ equal to zero, we obtain from (11) the additional conditions

$$
\begin{equation*}
z_{(i j)}^{p}+z_{i j}^{p}=y_{(i j)}^{p}+y_{i j}^{p} \tag{13}
\end{equation*}
$$

what implies $z_{i j}^{p}=y_{i j}^{p}$. This proves our assertion.
We remark that the coordinate formula for the composition $Y \circ X$ of two arbitrary semiholonomic r-jets is deduced in 1. However, in our case the coordinate form of $X=A$ is very special. So we find more suitable the direct use of (3) than the specialization of the general formula from [1].

5. The general situation

Consider two k-sesquiholonomic r-jets $B, C \in \check{J}^{r, k}(M, N)$. If $B \sim_{\gamma} C$, then $\pi_{r}^{s} B \sim_{\gamma} \pi_{r}^{s} C$ for all $s \geq k$. In the case $s=k$, these jets are holonomic and $\pi_{r}^{k} B \sim_{\gamma} \pi_{r}^{k} C$ is equivalent to $\pi_{r}^{k} B=\pi_{r}^{k} C$. Then $\pi_{r}^{k+1} B, \pi_{r}^{k+1} C \in \check{J}^{k+1}(M, N)$ and $\pi_{r}^{k+1} B \sim_{\gamma} \pi_{r}^{k+1} C$ is equivalent to $\rho_{k+1}\left(\pi_{r}^{k+1} B\right)=\rho_{k+1}\left(\pi_{r}^{k+1} C\right)$. On the other hand, if the last equation is not satisfied, we do not have $\pi_{r}^{k+1} B \sim_{\gamma} \pi_{r}^{k+1} C$. Hence even $B \sim_{\gamma} C$ cannot be true.

The situation $r=3$ is specific in that sense, that we can deduce $\pi_{3}^{2} B=\pi_{3}^{2} C$ directly from with no additional conditions on B and C.

References

[1] Cabras, A., Kolář, I., Prolongation of tangent valued forms, Arch. Math. (Brno) 38 (2002), 243-254.
[2] Doupovec, M., Mikulski, W.M., Holonomic extension of connections and symmetrization of jets, Rep. Math. Phys. 60 (2007), 299-316.
[3] Ehresmann, C., Extension du calcul des jets aux jets non holonomes, CRAS Paris 239 (1954), 1762-1764.
[4] Ehresmann, C., Sur les connexions d'ordre supériour, Atti del V. Cong. dell Unione Mat. Italiana, Roma Cremonese (1956), 326-328.
[5] Kolář, I., The contact of spaces with connection, J. Differential Geometry 7 (1972), 563-570.
[6] Kolář, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry, Springer Verlag, 1993.
[7] Libermann, P., Prolongations des fibrés principaux et groupoides différentiables, Sémin. Analyse Globale Montréal, 1969, pp. 7-108.
[8] Libermann, P., Introduction to the theory of semiholonomic jets, Arch. Math. (Brno) 33 (1997), 173-189.
[9] Libermann, P., Charles Ehresmann's concepts in differential geometry, Banach Center Publications 76 (2007), 35-50, Polish Academy of Sciences, Warszawa.

Department of Mathematics, Brno University of Technology, Brno, Czech Republic
E-mail: doupovec@fme.vutbr.cz

Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
E-mail: kolar@math.muni.cz

[^0]: 2010 Mathematics Subject Classification: primary 58A20; secondary 58A32.
 Key words and phrases: jet bundle, semiholonomic r-jet.
 The second author was supported by GA ČR under the grant GA17-01171F.
 Received April 2, 2019. Editor J. Slovák.
 DOI: 10.5817/AM2019-4-261

