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THE REDUCED IDEALS OF A SPECIAL ORDER
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Abstract. Let K = Q(θ) be a pure cubic field, with θ3 = D, where D is a
cube-free integer. We will determine the reduced ideals of the order O = Z[θ]
of K which coincides with the maximal order of K in the case where D is
square-free and 6≡ ±1 (mod 9).

1. Introduction

Reduced ideals of a number field K form a finite and regularly distributed set in
the infrastructure of K. They can be used to compute the regulator and the class
number of a number field, see [5]–[10]. They can also be used to describe a method
for testing an arbitrary (fractional) ideal for principality in algebraic number field
of unit rank one, see [4].

In cryptography, J.A. Buchmann and H.C. Williams described a key exchange
protocol based on the finite set of reduced principal ideals of a real quadratic order,
see [2]. Yet, in [3], the same authors described another key exchange system which
makes use of the properties of reduced ideals of an imaginary quadratic field. They
use the fact that there exists exactly one reduced ideal in each ideal class.

Most of the work on reduced ideals is realized on quadratic fields, see for
example [8]. If K is a quadratic field and O = Z[θ] an order of K, then any rank 2
sub-Z-module M of O can be uniquely written in the canonical form M = [a, b+cθ]
where a, b and c are integers such that a > 0, c > 0, and 0 ≤ b < a. For such a
sub-Z-module to be an ideal of O, the integers a, b and c must satisfy the three
following conditions: c | a, c | b and ac | NK/Q(b+ cθ). The ideal I = [a, b+ cθ] in
canonical form is reduced, if and only if, I is primitive (c = 1), and the integers a
and b satisfy certain conditions in addition to those mentioned above. The integer
a in canonical form of the ideal I, is the smallest positive rational integer in I, and
it is shown that if a is smaller than a lower bound depending on the field K then
I is reduced, and conversely, if a exceeds an upper bound depending on the field
K, then I is not reduced. It is also proved that the order O can only have finitely
many reduced ideals and every class contains a reduced ideal.
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In this paper, we consider a pure cubic number field K = Q( 3
√
D) where D > 1

is a cube-free integer and the sub-ring O = Z[ 3
√
D]. Our goal is to mirror the

results realized in quadratic field. First, we give a canonical presentation for ideals
of O, called in our paper the HNF-basis. Next, we adopt the general definition
of a reduced ideal (see [6, Definition 6.5.1, p. 352]) and identify necessary and
sufficient conditions, in terms of that presentation for an ideal to be reduced. We
also determine a lower and upper bound as in quadratic field and give a method
for determining the set of all reduced ideals of O. We also show that every class
contains a reduced ideal. This continues and extends the work begun in [7], where
the author considers only the square free integer D such that D 6≡ ±1 (mod 9).
We will see in Section 6 that for D = 7 we have eight reduced ideals not nine as
computed by the python code presented in [7] and for D = 11 there are twelve
reduced ideals not just eleven. This is because the python code contains errors
in the function “isReduced (a, b, c, d, e,m)” which is based on [7, Theorem 2.8].
Therefore, we will replace this theorem with another one (Theorem 5.1); hence, we
will give another function “isReduced (a, b, c, d, e,D)” based on our new theorem.

2. Some definitions and properties of a pure cubic field

A pure cubic field is a field of type K = Q(θ) with θ3 = D, where D is a
cube-free integer. We can assume that D > 1, and we can write D in a unique
fashion:

D = rs2, where r, s ∈ N, gcd(r, s) = 1, rs > 1, and rs is square-free.
Any such field has one real embedding and a pair of conjugate complex embeddings
and, hence, has one fundamental unit and negative discriminant.

The pure cubic number field K = Q( 3
√
D) is said to be of type I if D 6≡ ±1

(mod 9) otherwise it is said to be of type II.
Using the previous notation, we have the following theorem:

Theorem 2.1. Let K = Q(θ) be a pure cubic number field.

(1) If K is of type I then
(

1, θ, θ
2

s

)
is an integral basis of K and ∆K = −27r2s2

is the discriminant of K.

(2) If K is of type II then
(

1, θ, θ
2+rs2θ+s2

3s

)
is an integral basis of K and

∆K = −3r2s2 is the discriminant of K.

Proof. See [6, Theorem 6.4.13, p. 346]. �

The theorem above gives us an integral basis for both types of a pure cubic
number field, a basis that is not always simple. Some pure cubic number fields may
have a simple basis if we set some conditions on D.

Definition 2.1. Let K be a number field and OK its ring of integers. We say that
OK is monogenic if there exist θ ∈ OK such that OK = Z[θ].

Corollary 2.1. Let K = Q( 3
√
D) be a pure cubic number field of type I. If D is

square-free then OK is monogenic.
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Proof. If K = Q( 3
√
D) is a pure cubic number field of type I and D is a square-free,

we must have s = 1; therefore, (1, θ, θ2) is an integral basis of K. �

Definition 2.2. Let K be a number field of degree [K : Q] = n and OK its ring
of integers. A sub-ring O ⊂ K is called an order in K if and only if one of the
following equivalent conditions is satisfied :

(1) O is a finitely generated Z-module and the quotient field of O is K.
(2) O is a free Z-module of rank n.
(3) O ⊂ OK and O contains a Q-basis for K.
(4) O ⊂ OK and [OK : O] <∞.

See [11] for the proof of equivalence of these assertions.

Remark 2.1. Let K = Q(θ) be a number field where θ ∈ OK , the ring of
integers of K, F ∈ Z[X] be the minimal monic polynomial of θ, and ∆θ the
discriminant of F . Then O = Z[θ] is an order of K, because we have O ⊂ OK and
[OK : O]2 = ∆θ

∆K
<∞.

3. Representation of an ideal

Theorem 3.1. Let K be a number field with degree n over Q and let O =
[θ1, . . . , θn] be an order in K. Then for any sub-Z-module M of O of rank n,

there exists a unique basis [ω1, . . . , ωn] such that if we write ωj =
n∑
i=1

ωijθi, then

the matrix W = (ωij)1≤i,j≤n satisfies the following conditions:
(1) For all i and j, ωij is an integer.
(2) W is an upper triangular matrix.
(3) For all i, ωii > 0.
(4) For all j > i, 0 ≤ ωij < ωii.

Furthermore we have [O : M ] = detW .

The corresponding basis [ω1, . . . , ωn] will be called the HNF-basis (Hermite
Normal Form) of M with respect to O.
Proof. See [6, Theorem 4.7.3, p. 189]. �

Remark 3.1. Let K = Q(θ) be a pure cubic number field with θ3 = D a cube-free
integer, and let O = [θ1, θ2, θ3] be an order in K. If I is an ideal of O, then I is a
sub-Z-module of O, hence by the above theorem, the HNF-basis of I with respect
to O is of the form:

I = [aθ1, bθ1 + cθ2, dθ1 + eθ2 + fθ3] ,
and we have

W =

a b d
c e

f
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where a, b, c, d, e and f are integers such that 0 ≤ b < a, 0 ≤ d < a, 0 ≤ e < c
and 0 < f . Furthermore, we have N(I) = acf where N(I) = [O : I] is the norm of
I.

The reverse is not always true because a sub-Z-module of O is not always an
ideal of O.

The above information on the integers a, b, c, d, e and f come just from
the fact that I is considered as a sub-Z-module of O. We will of course get more
information if we use the fact that I is a sub-O-module of O.
Theorem 3.2. Let K = Q(θ) be a pure cubic number field with θ3 = D where
D is a cube-free integer, and let O = Z[θ]. Let I = [a, b + cθ, d + eθ + fθ2] be a
sub-Z-module of O in HNF-basis form. Then I is an ideal of O if and only if

(1) f divides the integers a, b, c, d, e;
(2) c divides the integers a, b;
(3) cf divides the integers df − e2 and Df2 − de;
(4) acf divides the integers bce− c2d− fb2, Dfc2 + b2e− bcd, Dcf2 − bdf +

be2 − cde and Dcef −Dbf2 + bde− cd2.
Proof. Let’s suppose that I = [a, b+ cθ, d+ eθ + fθ2] is an ideal of O. To prove
the divisibility properties, we will use the fact that some elements belong to I.

We have aθ ∈ I, then there exists x, y and z ∈ Z such that aθ = xa + y(b +
cθ) + z(d+ eθ + fθ2), therefore

ax+ by + dz = 0
cy + ez = a

zf = 0
=⇒


ax+ by = 0
cy = a

z = 0
=⇒


cx = −b
cy = a

z = 0
=⇒

{
c | a
c | b .

Since aθ2 ∈ I, then there exists x, y and z ∈ Z such that aθ2 = xa+ y(b+ cθ) +
z(d+ eθ + fθ2), therefore

ax+ by + dz = 0
cy + ez = 0
zf = a,

=⇒ f | a .

Since bθ + cθ2 ∈ I, hence there exists x, y and z ∈ Z such that bθ + cθ2 =
xa+ y(b+ cθ) + z(d+ eθ + fθ2), therefore

ax+ by + dz = 0
cy + ez = b

fz = c

=⇒


acfx = −bf(b− ze)− dc2

cy = b− ez
fz = c

=⇒


acfx = −b2f + bce− dc2

cy = b− ez
fz = c

=⇒
{
acf | bce− b2f − c2d
f | c .
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In the same way we have:

bθ2 + cD ∈ I =⇒
{
acf | c2fD + b2e− bcd
f | b

and

dθ + eθ2 +Df ∈ I =⇒


acf | Dcf2 − bdf + be2 − cde
cf | df − e2

f | e
and

dθ2 + eD +Dfθ ∈ I =⇒


acf | cDef − bDf2 + bde− cd2

cf | Df2 − de
f | d .

Conversely, let I = [a, b+ cθ, d+ eθ + fθ2] be a sub-Z-module of O satisfying the
divisibility condition of the theorem. Let α ∈ O and β ∈ I, then α = x+ yθ + zθ2

and β = x′a+ y′(b+ cθ) + z′(d+ eθ + fθ2) with x, y, z, x′, y′, z′ ∈ Z. We have:

αβ = xβ + yθβ + zθ2β

= xβ + yx′aθ + yy′(bθ + cθ2) + yz′(dθ + eθ2 +Df) + zx′(aθ2)
+ zy′(bθ2 + cD) + zz′(dθ2 + eD +Dfθ) .(3.1)

If we exploit the conditions of divisibility of the theorem, we then get the following
results:

aθ = − bca+ a
c (b+ cθ) + 0(d+ eθ + fθ2) ∈ I

aθ2 = a be−dccf − ea
cf (b+ cθ) + a

f (d+ eθ + fθ2) ∈ I

bθ + cθ2 = a bce−b
2f−dc2

acf + bf−ec
cf (b+ cθ) + c

f (d+ eθ + fθ2) ∈ I

bθ2 + cD = aDc
2f+b2e−bdc
acf − be

cf (b+ cθ) + b
f (d+ eθ + fθ2) ∈ I

dθ + eθ2 +Df = aDcf
2−bdf+be2−cde

acf + df−e2

cf (b+ cθ) + e
f (d+ eθ + fθ2) ∈ I

dθ2 + eD +Dfθ = a(Dcef−Dbf2+bde−cd2)
acf + (Df2−de)(b+cθ)

cf + d(d+eθ+fθ2)
f ∈ I .

So according to (3.1), we have αβ ∈ I which proves that I is an ideal of O. �

It is clear that a is the smallest positive element of I ∩ Z, which is called the
length of I and denoted by `(I).

4. The primitive ideals of the order O = Z[θ]

Definition 4.1. Let K be a number field, and O an order of K. We say that an
ideal I of O is primitive if I is without rational factor. In other words, if there is
no prime number p such that I ⊂ pO.

It is equivalent to say that I is not divisible by any ideal generated by a rational
integer except O. Likewise, it is also equivalent to say that the ideal n−1I is not
integral (n−1I * O) for any integer n > 1.
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Proposition 4.1. Let K = Q(θ) be a pure cubic number field with θ3 = D where
D is a cube-free integer, and let O = Z[θ]. Let I = [a, b + cθ, d + eθ + fθ2] be a
sub-Z-module of O in HNF-basis form. Then I is a primitive ideal of O if and only
if

(1) f = 1;
(2) c divides the integers a, b, d− e2 and D − de;
(3) ac divides the integers bce− c2d− b2, Dc2 + b2e− bcd, Dc− bd+ be2− cde

and Dce−Db+ bde− cd2.

Proof. If I = [a, b + cθ, d + eθ + fθ2] is an ideal of O = Z[θ], then according
to Theorem 3.2, f is a positive integer which divides a, b, c, d and e. Therefore
I is primitive if and only if f = 1. The divisibility statements are deduced by
Theorem 3.2. �

In the case where O = OK (i.e. D is square free and 6≡ ±1 (mod 9)), we have
the following result:

Theorem 4.1. Let K = Q(θ) be a pure cubic number field with θ3 = D where D
is square free and 6≡ ±1 (mod 9). Then, each class in the class group Cl(K) of K
contains a primitive ideal I with N(I) ≤ 2

π

√
|∆K |. Moreover, Cl(K) is generated

by the primitive non-inert prime ideals P with N(P) ≤ 2
π

√
|∆K |.

Proof. Let [I] be an arbitrary class in Cl(K), and let β ∈ OK , β 6= 0, such that
J = βI−1 ⊂ OK . By [9, Lemma 6.2, p. 35], there exists α ∈ J , α 6= 0, such that

|NK/Q(α)| ≤ 2
π

√
|∆K |N(J) ,

therefore
N(αOK)N(J)−1 = N(αJ−1) ≤ 2

π

√
|∆K | ,

then, if the ideal I ′ = αJ−1 = αβ−1I is primitive, the proof of the first assertion
is finished, if not, there exists an integer f > 1 such that I ′ = fI ′′ with I ′′ is
primitive, and we have N(I ′′) ≤ 2

π

√
|∆K | and I ′′ = α

fβ I. Finally, if the primitive
ideal P = [a, b + cθ, d + eθ + θ2] is a prime ideal above p, then N(P) = ac 6= p3

because a = p and c | a, therefore P is non-inert. �

5. Reduced ideals of the order O = Z[θ]

Definition 5.1. Let K be a number field of degree n over Q, and let σ1, . . . , σn
be the n embeddings of K in C and let O be an order of K. We will say that
an ideal I of O is reduced if I is primitive and every element α ∈ I verifying
∀i ∈ {1, . . . , n}, |σi(α)| < `(I), is zero (where `(I) is the length of I).

Theorem 5.1. Let K = Q(θ) with θ = 3
√
D ∈ R where D > 1 is a cube free

integer, and O = Z[θ]. Let I = [a, b+ cθ, d+ eθ + θ2] be a primitive ideal of O in
HNF-basis form. Then I is reduced if and only if the only triple of integers (x, y, z)
satisfying:
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• c | y − ze,
• ac | cx− by + (be− cd)z,
• |x+ yθ + zθ2| < `(I),
• (x− y

2θ −
z
2θ

2)2 + 3
4θ

2(y − zθ)2`(I)2,
is (0, 0, 0).

Proof. For any α ∈ K let α′ and α′′ denote the conjugates of α, we have θ′ = ζθ
and θ′′ = ζ2θ, where ζ = e2iπ/3 is a primitive cube root of unity and therefore
|α′| = |α′′|.

Let I = [a, b + cθ, d + eθ + θ2] be a primitive ideal of O = Z[θ]. If α ∈ I then
α = Xa + Y (b + cθ) + Z(d + eθ + θ2) with X,Y, Z ∈ Z and we can easily verify
that |α′| = ((aX + bY + dZ − cY+eZ

2 θ− Z
2 θ

2)2 + 3
4θ

2(cY + eZ −Zθ)2) 1
2 . Now, the

ideal I is reduced, if and only if, for all α ∈ I, we have |α| < `(I) and |α′| < `(I)
implies that α = 0. On the other hand, we have

α ∈ I

|α| < `(I)

|α′| < `(I)

if and only if
X,Y, Z ∈ Z

|aX + bY + dZ + (cY + eZ)θ + Zθ2| < `(I)

(aX + bY + dZ − cY+eZ
2 θ − Z

2 θ
2)2 + 3

4θ
2(cY + eZ − Zθ)2 < `(I)2 .

We shall use the substitution x = aX + bY + dZ, y = cY + eZ, z = Z, having the
inverse X = cx−by+(be−cd)z

ac , Y = y−ze
c , Z = z. Therefore we see that the ideal I is

reduced if and only if (0, 0, 0) is the only solution of

x, y, z ∈ Z

c | y − ze

ac | cx− by + (be− cd)z

|x+ yθ + zθ2| < `(I)

(x− y
2θ −

z
2θ

2)2 + 3
4θ

2(y − zθ)2 < `(I)2 .

The theorem is proved. �

Remark 5.1. According the two inequalities in the above theorem, we can easily
show that |x| < `(I), |y| < 2+

√
3

3
`(I)
θ and |z| < 2+

√
3

3
`(I)
θ2 .

Let I = [a, b+ cθ, d+ eθ + θ2] be a primitive ideal of O in HNF-basis form. The
function “isReduced (a, b, c, d, e,D)” in the python code, computes whether the
ideal I is reduced or not. By the above theorem and remark, this function becomes
as follows:
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def isReduced (a,b,c,d,e,D):
theta=math.exp(math.log(D)/3)
reduced = 1
for x in range (-a+1,a):

for y in range (-int(((2+ math.sqrt(3))*a)/(3*theta)),1+int(((2+
math.sqrt(3))*a)/(3*theta))):

for z in range (-int(((2+ math.sqrt(3))*a)/(3*theta**2)),1+int
(((2+ math.sqrt(3))*a)/(3*theta**2))):

if not ((x==0) and (y==0) and (z==0)):
if (y-z*e)%c==0:

N=a*c
if (c*x-b*y+(b*e-c*d)*z)%N==0:

if ((x+y*theta+z*theta**2)<a) and ((x+y*theta+z*theta*
*2)>-a):

if (x-((y*theta)/2)-((z*(theta**2))/2))**2+(3/4)*(y*
theta-z*z*theta**2)**2<a**2:

reduced =0
return reduced

return reduced

Remark 5.2. In addition to the modification of the function “isReduced (a, b, c, d,
e,D)”, we also replace the function “isSquarefree(n)” by a function “isCubefree(n)”
for the task to decide whether a given positive integer is cube-free or not, and
remove the condition D 6≡ ±1 (mod 9) and conserve the rest of python code
presented in [7].

Corollary 5.1. Let K = Q(θ) with θ = 3
√
D ∈ R where D > 1 is a cube free

integer, O = Z[θ] and I be a primitive ideal of O. If `(I) < θ, then I is reduced.

Proof. Let I = [a, b+ cθ, d+ eθ + θ2] be a primitive ideal of O in its HNF-basis
form, with `(I) < θ.

Let (x, y, z) be a triple of integers such that c | y−ze and ac | cx−by+(be−cd)z
satisfying {

|x+ yθ + zθ2| < `(I)

(x− y
2θ −

z
2θ

2)2 + 3
4θ

2(y − zθ)2 < `(I)2 .

According to Remark 5.1, we have |z| < 2+
√

3
3

`(I)
θ2 and since `(I) < θ then z = 0.

On the other hand, we have |y| < 2+
√

3
3

`(I)
θ < 2+

√
3

3 which means y ∈ {−1, 0, 1}.
But y = 1 means that 0 < x < θ and −2θ < x < 0 together, and y = −1 means
that −θ < x < 0 and 0 < x < 2θ together. These are impossible, hence y = 0.
Finally, we have |x| < `(I) and `(I) = a | x; therefore, x = 0. Hence the triplet
(x, y, z) is zero, so I is reduced. �

Theorem 5.2. Let K = Q(θ) with θ = 3
√
D ∈ R where D > 1 is a cube free

integer, O = Z[θ], and let I be an ideal of O. If I is reduced then `(I) ≤ 6
√

3D
π .
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Proof. Let V (S) denote the volume of the set

S = {(x, y, z) ∈ R3 | |x+yθ+zθ2| < `(I); (x− y2θ−
z

2θ
2)2+ 3

4θ
2(y−zθ)2 < `(I)2} .

It is clear that S is a convex subset of R3 and symmetrical about the origin
(0, 0, 0). Let’s suppose that I is a reduced ideal of O; then S does not contain
any triples (x, y, z) representing a non-zero element of I considered as a lattice of
R3, so according to Minkowski’s Lattice Point Theorem, (see [9, p. 27]) we have
1
23V (S) ≤ N(I).

Using the triple integrals we have

V (S) =
∫ ∫ ∫

S

dxdy dz = 4π`(I)3

3D
√

3
,

therefore 1
8

4π`(I)3

3D
√

3 ≤ `(I)c, it means that π`(I)3

6D
√

3 ≤ `(I)c and since c ≤ `(I) then
π`(I)3

6D
√

3 ≤ `(I)2, hence `(I) ≤ 6D
√

3
π . �

Theorem 5.3. Let K = Q(θ) with θ3 = D and D cube-free integer, and O = Z[θ].
Then O contains at least one reduced ideal and at most a finite number of reduced
ideals.

Proof. The existence is assured by O which is itself a reduced ideal since `(O) =
1 < θ. According to the previous theorem, if I is reduced then `(I) ≤ 6D

√
3

π and
since N(I) = ac = `(I)c ≤ `(I)2 then N(I) < ( 6D

√
3

π )2 = 108D2

π2 . According to
[1, Theorem 12.5.3], there exists a finite number of ideals of a given norm, which
completes the proof of the theorem. �

The last result is also true in the quadratic case, and it is proved that each
class of ideals contains a reduced ideal (see [8, Remark 1.4.1.]). More than that, in
the case of an imaginary quadratic field, it is proved that there are at most two
reduced ideals in any class of ideals, and when two distinct such ideals are in the
same class, then one is the conjugate of the other (see [8, Theorem 1.4.2.(e)]).
In the general case, we can show that each class of ideals contains a reduced ideal,
but no information on the number of reduced ideals in this class can be provided.

Theorem 5.4. Let K be a number field and let O be an order in K. Then every
class of ideals of O contains a reduced ideal.

Proof. Let [I] be an arbitrary class of ideals of O, and let η 6= 0 be an element of I
of minimal nonzero absolute value of norm. Let dI = min{m ∈ Z+ | mη−1I ⊂ O}.
We have 1 = ηη−1 ∈ η−1I, therefore dI ∈ dIη

−1I, so the ideal J = dIη
−1I is

integral and primitive, and we have `(J) ≤ dI . Let’s show now that J is reduced.
For that, we will use Definition 5.1, let α ∈ J satisfy: ∀i ∈ {1, . . . , n}, |σi(α)| < `(J),
(α = dIη

−1β, β ∈ I), therefore

|NK/Q(α)| < `(J)n ,

so
dnI |NK/Q(β)| < `(J)n|NK/Q(η)| ,
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hence

|NK/Q(β)| < |NK/Q(η)| ,

but by hypothesis, η is of minimal nonzero absolute value of norm, hence β = 0
and α = 0 and therefore J is reduced. �

6. Numerical examples

Let us suppose we have a pure cubic number field K = Q(θ) with θ3 = D and
D > 1 a cube free integer, and O = Z[θ].

To determine the list of all reduced ideals I = [a, b+ cθ, d+ eθ + θ2] in O, we
determine at first all the primitive ideals of O whose length is such that `(I) ≤ 6

√
3D
π ,

i.e for any integer a such that 1 ≤ `(I) = a ≤ 6
√

3D
π , we determine the different

possible positive values of b, such that 0 ≤ b < a. Next, for each possible pair (a, b),
we determine the possible values of the integer c such that c | a and c | b. After
that, we determine the possible values of integers d and e such that 0 ≤ d < a and
0 ≤ e < c which satisfy also the other conditions of Theorem 3.2.

The primitive ideals whose length is strictly less than θ = 3
√
D are therefore

included in the sought list, if 3
√
D ≤ `(I) ≤ 6

√
3D
π then we apply to it Theorem 5.1.

Example 6.1. Let D = 7, so K = Q( 3
√

7), then OK = Z[ 3
√

7], we have the lower
bound is 3

√
7 ≈ 1.91, and the upper bound is 6

√
3D
π ≈ 23.16, we obtain 8 reduced

ideals presented in the following table with their norms.

a b c d e f Reduced ideals N

1 0 1 0 0 1 I1 = OK = [1, 3
√

7, 3
√

49] 1
2 1 1 1 0 1 I2 = [2, 1 + 3

√
7, 1 + 3

√
49] 2

2 0 2 1 1 1 I3 = [2, 2 3
√

7, 1 + 3
√

7 + 3
√

49] 4
3 0 3 1 1 1 I4 = [3, 3 3

√
7, 1 + 3

√
7 + 3
√

49] 9
4 0 4 1 3 1 I5 = [4, 4 3

√
7, 1 + 3 3

√
7 + 3
√

49] 16
5 0 5 4 3 1 I6 = [5, 5 3

√
7, 4 + 3 3

√
7 + 3
√

49] 25
6 0 6 1 1 1 I7 = [6, 6 3

√
7, 1 + 3

√
7 + 3
√

49] 36
12 0 12 1 7 1 I8 = [12, 12 3

√
7, 1 + 7 3

√
7 + 3
√

49] 144

We have just 8 reduced ideals, not 9 as given by the code in [7, p. 35]. The ninth
ideal displayed by this code is I = [6, 3 + 3θ, 4 + θ + θ2], which is not reduced,
indeed, we have α = 2− θ − θ2 ∈ I and α satisfies the two inequalities |α| < 6 and
|σ(α)| < |σ(6)| = 6, but α 6= 0.

Example 6.2. Let D = 11, so K = Q( 3
√

11), then OK = Z[ 3
√

11], we have the
lower bound is 3

√
11 ≈ 2.22, and the upper bound is 6

√
3D
π ≈ 36.39, we obtain 12

reduced ideals presented in the following table with their norms.
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a b c d e f Reduced ideals N

1 0 1 0 0 1 I1 = OK = [1, 3
√

11, 3
√

121] 1
2 0 2 1 1 1 I2 = [2, 2 3

√
11, 1 + 3

√
11 + 3

√
121] 4

2 1 1 1 0 1 I3 = [2, 1 + 3
√

11, 1 + 3
√

121] 2
3 0 3 1 2 1 I4 = [3, 3 3

√
11, 1 + 2 3

√
11 + 3

√
121] 9

3 1 1 2 0 1 I5 = [3, 1 + 3
√

11, 2 + 3
√

121] 3
4 0 4 1 3 1 I6 = [4, 4 3

√
11, 1 + 3 3

√
11 + 3

√
121] 16

5 0 5 1 1 1 I7 = [5, 5 3
√

11, 1 + 3
√

11 + 3
√

121] 25
6 0 6 1 5 1 I8 = [6, 6 3

√
11, 1 + 5 3

√
11 + 3

√
121] 36

6 2 2 3 1 1 I9 = [6, 2 + 2 3
√

11, 3 + 3
√

11 + 3
√

121] 12
6 3 3 1 2 1 I10 = [6, 3 + 3 3

√
11, 1 + 2 3

√
11 + 3

√
121] 18

8 0 8 1 3 1 I11 = [8, 8 3
√

11, 1 + 3 3
√

11 + 3
√

121] 64
19 0 19 6 5 1 I12 = [19, 19 3

√
11, 6 + 5 3

√
11 + 3

√
121] 361

We have 12 reduced ideals, not just 11 as given by the code in [7, p. 35]. The
twelfth reduced ideal which is not displayed by the given code is the ideal I9 =
[6, 2 + 2 3

√
11, 3 + 1 3

√
11 + 3

√
121], because the only triplet (x, y, z) ∈ Z verifying

2 | y − z, 6 | x − y − 2z, |x + y 3
√

11 + z 3
√

121| < 6 and (x − y
2

3
√

11 − z
2

3
√

121)2 +
3
4

3
√

121(y − z 3
√

11)2 < 36 is (0, 0, 0).

Example 6.3 (K is monogenic of type I).
Let K = Q( 3

√
4), then O = Z[ 3

√
4] $ OK =

[
1, 3
√

4,
3√16
2

]
= Z[ 3

√
2] and 6

√
3D
π ≈

13.23, we obtain 4 reduced ideals:

a b c d e f Reduced ideal N

1 0 1 0 0 1 [1, 3
√

4, 3
√

16] 1
2 0 2 0 0 1 [2, 2 3

√
4, 3
√

16] 4
3 0 3 1 1 1 [3, 3 3

√
4, 1 + 3

√
4 + 3
√

16] 9
4 0 4 0 2 1 [4, 4 3

√
4, 2 3
√

4 + 3
√

16] 16

Example 6.4 (K is of type II, (never monogenic)).
Let K = Q( 3

√
10), then O = Z[ 3

√
10] $ OK =

[
1, 3
√

10, 1+ 3√10+ 3√100
3

]
and 6

√
3D
π ≈

27.54, we obtain 6 reduced ideals:

a b c d e f Reduced ideal N

1 0 1 0 0 1 [1, 3
√

10, 3
√

100] 1
2 0 1 0 0 1 [2, 3

√
10, 3
√

100] 2
2 0 2 0 0 1 [2, 2 3

√
10, 3
√

100] 4
3 0 3 1 1 1 [3, 3 3

√
10, 1 + 3

√
10 + 3

√
100] 9

6 0 6 4 4 1 [6, 6 3
√

10, 4 + 4 3
√

10 + 3
√

100] 36
9 0 9 7 4 1 [9, 9 3

√
10, 7 + 4 3

√
10 + 3

√
100] 81
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