BOUNDS FOR THE COUNTING FUNCTION OF THE JORDAN-PÓLYA NUMBERS

Jean-Marie De Koninck, Nicolas Doyon, A. Arthur Bonkli Razafindrasoanaivolala, and William Verreault

Abstract

A positive integer n is said to be a Jordan-Pólya number if it can be written as a product of factorials. We obtain non-trivial lower and upper bounds for the number of Jordan-Pólya numbers not exceeding a given number x.

1. Introduction

A positive integer n is said to be a Jordan-Pólya number if it can be written as a product of factorials. Jordan-Pólya numbers arise naturally in a simple combinatorial problem. Given k groups of $n_{1}, n_{2}, \ldots, n_{k}$ distinct objects, then the number of distinct permutations of these $n_{1}+n_{2}+\cdots+n_{k}$ objects which maintain objects of the same group adjacent is equal to $k!\cdot n_{1}!\cdot n_{2}!\cdots n_{k}$!, a Jordan-Pólya number.

The Jordan-Pólya numbers below 10,000 are
$1,2,4,6,8,12,16,24,32,36,48,64,72,96,120,128,144,192,216,240,256$, $288,384,432,480,512,576,720,768,864,960,1024,1152,1296,1440,1536,1728$, 1920, 2048, 2304, 2592, 2880, 3072, 3456, 3840, 4096, 4320, 4608, 5040, 5184, 5760, 6144, 6912, 7680, 7776, 8192, 8640, 9216.

For a longer list, see the On-Line Encyclopedia of Integer Sequences, Sequence A001013. Much study has been done on a particular subset of the Jordan-Pólya numbers, namely those which are themselves factorials. In particular, consider the equation

$$
\begin{equation*}
n!=a_{1}!a_{2}!\cdots a_{r}!\quad \text { in integers } n>a_{1} \geq a_{2} \geq \cdots \geq a_{r} \geq 2, r \geq 2 \tag{1.1}
\end{equation*}
$$

This equation has infinitely many "trivial" solutions. Indeed, choose any integers $a_{2} \geq \cdots \geq a_{r} \geq 2$ and set $n=a_{2}!\cdots a_{r}!$. Then, choose $a_{1}=n-1$. One can easily see that $n!=n \cdot(n-1)!=a_{1}!a_{2}!\cdots a_{r}!$. Besides these trivial solutions of equation (1.1), we find the non-trivial solutions

$$
\begin{equation*}
9!=2!\cdot 3!^{2} \cdot 7!, \quad 10!=6!\cdot 7!=3!\cdot 5!\cdot 7!, \quad 16!=2!\cdot 5!\cdot 14!. \tag{1.2}
\end{equation*}
$$

[^0]According to Hickerson's conjecture, there are no other non-trivial solutions for equation 1.1]. In 2007, Luca [8] showed that if the abc conjecture holds, then equation (1.1) has only a finite number of non-trivial solutions. In 2016, Nair and Shorey [9] showed that any other non-trivial solution n of (1.1), besides those in (1.2), must satisfy $n>e^{80}$.

On the other hand, more than 40 years ago, Erdös and Graham [5] showed that the number of distinct integers of the form $a_{1}!a_{2}!\cdots a_{r}$!, where $a_{1}<a_{2}<\cdots<$ $a_{r} \leq y$ is $\exp \{(1+o(1)) y(\log \log y) / \log y\}$ as $y \rightarrow \infty$.

Here, letting \mathcal{J} stand for the set of Jordan-Pólya numbers and $\mathcal{J}(x)$ for its counting function, we show that $\mathcal{J}(x)=o(x)$ and in fact, given any small $\varepsilon>0$, we show the much stronger estimate

$$
\begin{equation*}
\mathcal{J}(x)<\exp \left\{(4+\varepsilon) \frac{\sqrt{\log x} \log \log \log x}{\log \log x}\right\} \quad\left(x \geq x_{1}\right) \tag{1.3}
\end{equation*}
$$

for some $x_{1}=x_{1}(\varepsilon)>0$. We also show that, for any given $\varepsilon>0$, there exists $x_{2}=x_{2}(\varepsilon)$ such that

$$
\begin{equation*}
\mathcal{J}(x)>\exp \left\{(2-\varepsilon) \frac{\sqrt{\log x}}{\log \log x}\right\} \quad\left(x \geq x_{2}\right) \tag{1.4}
\end{equation*}
$$

2. Preliminary results

We first mention some known results in the form of lemmas and propositions that will prove useful in establishing the lower and upper bounds for $\mathcal{J}(x)$.

We start with a weak form of Stirling's formula for the factorial function, a proof of which can be found on page 11 in the book of De Koninck and Luca [2].

Lemma 1. For each integer $m \geq 1$, we have

$$
m!>\left(\frac{m}{e}\right)^{m}
$$

We now state a more precise form of Stirling's formula, which is a particular case of formula (4) in a 2009 paper of De Angelis [1].

Lemma 2. For all integers $n \geq 2$,

$$
n!=\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}\left(1+\frac{1}{12 n}+O\left(\frac{1}{n^{2}}\right)\right)
$$

Lemma 3. Given any positive integers a and b,

$$
\binom{a+b}{a} \leq\left(\frac{e(a+b)}{a}\right)^{a}
$$

Proof. This follows from the following string of inequalities.

$$
\binom{a+b}{a}=\frac{b+1}{1} \times \frac{b+2}{2} \times \cdots \times \frac{b+a}{a} \leq \frac{(b+a)^{a}}{a!} \leq\left(\frac{e(a+b)}{a}\right)^{a},
$$

where we used Lemma 1 for this last inequality.

Lemma 4. Given positive integers $k \leq R$, the number $S_{k}(R)$ of solutions $\left(r_{1}, r_{2}, \ldots\right.$, r_{k}) in non-negative integers $r_{1}, r_{2}, \ldots, r_{k}$ of the inequality

$$
r_{1}+r_{2}+\cdots+r_{k} \leq R
$$

satisfies $S_{k}(R)=\binom{R+k}{R}$.
Proof. It follows from formula (5.2) in the book of W. Feller [6] that the number of ways of writing a positive integer m as a sum of k non-negative integers is equal to $\binom{m+k-1}{k-1}$. Therefore, since $S_{k}(R)$ is the sum of this last expression as m varies from 0 to R, we find, using induction, that

$$
S_{k}(R)=\sum_{m=0}^{R}\binom{m+k-1}{k-1}=\binom{R+k}{k}=\binom{R+k}{R} .
$$

The next result, which is of independent interest, is a key element in the proof of the upper bound for $\mathcal{J}(x)$. Essentially, it says that the sequence of the exponents in the prime factorisation of m ! decreases faster than the sequence of the primes to which they are attached increases.

Lemma 5. Let the prime factorisation of m ! be written as

$$
m!=2^{\alpha_{2}} \cdot 3^{\alpha_{3}} \cdot 5^{\alpha_{5}} \cdots p_{t}^{\alpha_{p_{t}}}
$$

where p_{t} is the largest prime number not exceeding m. Then, given any primes p, q such that $p<q \leq p_{t}$, we have

$$
\frac{\alpha_{p}}{\alpha_{q}} \geq\left\lfloor\frac{q}{p}\right\rfloor .
$$

Proof. Let $p<q \leq p_{t}$ be fixed. Then, there exist two positive integers $u \geq v$ such that

$$
\begin{align*}
& \alpha_{p}=\left\lfloor\frac{m}{p}\right\rfloor+\left\lfloor\frac{m}{p^{2}}\right\rfloor+\cdots+\left\lfloor\frac{m}{p^{u}}\right\rfloor, \tag{2.1}\\
& \alpha_{q}=\left\lfloor\frac{m}{q}\right\rfloor+\left\lfloor\frac{m}{q^{2}}\right\rfloor+\cdots+\left\lfloor\frac{m}{q^{v}}\right\rfloor . \tag{2.2}
\end{align*}
$$

Let k be the unique positive integer satisfying $k p<q<(k+1) p$. Clearly, our claim will be proved if we can show that

$$
\begin{equation*}
\alpha_{p} \geq k \alpha_{q} . \tag{2.3}
\end{equation*}
$$

Now, if we can show that

$$
\begin{equation*}
\left\lfloor\frac{m}{p}\right\rfloor \geq k\left\lfloor\frac{m}{q}\right\rfloor \tag{2.4}
\end{equation*}
$$

then surely we will have $\left\lfloor\frac{m}{p^{i}}\right\rfloor \geq k\left\lfloor\frac{m}{q^{i}}\right\rfloor$ for each $i=2,3, \ldots, u$ and therefore, in light of 2.1 and 2.2 , inequality $(2.3$ will follow. This means that we only need
to prove (2.4). Now, there exist two positive integers r_{1} and r_{2} such that

$$
\begin{aligned}
& m=r_{1} p+\theta_{1} \text { for some non-negative integer } \theta_{1} \leq p-1 \\
& m=r_{2} q+\theta_{2} \text { for some non-negative integer } \theta_{2} \leq q-1
\end{aligned}
$$

and therefore,

$$
1=\frac{r_{1} p+\theta_{1}}{r_{2} q+\theta_{2}} \leq \frac{r_{1} p+p-1}{r_{2} q}<\frac{r_{1} p+p-1}{r_{2} \cdot k p}
$$

thereby establishing that

$$
r_{1} p+p-1>k r_{2} p
$$

so that

$$
\begin{equation*}
r_{1}+\frac{p-1}{p}>k r_{2} . \tag{2.5}
\end{equation*}
$$

Since r_{1} and r_{2} are two integers whereas $\frac{p-1}{p}$ is a positive number smaller than 1, it follows from 2.5 that $r_{1} \geq k r_{2}$, which proves (2.4) since $r_{1}=\left\lfloor\frac{m}{p}\right\rfloor$ and $r_{2}=\left\lfloor\frac{m}{q}\right\rfloor$.

The following result provides very useful explicit upper and lower bounds for the k-th prime number.

Lemma 6. If p_{k} stands for the k-th prime number, then

$$
\begin{equation*}
p_{k}<k \log k+k \log \log k \quad(k \geq 6) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k}>k \log k \quad(k \geq 1) . \tag{2.7}
\end{equation*}
$$

Proof. The first inequality is due to Rosser [10], whereas the second is due to Rosser and Schoenfeld [11.

The prime number theorem can be written in various forms. We will be using the following, which is essentially Theorem 5.1 in the book of Ellison and Ellison [3].

Proposition 1. Setting $\theta(x):=\sum_{p \leq x} \log p$, there exists an absolute constant $a>0$ such that

$$
\theta(x)=x\left(1+O\left(\frac{1}{e^{a \sqrt{\log x}}}\right)\right)
$$

Let $\Psi(x, y):=\#\{n \leq x: P(n) \leq y\}$, where $P(n)$ stands for the largest prime factor of $n \geq 2$, with $P(1)=1$. Moreover, let $\pi(x)$ stand for the number of prime numbers not exceeding x. The following estimate can be found in Granville [7].

Proposition 2. If $y=o(\log x)$ as $x \rightarrow \infty$, then

$$
\Psi(x, y)=\left(\frac{\log x}{y}\right)^{(1+o(1)) \pi(y)}
$$

The following is a 1969 result of Ennola [4], a proof of which is given in the book of Tenenbaum [12].

Proposition 3. Let a_{1}, a_{2}, \ldots be a sequence of positive real numbers and set

$$
N_{k}(z):=\#\left\{\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in \mathbb{Z}^{k}: \nu_{1} \geq 0, \ldots, \nu_{k} \geq 0, \sum_{i=1}^{k} \nu_{i} a_{i} \leq z\right\} .
$$

Then, for each positive integer k,

$$
\begin{equation*}
\frac{z^{k}}{k!} \prod_{i=1}^{k} \frac{1}{a_{i}}<N_{k}(z) \leq \frac{\left(z+\sum_{i=1}^{k} a_{i}\right)^{k}}{k!} \prod_{i=1}^{k} \frac{1}{a_{i}} . \tag{2.8}
\end{equation*}
$$

3. The proof of the upper bound

Observe that for every integer n counted by $\mathcal{J}(x)$, each of its prime factors must be smaller than $2 \frac{\log x}{\log \log x}$, provided x is sufficiently large. We now define the four integers r, r_{1}, r_{2}, r_{3} each depending on x as follows.

$$
r=\pi\left(2 \frac{\log x}{\log \log x}\right), \text { so that } r \leq 3 \frac{\log x}{(\log \log x)^{2}},
$$

$$
r_{1}=\pi\left(\frac{\sqrt{\log x}}{\log \log x}\right), \text { which is asymptotic to } \frac{2 \sqrt{\log x}}{(\log \log x)^{2}} \text { as } x \rightarrow \infty
$$

$$
r_{2}=\pi(\sqrt{\log x}), \text { which is asymptotic to } \frac{2 \sqrt{\log x}}{\log \log x} \text { as } x \rightarrow \infty
$$

$$
r_{3}=\pi(\sqrt{\log x} \log \log x), \text { which is asymptotic to } 2 \sqrt{\log x} \text { as } x \rightarrow \infty .
$$

Let m be a positive integer and q_{1}, q_{2} be two prime numbers such that $q_{1}<q_{2} \leq m$. Assuming that $q_{1}^{\eta_{1}} \| m$! and that $q_{2}^{\eta_{2}} \| m$!, it follows from Lemma 5 that

$$
\frac{\eta_{1}}{\eta_{2}} \geq\left\lfloor\frac{q_{2}}{q_{1}}\right\rfloor
$$

Using these observations, we may write that $\mathcal{J}(x) \leq \# \mathcal{A}(x)$, where

$$
\mathcal{A}(x):=\left\{a=\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in \mathbb{N}^{r}: \sum_{j=1}^{r} a_{j} \log p_{j} \leq \log x, \frac{a_{i}}{a_{j}} \geq\left\lfloor\frac{p_{j}}{p_{i}}\right\rfloor\right\}
$$

In order to derive an upper bound for $\# \mathcal{A}(x)$, we introduce the four sets

$$
\begin{aligned}
& \mathcal{B}_{1}(x):=\left\{\left(b_{1}, \ldots, b_{r_{1}}\right): \exists a \in \mathcal{A}(x), a_{1}=b_{1}, \ldots, a_{r_{1}}=b_{r_{1}}\right\}, \\
& \mathcal{B}_{2}(x):=\left\{\left(b_{1}, \ldots, b_{r_{2}-r_{1}}\right): \exists a \in \mathcal{A}(x), a_{r_{1}+1}=b_{1}, \ldots, a_{r_{2}}=b_{r_{2}-r_{1}}\right\}, \\
& \mathcal{B}_{3}(x):=\left\{\left(b_{1}, \ldots, b_{r_{3}-r_{2}}\right): \exists a \in \mathcal{A}(x), a_{r_{2}+1}=b_{1}, \ldots, a_{r_{3}}=b_{r_{3}-r_{2}}\right\}, \\
& \mathcal{B}_{4}(x):=\left\{\left(b_{1}, \ldots, b_{r-r_{3}}\right): \exists a \in \mathcal{A}(x), a_{r_{3}+1}=b_{1}, \ldots, a_{r}=b_{r-r_{3}}\right\} .
\end{aligned}
$$

It is then clear that

$$
\# \mathcal{A}(x) \leq \# \mathcal{B}_{1}(x) \times \# \mathcal{B}_{2}(x) \times \# \mathcal{B}_{3}(x) \times \# \mathcal{B}_{4}(x)
$$

We will now provide upper bounds for each of the quantities $\# \mathcal{B}_{j}(x)$ for $1 \leq j \leq 4$.
Let $\varepsilon>0$ be an arbitrarily small number and let x be a large number.
First observe that

$$
\# \mathcal{B}_{1}(x) \leq \#\left\{\left(b_{1}, b_{2}, \ldots, b_{r_{1}}\right): \sum_{j=1}^{r_{1}} b_{j} \log p_{j} \leq \log x\right\}
$$

From this, it follows from Proposition 2 that

$$
\# \mathcal{B}_{1}(x) \leq \Psi\left(x, p_{r_{1}}\right)=\left(\frac{\log x}{p_{r_{1}}}\right)^{(1+o(1)) r_{1}} \leq(\sqrt{\log x} \log \log x)^{3 \sqrt{\log x /(\log \log x)^{2}}}
$$

so that

$$
\begin{equation*}
\# \mathcal{B}_{1}(x) \leq \exp \left(2 \frac{\sqrt{\log x}}{\log \log x}\right) \tag{3.1}
\end{equation*}
$$

On the other hand, we have
$\# \mathcal{B}_{2}(x) \leq \#\left\{\left(b_{1}, \ldots, b_{r_{2}-r_{1}}\right):\left(\sum_{j=1}^{r_{2}-r_{1}} b_{j} \log p_{j+r_{1}}\right)+\left(b_{1} \sum_{j=1}^{r_{1}}\left\lfloor\frac{p_{r_{1}}}{p_{j}}\right\rfloor \log p_{j}\right) \leq \log x\right\}$

$$
\begin{equation*}
\leq \#\left\{\left(b_{1}, \ldots, b_{r_{2}-r_{1}}\right): b_{1} \sum_{j=1}^{r_{1}}\left\lfloor\frac{p_{r_{1}}}{p_{j}}\right\rfloor \log p_{j} \leq \log x\right\} \tag{3.2}
\end{equation*}
$$

where we used the fact guaranteed by Lemma 5 that $\frac{a_{j}}{b_{1}} \geq\left\lfloor\frac{p_{r_{1}}}{p_{j}}\right\rfloor$ for $1 \leq j \leq r_{1}$. We then perform a change of variable, namely the one given implicitly by

$$
b_{k}=\sum_{j=k}^{r_{2}-r_{1}} c_{j}, \quad 1 \leq k \leq r_{2}-r_{1} .
$$

Given that the sequence $b_{1}, b_{2}, \ldots, b_{r_{2}-r_{1}}$ is non-increasing, we have $c_{j} \geq 0$, $1 \leq j \leq r_{2}-r_{1}$. From (3.2), it follows that

$$
\begin{equation*}
\# \mathcal{B}_{2}(x) \leq \#\left\{\left(c_{1}, \ldots, c_{r_{2}-r_{1}}\right):\left(\sum_{j=1}^{r_{2}-r_{1}} c_{j}\right)\left(\sum_{j=1}^{r_{1}}\left\lfloor\frac{p_{r_{1}}}{p_{j}}\right\rfloor \log p_{j}\right) \leq \log x\right\} \tag{3.3}
\end{equation*}
$$

Now, it follows from the prime number theorem that

$$
\begin{equation*}
\sum_{p \leq y} \frac{\log p}{p}>(1-\varepsilon) \log y \tag{3.4}
\end{equation*}
$$

provided y is sufficiently large.
Using inequality (2.7) of Lemma 6, as well as inequality (3.4) and Proposition 1 we may write that

$$
\begin{aligned}
\sum_{j=1}^{r_{1}}\left\lfloor\frac{p_{r_{1}}}{p_{j}}\right\rfloor \log p_{j} & \geq p_{r_{1}} \sum_{j=1}^{r_{1}} \frac{\log p_{j}}{p_{j}}-\sum_{j=1}^{r_{1}} \log p_{j} \\
& \geq(1-\varepsilon) \frac{\sqrt{\log x}}{\log \log x} \sum_{j=1}^{r_{1}} \frac{\log p_{j}}{p_{j}}-\theta\left(p_{r_{1}}\right)
\end{aligned}
$$

$$
\begin{align*}
& \geq(1-\varepsilon) \frac{\sqrt{\log x}}{\log \log x}(1-\varepsilon) \log p_{r_{1}}-(1+\varepsilon) p_{r_{1}} \\
& \geq \frac{1}{3} \sqrt{\log x} \tag{3.5}
\end{align*}
$$

Using this in (3.3), we get

$$
\# \mathcal{B}_{2}(x) \leq \#\left\{\left(c_{1}, \ldots, c_{r_{2}-r_{1}}\right): \sum_{j=1}^{r_{2}-r_{1}} c_{j} \leq 3 \sqrt{\log x}\right\}
$$

which, in light of Lemma 4 yields

$$
\begin{aligned}
\# \mathcal{B}_{2}(x) & \leq\binom{ r_{2}-r_{1}+\lceil 3 \sqrt{\log x}\rceil}{\lceil 3 \sqrt{\log x}\rceil} \leq\binom{\left\lceil\frac{2 \sqrt{\log x}}{\log \log x}\right\rceil+\lceil 3 \sqrt{\log x}\rceil}{\lceil 3 \sqrt{\log x}\rceil} \\
& =\binom{\left\lceil\frac{\sqrt{\log x}}{\log \log x}\right\rceil+\lceil 3 \sqrt{\log x}\rceil}{\left\lceil\frac{\sqrt{\log x}}{\log \log x}\right\rceil} \leq\binom{ 2\lceil 3 \sqrt{\log x}\rceil}{\left\lceil\frac{\sqrt{\log x}}{\log \log x}\right\rceil},
\end{aligned}
$$

where we used the fact that for any positive integers a and b, we have $\binom{a+b}{b}=\binom{a+b}{a}$. Using Lemma 3, it then follows that

$$
\begin{equation*}
\# \mathcal{B}_{2}(x) \leq \exp \left\{\frac{\sqrt{\log x} \log \log \log x}{\log \log x}\right\} \tag{3.6}
\end{equation*}
$$

An upper bound for $\# \mathcal{B}_{3}(x)$ is obtained using a similar technique. We have

$$
\begin{equation*}
\# \mathcal{B}_{3}(x) \leq \#\left\{\left(b_{1}, \ldots, b_{r_{3}-r_{2}}\right):\left(\sum_{j=1}^{r_{3}-r_{2}} b_{j} \log p_{j+r_{2}}\right)+\left(b_{1} \sum_{j=1}^{r_{2}}\left\lfloor\frac{p_{r_{2}}}{p_{j}}\right\rfloor \log p_{j}\right) \leq \log x\right\} \tag{3.7}
\end{equation*}
$$

Performing the change of variable

$$
b_{k}=\sum_{j=k}^{r_{3}-r_{2}} c_{j}, \quad 1 \leq k \leq r_{3}-r_{2}
$$

we obtain from (3.7) that

$$
\begin{equation*}
\# \mathcal{B}_{3}(x) \leq \#\left\{\left(c_{1}, \ldots, c_{r_{3}-r_{2}}\right):\left(\sum_{j=1}^{r_{3}-r_{2}} c_{j}\right)\left(\sum_{j=1}^{r_{2}}\left\lfloor\frac{p_{r_{2}}}{p_{j}}\right\rfloor \log p_{j}\right) \leq \log x\right\} \tag{3.8}
\end{equation*}
$$

Again using (2.7), (3.4) and Proposition 1, while proceeding as we did to obtain (3.5), we find that

$$
\sum_{j=1}^{r_{2}}\left\lfloor\frac{p_{r_{2}}}{p_{j}}\right\rfloor \log p_{j} \geq p_{r_{2}} \sum_{j=1}^{r_{2}} \frac{\log p_{j}}{p_{j}}-\sum_{j=1}^{r_{2}} \log p_{j} \geq \frac{1}{3} \sqrt{\log x} \log \log x .
$$

Using this in (3.8), we obtain

$$
\# \mathcal{B}_{3}(x) \leq \#\left\{\left(c_{1}, \ldots, c_{r_{3}-r_{2}}\right): \sum_{j=1}^{r_{3}-r_{2}} c_{j} \leq 3 \frac{\sqrt{\log x}}{\log \log x}\right\}
$$

from which we can deduce that

$$
\begin{equation*}
\# \mathcal{B}_{3}(x) \leq\binom{\left\lceil\frac{3 \sqrt{\log x}}{\log \log x}\right\rceil+r_{3}}{\left\lceil 3 \frac{\sqrt{\log x}}{\log \log x}\right\rceil} \leq\binom{\left\lceil\frac{3 \sqrt{\log x}}{\log \log x}\right\rceil+\lceil 2 \sqrt{\log x}\rceil}{\left\lceil 3 \frac{\sqrt{\log x}}{\log \log x}\right\rceil} \tag{3.9}
\end{equation*}
$$

Again using Lemma 3 we conclude from (3.9) that

$$
\begin{equation*}
\# \mathcal{B}_{3}(x) \leq \exp \left\{(3+\varepsilon) \frac{\sqrt{\log x} \log \log \log x}{\log \log x}\right\} \tag{3.10}
\end{equation*}
$$

We finally provide an upper bound for $\# \mathcal{B}_{4}(x)$ again using the same approach. We have
$\# \mathcal{B}_{4}(x) \leq \#\left\{\left(b_{1}, \ldots, b_{r-r_{3}}\right):\left(\sum_{j=1}^{r-r_{3}} b_{j} \log p_{j+r_{3}}\right)+\left(b_{1} \sum_{j=1}^{r_{3}}\left\lfloor\frac{p_{r_{3}}}{p_{j}}\right\rfloor \log p_{j}\right) \leq \log x\right\}$.
Proceeding as before, we get

$$
\sum_{j=1}^{r_{3}}\left\lfloor\frac{p_{r_{3}}}{p_{j}}\right\rfloor \log p_{j} \geq \frac{1}{3} \sqrt{\log x}(\log \log x)^{2}
$$

which yields

$$
\# \mathcal{B}_{4}(x) \leq \#\left\{\left(c_{1}, \ldots, c_{r}\right): \sum_{j=1}^{r} c_{j} \leq 3 \frac{\sqrt{\log x}}{(\log \log x)^{2}}\right\}
$$

from which we conclude

$$
\# \mathcal{B}_{4}(x) \leq\binom{\left\lceil\frac{3 \sqrt{\log x}}{(\log \log x)^{2}}\right\rceil+r}{\left\lceil 3 \frac{\sqrt{\log x}}{(\log \log x)^{2}}\right\rceil} \leq\binom{\left\lceil\frac{3 \sqrt{\log x}}{(\log \log x)^{2}}\right\rceil+\left\lceil 3 \frac{\log x}{(\log \log x)^{2}}\right\rceil}{\left\lceil 3 \frac{\sqrt{\log x}}{(\log \log x)^{2}}\right\rceil}
$$

so that

$$
\begin{equation*}
\# \mathcal{B}_{4} \leq \exp \left\{(3+\varepsilon) \frac{\sqrt{\log x}}{\log \log x}\right\} \tag{3.11}
\end{equation*}
$$

Gathering estimates (3.1), (3.6), (3.10) and (3.11) completes the proof of the upper bound (1.3).

4. The proof of the lower bound

Many elements of \mathcal{J} have two or more representations as a product of factorials. For instance, the number $24=4!=2!^{2} \cdot 3!$ has two, whereas $576=4!^{2}=2!^{4} \cdot 3!^{2}=$ $2!^{2} \cdot 3!\cdot 4$! has three. In fact, one can easily show that given an arbitrary integer $k \geq 2$, there exists a Jordan-Pólya number which has k representations as the product of factorials. For instance, take the numbers $n_{k}:=2^{3 k+3} 3^{k+1}(k=1,2, \ldots)$. One can easily check that

$$
\begin{aligned}
n_{k} & =4!\cdot 3!^{k} \cdot 2!^{2 k} \\
& =4!^{2} \cdot 3!^{k-1} \cdot 2!^{2(k-1)}
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
= & 4!^{k-1} \cdot 3!^{2} \cdot 2!^{4} \\
= & 4!^{k} \cdot 3!\cdot 2!^{2},
\end{aligned}
$$

thereby revealing k distinct representations of n_{k} as a product of factorials.
This phenomenon must be taken into account when establishing a lower bound for $\mathcal{J}(x)$. This is why we will consider a subset of \mathcal{J} whose elements have a unique representation as a product of "prime factorials". We choose \mathcal{J}_{\wp} as the set of those elements $n \in \mathcal{J}$ which can be written as a product of prime factorials, that is, as $n=\prod_{i=1}^{r} p_{i}!^{\alpha_{i}}$ for some non negative integers α_{i} 's, where p_{1}, p_{2}, \ldots stands for the sequence of primes. The interesting feature of this set is that one can easily show that each of its elements has a unique representation as a product of prime factorials. Observe that $\mathcal{J} \backslash \mathcal{J}_{\wp} \neq \emptyset$ since it contains the number $n=14$! and in fact many more.

We will establish a lower bound for $\mathcal{J}_{\wp}(x)$, which will ipso facto provide a lower bound for $\mathcal{J}(x)$. Given a large number x, let $z=\log x$ and set $a_{i}=\log \left(p_{i}!\right)$ for $i=1,2, \ldots, k$. Then, applying the first inequality in relation (2.8) of Proposition 3 we get that, for each positive integer k,

$$
\begin{equation*}
\mathcal{J}_{\wp}(x)>\frac{\log ^{k} x}{k!\cdot \prod_{i=1}^{k} \log \left(p_{i}!\right)} . \tag{4.1}
\end{equation*}
$$

Let $\varepsilon>0$ and let k_{0} be a large integer. Using Lemma 2 we may write that for each large prime p_{i}, say with $i \geq k_{0}$,

$$
\log \left(p_{i}!\right)=p_{i} \log p_{i}-p_{i}+O\left(\log p_{i}\right)=p_{i} \log p_{i}\left(1-\frac{1}{\log p_{i}}+O\left(\frac{1}{p_{i}}\right)\right)
$$

so that, for each $k>k_{0}$, we have

$$
\begin{equation*}
\prod_{i=k_{0}}^{k} \log \left(p_{i}!\right)=\prod_{i=k_{0}}^{k} p_{i} \cdot \prod_{i=k_{0}}^{k} \log p_{i} \cdot \prod_{i=k_{0}}^{k}\left(1-\frac{1}{\log p_{i}}+O\left(\frac{1}{p_{i}}\right)\right) \tag{4.2}
\end{equation*}
$$

We will now overestimate each of the above three products.
Using Proposition 1, we have

$$
\begin{align*}
\prod_{i=k_{0}}^{k} p_{i} & <\exp \left\{\sum_{p \leq p_{k}} \log p\right\}=\exp \left\{\theta\left(p_{k}\right)\right\}=\exp \left\{p_{k}\left(1+O\left(\frac{1}{\log ^{2} k}\right)\right)\right\} \\
& <\exp \left\{(k \log k+k \log \log k)\left(1+O\left(\frac{1}{\log ^{2} k}\right)\right)\right\}, \tag{4.3}
\end{align*}
$$

where we used inequality (2.6) of Lemma 6 .
On the other hand, using once more the first inequality in Lemma we easily observe that $\log \log p_{i}<(1+\varepsilon) \log \log i$ provided i is sufficiently large. It follows
that

$$
\begin{align*}
\prod_{i=k_{0}}^{k} \log p_{i} & =\exp \left\{\sum_{i=k_{0}}^{k} \log \log p_{i}\right\} \\
& <\exp \left\{\sum_{i=k_{0}}^{k}(1+\varepsilon) \log \log k\right\}<\exp \{(1+\varepsilon) k \log \log k\} \tag{4.4}
\end{align*}
$$

Finally,

$$
\begin{align*}
\prod_{i=k_{0}}^{k}\left(1-\frac{1}{\log p_{i}}+O\left(\frac{1}{p_{i}}\right)\right) & =\exp \left\{\sum_{i=k_{0}}^{k} \log \left(1-\frac{1}{\log p_{i}}+O\left(\frac{1}{p_{i}}\right)\right)\right\} \\
& =\exp \left\{-\sum_{i=k_{0}}^{k} \frac{1}{\log p_{i}}+O\left(\sum_{i=k_{0}}^{k} \frac{1}{\log ^{2} p_{i}}\right)\right\} \tag{4.5}
\end{align*}
$$

Since

$$
\begin{align*}
\sum_{i=k_{0}}^{k} \frac{1}{\log p_{i}} & =\int_{p_{k_{0}}}^{p_{k}} \frac{1}{\log t} d \pi(t)=\left.\frac{\pi(t)}{\log t}\right|_{p_{k_{0}}} ^{p_{k}}+\int_{p_{k_{0}}}^{p_{k}} \frac{\pi(t)}{t \log ^{2} t} d t \\
& =\frac{k}{\log p_{k}}+O\left(\frac{k}{\log ^{2} p_{k}}\right)>\frac{k}{\log k}+O\left(\frac{k \log \log k}{\log ^{2} k}\right) \tag{4.6}
\end{align*}
$$

using estimate 4.6 in 4.5), we find that

$$
\begin{equation*}
\prod_{i=k_{0}}^{k}\left(1-\frac{1}{\log p_{i}}+O\left(\frac{1}{p_{i}}\right)\right)<\exp \left\{-\frac{k}{\log k}+O\left(\frac{k \log \log k}{\log ^{2} k}\right)\right\} \tag{4.7}
\end{equation*}
$$

Setting $C_{0}=\prod_{i=1}^{k_{0}-1} \log \left(p_{i}!\right)$ and gathering inequalities 4.3, 4.4) and 4.7) in (4.2), we find that

$$
\begin{equation*}
\prod_{i=1}^{k} \log \left(p_{i}!\right)=\prod_{i=1}^{k_{0}-1} \log \left(p_{i}!\right) \cdot \prod_{i=k_{0}}^{k} \log \left(p_{i}!\right)<C_{0}\left(k \log ^{2} k\right)^{k} e^{-k / \log k} \tag{4.8}
\end{equation*}
$$

Finally, using Lemma 2 we have that, provided k_{0} is large enough,

$$
\begin{equation*}
k!<(1+\varepsilon) k^{k} e^{-k} \sqrt{2 \pi k} \quad\left(k \geq k_{0}\right) \tag{4.9}
\end{equation*}
$$

Combining (4.8) and 4.9 in 4.1, we obtain that

$$
\begin{equation*}
\mathcal{J}_{\wp}(x)>\frac{1}{C_{0}}\left(\frac{e^{1+1 / \log k} \log x}{(1+\varepsilon) k^{2} \log ^{2} k}\right)^{k} \quad\left(k \geq k_{0}\right) . \tag{4.10}
\end{equation*}
$$

Our goal will be to search for an integer $k=k(x)$ for which the function

$$
f(k):=\left(\frac{e^{1+1 / \log k} \log x}{(1+\varepsilon) k^{2} \log ^{2} k}\right)^{k}
$$

reaches its maximum value, or equivalently for which real number s the function $g(s):=\log f(s)$ reaches its maximum value. Since

$$
g(s)=s\left(1+\frac{1}{\log s}+\log \log x-2 \log s-2 \log \log s\right)
$$

we have

$$
\begin{aligned}
g^{\prime}(s) & =1+\frac{1}{\log s}+\log \log x-2 \log s-2 \log \log s+s\left(-\frac{1}{s \log ^{2} s}-\frac{2}{s}-\frac{2}{s \log s}\right) \\
& =-1+\log \log x-2 \log s-2 \log \log s-\frac{2}{\log s} .
\end{aligned}
$$

For large x and large s, the right hand side of the above expression will be near 0 when

$$
\log \log x-2 \log s-2 \log \log s=0
$$

or similarly, $\log \left(s^{2} \log ^{2} s\right)=\log \log x$ and therefore $s \log s=\sqrt{\log x}$, from which we find that

$$
s=\frac{\sqrt{\log x}}{\log s}=(1+o(1)) \frac{2 \sqrt{\log x}}{\log \log x} \quad(x \rightarrow \infty)
$$

Substituting this value of s in 4.10, we find that

$$
\mathcal{J}_{\wp}(x)>\exp \left\{(1+o(1)) \frac{2 \sqrt{\log x}}{\log \log x}\right\} \quad(x \rightarrow \infty)
$$

thus establishing the required lower bound 1.4 .

Acknowledgement. The work of the first and second authors was supported by individual discovery grants from NSERC of Canada.

References

[1] De Angelis, V., Stirling's series revisited, Amer. Math. Monthly 116 (2009), 839-843.
[2] De Koninck, J.-M., Luca, F., Analytic Number Theory: Exploring the Anatomy of Integers, Graduate Studies in Mathematics, vol. 134, American Mathematical Society, Providence, Rhode Island, 2012.
[3] Ellison, W., Ellison, F., Prime Numbers, Hermann, Paris, 1985.
[4] Ennola, V., On numbers with small prime divisors, Ann. Acad. Sci. Fenn. Ser. AI 440 (1969), 16 pp .
[5] Erdös, P., Graham, R.L., On products of factorials, Bull. Inst. Math. Acad. Sinica 4 (2) (1976), 337-355.
[6] Feller, W., An introduction to probability theory and its applications, Vol. I, Third edition, John Wiley \& Sons, Inc., New York-London-Sydney, 1968, xviii+509 pp.
[7] Granville, A., Smooth numbers: computational number theory and beyond. Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ. 44 (2008), 267-323, Cambridge Univ. Press, Cambridge.
[8] Luca, F., On factorials which are products of factorials, Math. Proc. Cambridge Philos. Soc. 143 (3) (2007), 533-542.
[9] Nair, S.G., Shorey, T.N., Lower bounds for the greatest prime factor of product of consecutive positive integers, J. Number Theory 159 (2016), 307-328.
[10] Rosser, J.B., The n-th prime is greater than $n \log n$, Proc. London Math. Soc. (2) 45 (1938), 21-44.
[11] Rosser, J.B., Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[12] Tenenbaum, G., Introduction à la théorie analytique des nombres, Collection Échelles, Belin, 2008.

[^1]
[^0]: 2020 Mathematics Subject Classification: primary 11B65; secondary 11A41, 11A51, 11N05.
 Key words and phrases: Jordan-Pólya numbers, factorial function, friable numbers.
 Received October 29, 2019, revised April 2020. Editor C. Greither.
 DOI: 10.5817/AM2020-3-141

[^1]: Corresponding author:
 J.-M. De Koninck,

 Département de mathématiques et de statistique,
 Université Laval, Québec G1V 0A6, Canada
 E-mail: jmdk@mat.ulaval.ca
 nicolas.doyon@mat.ulaval.ca arthur@aims.edu.gh william.verreault.2@ulaval.ca

