# ON RIEMANN-POISSON LIE GROUPS 

Brahim Alioune ${ }^{a}$, Mohamed Boucetta ${ }^{b}$, and Ahmed Sid'Ahmed Lessiad ${ }^{c}$


#### Abstract

A Riemann-Poisson Lie group is a Lie group endowed with a left invariant Riemannian metric and a left invariant Poisson tensor which are compatible in the sense introduced in (4). We study these Lie groups and we give a characterization of their Lie algebras. We give also a way of building these Lie algebras and we give the list of such Lie algebras up to dimension 5.


## 1. Introduction

In this paper, we study Lie groups endowed with a left invariant Riemannian metric and a left invariant Poisson tensor satisfying a compatibility condition to be defined below. They constitute a subclass of the class of Riemann-Poisson manifolds introduced and studied by the second author (see [2, 3, 4, 5]).

Let $(M, \pi,\langle\rangle$,$) be smooth manifold endowed with a Poisson tensor \pi$ and a Riemannian metric $\langle$,$\rangle . We denote by \langle,\rangle^{*}$ the Euclidean product on $T^{*} M$ naturally associated to $\langle$,$\rangle . The Poisson tensor defines a Lie algebroid structure$ on $T^{*} M$ where the anchor map is the contraction $\#_{\pi}: T^{*} M \longrightarrow T M$ given by $\prec \beta, \#_{\pi}(\alpha) \succ=\pi(\alpha, \beta)$ and the Lie bracket on $\Omega^{1}(M)$ is the Koszul bracket given by

$$
\begin{equation*}
[\alpha, \beta]_{\pi}=\mathcal{L}_{\#_{\pi}(\alpha)} \beta-\mathcal{L}_{\#_{\pi}(\beta)} \alpha-d \pi(\alpha, \beta), \quad \alpha, \beta \in \Omega^{1}(M) \tag{1}
\end{equation*}
$$

This Lie algebroid structure and the metric $\langle,\rangle^{*}$ define a contravariant connection $\mathcal{D}: \Omega^{1}(M) \times \Omega^{1}(M) \longrightarrow \Omega^{1}(M)$ by Koszul formula

$$
\begin{align*}
2\left\langle\mathcal{D}_{\alpha} \beta, \gamma\right\rangle^{*}= & \#_{\pi}(\alpha) \cdot\langle\beta, \gamma\rangle^{*}+\#_{\pi}(\beta) \cdot\langle\alpha, \gamma\rangle^{*}-\#_{\pi}(\gamma) \cdot\langle\alpha, \beta\rangle^{*}  \tag{2}\\
& +\left\langle[\alpha, \beta]_{\pi}, \gamma\right\rangle^{*}+\left\langle[\gamma, \alpha]_{\pi}, \beta\right\rangle^{*}+\left\langle[\gamma, \beta]_{\pi}, \alpha\right\rangle^{*}, \quad \alpha, \beta, \gamma \in \Omega^{1}(M)
\end{align*}
$$

This is the unique torsionless contravariant connection which is metric, i.e., for any $\alpha, \beta, \gamma \in \Omega^{1}(M)$,

$$
\mathcal{D}_{\alpha} \beta-\mathcal{D}_{\beta} \alpha=[\alpha, \beta]_{\pi} \quad \text { and } \quad \#_{\pi}(\alpha) \cdot\langle\beta, \gamma\rangle^{*}=\left\langle\mathcal{D}_{\alpha} \beta, \gamma\right\rangle^{*}+\left\langle\beta, \mathcal{D}_{\alpha} \gamma\right\rangle^{*} .
$$

The notion of contravariant connection was introduced by Vaisman in [13] and studied in more details by Fernandes in the context of Lie algebroids [8]. The
connection $\mathcal{D}$ defined above is called contravariant Levi-Civita connection associated to the couple $(\pi,\langle\rangle$,$) and it appeared first in [2].$

The triple $(M, \pi,\langle\rangle$,$) is called a Riemannian-Poisson manifold if \mathcal{D} \pi=0$, i.e., for any $\alpha, \beta, \gamma \in \Omega^{1}(M)$,

$$
\begin{equation*}
\mathcal{D} \pi(\alpha, \beta, \gamma):=\#_{\pi}(\alpha) . \pi(\beta, \gamma)-\pi\left(\mathcal{D}_{\alpha} \beta, \gamma\right)+\pi\left(\beta, \mathcal{D}_{\alpha} \gamma\right)=0 \tag{3}
\end{equation*}
$$

This notion was introduced by the second author in [2]. Riemann-Poisson manifolds turned out to have interesting geometric properties (see [2, 3, 4, 5]). Let's mention some of them.
(1) The condition of compatibility (3) is weaker than the condition $\nabla \pi=0$ where $\nabla$ is the Levi-Civita connection of $\langle$,$\rangle . Indeed, the condition (3)$ allows the Poisson tensor to have a variable rank. For instance, linear Poisson structures which are Riemann-Poisson exist and were characterized in [5]. Furthermore, let $(M,\langle\rangle$,$) be a Riemannian manifold and \left(X_{1}, \ldots, X_{r}\right)$ a family of commuting Killing vector fields. Put

$$
\pi=\sum_{i, j} X_{i} \wedge X_{j}
$$

Then $(M, \pi,\langle\rangle$,$) is a Riemann-Poisson manifold. This example illustrates$ also the weakness of the condition (3) and, more importantly, it is the local model of the geometry of noncommutative deformations studied by Hawkins (see [10, Theorem 6.6]).
(2) Riemann-Poisson manifolds can be thought of as a generalization of Kähler manifolds. Indeed, let $(M, \pi,\langle\rangle$,$) be a Poisson manifold endowed with a$ Riemannian metric such that $\pi$ is invertible. Denote by $\omega$ the symplectic form inverse of $\pi$. Then ( $M, \pi,\langle$,$\rangle ) is Riemann-Poisson manifold if and$ only if $\nabla \omega=0$ where $\nabla$ is the Levi-Civita connection of $\langle$,$\rangle . In this case,$ if we define $A: T M \longrightarrow T M$ by $\omega(u, v)=\langle A u, v\rangle$ then $-A^{2}$ is symmetric definite positive and hence there exists a unique $Q: T M \longrightarrow T M$ symmetric definite positive such that $Q^{2}=-A^{2}$. It follows that $J=A Q^{-1}$ satisfies $J^{2}=-\operatorname{Id}_{T M}$, skew-symmetric with respect $\langle$,$\rangle and \nabla J=0$. Hence $(M, J,\langle\rangle$,$) is a Kähler manifold and its Kähler form \omega_{J}(u, v)=\langle J u, v\rangle$ is related to $\omega$ by the following formula:

$$
\begin{equation*}
\omega(u, v)=-\omega_{J}\left(\sqrt{-A^{2}} u, v\right), \quad u, v \in T M \tag{4}
\end{equation*}
$$

Having this construction in mind, we will call in this paper a Kähler manifold a triple $(M,\langle\rangle,, \omega)$ where $\langle$,$\rangle is a Riemannian metric and \omega$ is a nondegenerate 2 -form $\omega$ such that $\nabla \omega=0$ where $\nabla$ is the Levi-Civita connection of $\langle$,$\rangle .$
(3) The symplectic foliation of a Riemann-Poisson manifold when $\pi$ has a constant rank has an important property namely it is both a Riemannian foliation and a Kähler foliation.

Recall that a Riemannian foliation is a foliated manifold $(M, \mathcal{F})$ with a Riemannian metric $\langle$,$\rangle such that the orthogonal distribution T^{\perp} \mathcal{F}$ is totally geodesic.

Kähler foliations are a generalization of Kähler manifolds (see 6) and, as for the notion of Kähler manifold, we call in this paper a Kähler foliation a foliated manifold $(M, \mathcal{F})$ endowed with a leafwise metric $\langle,\rangle_{\mathcal{F}} \in \Gamma\left(\otimes^{2} T^{*} \mathcal{F}\right)$ and a nondegenerate leafwise differential 2-form $\omega_{\mathcal{F}} \in \Gamma\left(\otimes^{2} T^{*} \mathcal{F}\right)$ such any leaf with the restrictions of $\langle,\rangle_{\mathcal{F}}$ and $\omega_{\mathcal{F}}$ is a Kähler manifold.

Theorem 1.1 ([4]). Let $(M,\langle\rangle,, \pi)$ be a Riemann-Poisson manifold with $\pi$ of constant rank. Then its symplectic foliation is both a Riemannian and a Kähler foliation.

Having in mind these properties particularly Theorem 1.1, it will be interesting to find large classes of examples of Riemann-Poisson manifolds. This paper will describe the rich collection of examples which are obtained by providing an arbitrary Lie group $G$ with a Riemannian metric $\langle$,$\rangle and a Poisson tensor \pi$ invariant under left translations and such that $(G,\langle\rangle,, \pi)$ is Riemann-Poisson. We call $(G,\langle\rangle,, \pi)$ a Riemann-Poisson Lie group. This class of examples can be enlarged substantially, with no extra work, as follows. If $(G,\langle\rangle,, \pi)$ is a Riemann-Poisson Lie group and $\Gamma$ is any discrete subgroup of $G$ then $\Gamma \backslash G$ carries naturally a structure of Riemann-Poisson manifold.

The paper is organized as follows. In Section 2 we give the material needed in the paper and we describe the infinitesimal counterpart of Riemann-Poisson Lie groups, namely, Riemann-Poisson Lie algebras. In Section 3 we prove our main result which gives an useful description of Riemann-Poisson Lie algebras (see Theorem 3.1). We use this theorem in Section 4 to derive a method for building Riemann-Poisson Lie algebras. We explicit this method by giving the list of Riemann-Poisson Lie algebras up to dimension 5 .

## 2. Riemann-Poisson Lie groups and their infinitesimal CHARACTERIZATION

Let $G$ be a Lie group and $\left(\mathfrak{g}=T_{e} G,[],\right)$ its Lie algebra.
(1) A left invariant Poisson tensor $\pi$ on $G$ is entirely determined by

$$
\pi(\alpha, \beta)(a)=r\left(\mathrm{~L}_{a}^{*} \alpha, \mathrm{~L}_{a}^{*} \beta\right)
$$

where $a \in G, \alpha, \beta \in T_{a}^{*} G, \mathrm{~L}_{a}$ is the left multiplication by $a$ and $r \in \wedge^{2} \mathfrak{g}$ satisfies the classical Yang-Baxter equation

$$
[r, r]=0
$$

where $[r, r] \in \wedge^{3} \mathfrak{g}$ is given by

$$
\begin{aligned}
{[r, r](\alpha, \beta, \gamma):=} & \prec \alpha,\left[r_{\#}(\beta), r_{\#}(\gamma)\right] \succ+\prec \beta,\left[r_{\#}(\gamma), r_{\#}(\alpha)\right] \succ \\
& +\prec \gamma,\left[r_{\#}(\alpha), r_{\#}(\beta)\right] \succ, \quad \alpha, \beta, \gamma \in \mathfrak{g}^{*},
\end{aligned}
$$

and $r_{\#}: \mathfrak{g}^{*} \longrightarrow \mathfrak{g}$ is the contraction associated to $r$. In this case, the Koszul bracket (1) when restricted to left invariant differential 1-forms induces a Lie bracket on $\mathfrak{g}^{*}$ given by

$$
\begin{equation*}
[\alpha, \beta]_{r}=\operatorname{ad}_{r_{\#}(\alpha)}^{*} \beta-\operatorname{ad}_{r_{\#}(\beta)}^{*} \alpha, \quad \alpha, \beta \in \mathfrak{g}^{*}, \tag{7}
\end{equation*}
$$

where $\prec \operatorname{ad}_{u}^{*} \alpha, v \succ=-\prec \alpha,[u, v] \succ$. Moreover, $r_{\#}$ becomes a morphism of Lie algebras, i.e.,

$$
\begin{equation*}
r_{\#}\left([\alpha, \beta]_{r}\right)=\left[r_{\#}(\alpha), r_{\#}(\beta)\right], \quad \alpha, \beta \in \mathfrak{g}^{*} . \tag{8}
\end{equation*}
$$

(2) A let invariant Riemannian metric $\langle$,$\rangle on G$ is entirely determined by

$$
\langle u, v\rangle(a)=\rho\left(T_{a} \mathrm{~L}_{a^{-1}} u, T_{a} \mathrm{~L}_{a^{-1}} v\right),
$$

where $a \in G, u, v \in T_{a} G$ and $\rho$ is a scalar product on $\mathfrak{g}$. The Levi-Civita connection of $\langle$,$\rangle is left invariant and induces a product A: \mathfrak{g} \times \mathfrak{g} \longrightarrow \mathfrak{g}$ given by
$2 \varrho\left(A_{u} v, w\right)=\varrho([u, v], w)+\varrho([w, u], v)+\varrho([w, v], u), \quad u, v, w \in \mathfrak{g}$.
It is the unique product on $\mathfrak{g}$ satisfying

$$
A_{u} v-A_{v} u=[u, v] \quad \text { and } \quad \varrho\left(A_{u} v, w\right)+\varrho\left(v, A_{u} w\right)=0
$$

for any $u, v, w \in \mathfrak{g}$. We call $A$ the Levi-Civita product associated to $(\mathfrak{g},[],, \rho)$.
(3) Let $(G,\langle\rangle,, \Omega)$ be a Lie group endowed with a left invariant Riemannian metric and a nondegenerate left invariant 2-form. Then $(G,\langle\rangle,, \Omega)$ is a Kähler manifold if and only if, for any $u, v, w \in \mathfrak{g}$,

$$
\begin{equation*}
\omega\left(A_{u} v, w\right)+\omega\left(u, A_{u} v\right)=0 \tag{10}
\end{equation*}
$$

where $\omega=\Omega(e), \rho=\langle\rangle,(e)$ and $A$ is the Levi-Civita product of $(\mathfrak{g},[],, \rho)$. In this case we call $(\mathfrak{g},[],, \rho, \omega)$ a Kähler Lie algebra.
As all the left invariant structures on Lie groups, Riemann-Poison Lie groups can be characterized at the level of their Lie algebras.

Proposition 2.1. Let $(G, \pi,\langle\rangle$,$) be a Lie group endowed with a left invariant$ bivector field and a left invariant metric and $(\mathfrak{g},[]$,$) its Lie algebra. Put r=\pi(e) \in$ $\wedge^{2} \mathfrak{g}, \varrho=\langle,\rangle_{e}$ and $\varrho^{*}$ the associated Euclidean product on $\mathfrak{g}^{*}$. Then $(G, \pi,\langle\rangle$,$) is$ a Riemann-Poisson Lie group if and only if
(i) $[r, r]=0$,
(ii) for any $\alpha, \beta, \gamma \in \mathfrak{g}^{*}, r\left(A_{\alpha} \beta, \gamma\right)+r\left(\beta, A_{\alpha} \gamma\right)=0$,
where $A$ is the Levi-Civita product associated to $\left(\mathfrak{g}^{*},[,]_{r}, \varrho^{*}\right)$.
Proof. For any $u \in \mathfrak{g}$ and $\alpha \in \mathfrak{g}^{*}$, we denote by $u^{\ell}$ and $\alpha^{\ell}$, respectively, the left invariant vector field and the left invariant differential 1-form on $G$ given by

$$
u^{\ell}(a)=T_{e} \mathrm{~L}_{a}(u) \quad \text { and } \quad \alpha^{\ell}(a)=T_{a}^{*} \mathrm{~L}_{a^{-1}}(\alpha), \quad a \in G, \mathrm{~L}_{a}(b)=a b
$$

Since $\pi$ and $\langle$,$\rangle are left invariant, one can see easily from (1) and (2) that we$ have, for any $\alpha, \beta, \gamma \in \mathfrak{g}^{*}$,

$$
\left\{\begin{array}{l}
{[\pi, \pi]_{S}\left(\alpha^{\ell}, \beta^{\ell}, \gamma^{\ell}\right)=[r, r](\alpha, \beta, \gamma), \# \pi\left(\alpha^{\ell}\right)=\left(r_{\#}(\alpha)\right)^{\ell}, \mathcal{L}_{\# \pi}\left(\alpha^{\ell}\right) \beta^{\ell}=\left(\operatorname{ad}_{r_{\#}(\alpha)}^{*} \beta\right)^{\ell},} \\
{\left[\alpha^{\ell}, \beta^{\ell}\right]_{\pi}=\left([\alpha, \beta]_{r}\right)^{\ell}, \mathcal{D}_{\alpha^{\ell}} \beta^{\ell}=\left(A_{\alpha} \beta\right)^{\ell} .}
\end{array}\right.
$$

The proposition follows from these formulas, (3) and the fact that $(G, \pi,\langle\rangle$,$) is a$ Riemann-Poisson Lie group if and only if, for any $\alpha, \beta, \gamma \in \mathfrak{g}^{*}$,

$$
[\pi, \pi]_{S}\left(\alpha^{\ell}, \beta^{\ell}, \gamma^{\ell}\right)=0 \quad \text { and } \quad \mathcal{D} \pi\left(\alpha^{\ell}, \beta^{\ell}, \gamma^{\ell}\right)=0 .
$$

Conversely, given a triple ( $\mathfrak{g}, r, \varrho$ ) where $\mathfrak{g}$ is a real Lie algebra, $r \in \wedge^{2} \mathfrak{g}$ and $\varrho$ a Euclidean product on $\mathfrak{g}$ satisfying the conditions (i) and (ii) in Proposition 2.1 then, for any Lie group $G$ whose Lie algebra is $\mathfrak{g}$, if $\pi$ and $\langle$,$\rangle are the left invariant$ bivector field and the left invariant metric associated to $(r, \varrho)$ then $(G, \pi,\langle\rangle$,$) is a$ Riemann-Poisson Lie group.

Definition 2.1. A Riemann-Poisson Lie algebra is a triple ( $\mathfrak{g}, r, \varrho$ ) where $\mathfrak{g}$ is a real Lie algebra, $r \in \wedge^{2} \mathfrak{g}$ and $\varrho$ a Euclidean product on $\mathfrak{g}$ satisfying the conditions (i) and (ii) in Proposition 2.1

To end this section, we give another characterization of the solutions of the classical Yang-Baxter equation (5) which will be useful later.

We observe that $r \in \wedge^{2} \mathfrak{g}$ is equivalent to the data of a vector subspace $S \subset \mathfrak{g}$ and a nondegenerate 2 -form $\omega_{r} \in \wedge^{2} S^{*}$.

Indeed, for $r \in \wedge^{2} \mathfrak{g}$, we put $S=\operatorname{Im} r_{\#}$ and $\omega_{r}(u, v)=r\left(r_{\#}^{-1}(u), r_{\#}^{-1}(v)\right)$ where $u, v \in S$ and $r_{\#}^{-1}(u)$ is any antecedent of $u$ by $r_{\#}$.

Conversely, let $(S, \omega)$ be a vector subspace of $\mathfrak{g}$ with a non-degenerate 2-form. The 2-form $\omega$ defines an isomorphism $\omega^{b}: S \longrightarrow S^{*}$ by $\omega^{b}(u)=\omega(u,$.$) , we denote$ by $\#: S^{*} \longrightarrow S$ its inverse and we put $r_{\#}=\# \circ i^{*}$ where $i^{*}: \mathfrak{g}^{*} \longrightarrow S^{*}$ is the dual of the inclusion $i: S \hookrightarrow \mathfrak{g}$.

With this observation in mind, the following proposition gives another description of the solutions of the Yang-Baxter equation.

Proposition 2.2. Let $r \in \wedge^{2} \mathfrak{g}$ and $\left(S, \omega_{r}\right)$ its associated vector subspace. The following assertions are equivalent:
(1) $[r, r]=0$.
(2) $S$ is a subalgebra of $\mathfrak{g}$ and

$$
\delta \omega_{r}(u, v, w):=\omega_{r}(u,[v, w])+\omega_{r}(v,[w, u])+\omega_{r}(w,[u, v])=0
$$

for any $u, v, w \in S$.
Proof. The proposition follows from the following formulas:

$$
\prec \gamma, r_{\#}\left([\alpha, \beta]_{r}\right)-\left[r_{\#}(\alpha), r_{\#}(\beta)\right] \succ=-[r, r](\alpha, \beta, \gamma), \quad \alpha, \beta, \gamma \in \mathfrak{g}^{*}
$$

and, if $S$ is a subalgebra,

$$
[r, r](\alpha, \beta, \gamma)=-\delta \omega_{r}\left(r_{\#}(\alpha), r_{\#}(\beta), r_{\#}(\gamma)\right)
$$

This proposition shows that there is a correspondence between the set of solutions of the Yang-Baxter equation the set of symplectic subalgebras of $\mathfrak{g}$. We recall that a symplectic algebra is a Lie algebra $S$ endowed with a non-degenerate 2-form $\omega$ such that $\delta \omega=0$.

## 3. A characterization of Riemann-Poisson Lie algebras

In this section, we combine Propositions 2.1 and 2.2 to establish a characterization of Riemann-Poisson Lie algebras which will be used later to build such Lie algebras. We establish first an intermediary result.

Proposition 3.1. Let $(\mathfrak{g}, r, \varrho)$ be a Lie algebra endowed with $r \in \wedge^{2} \mathfrak{g}$ and a Euclidean product $\varrho$. Denote by $\mathcal{I}=\operatorname{ker} r_{\#}, \mathcal{I}^{\perp}$ its orthogonal with respect to $\varrho^{*}$ and $A$ the Levi-Civita product associated to $\left(\mathfrak{g}^{*},[,]_{r}, \varrho^{*}\right)$. Then ( $\left.\mathfrak{g}, r, \varrho\right)$ is a Riemann-Poisson Lie algebra if and only if:
$\left(c_{1}\right)[r, r]=0$.
( $c_{2}$ ) For all $\alpha \in \mathcal{I}, A_{\alpha}=0$.
(cc) For all $\alpha, \beta, \gamma \in \mathcal{I}^{\perp}, A_{\alpha} \beta \in \mathcal{I}^{\perp}$ and

$$
r\left(A_{\alpha} \beta, \gamma\right)+r\left(\beta, A_{\alpha} \gamma\right)=0
$$

Proof. By using the splitting $\mathfrak{g}^{*}=\mathcal{I} \oplus \mathcal{I}^{\perp}$, on can see that the conditions $(i)$ and (ii) in Proposition 2.1 are equivalent to

$$
\left\{\begin{array}{l}
{[r, r]=0}  \tag{11}\\
r\left(A_{\alpha} \beta, \gamma\right)=0, \alpha \in \mathcal{I}, \beta \in \mathcal{I}, \gamma \in \mathcal{I}^{\perp} \\
r\left(A_{\alpha} \beta, \gamma\right)+r\left(\beta, A_{\alpha} \gamma\right)=0, \alpha \in \mathcal{I}, \beta \in \mathcal{I}^{\perp}, \gamma \in \mathcal{I}^{\perp} \\
r\left(A_{\alpha} \beta, \gamma\right)=0, \alpha \in \mathcal{I}^{\perp}, \beta \in \mathcal{I}, \gamma \in \mathcal{I}^{\perp} \\
r\left(A_{\alpha} \beta, \gamma\right)+r\left(\beta, A_{\alpha} \gamma\right)=0, \alpha \in \mathcal{I}^{\perp}, \beta \in \mathcal{I}^{\perp}, \gamma \in \mathcal{I}^{\perp}
\end{array}\right.
$$

Suppose that the conditions $\left(c_{1}\right)-\left(c_{3}\right)$ hold. Then for any $\alpha \in \mathcal{I}$ and $\beta \in \mathcal{I}^{\perp}$, $A_{\beta} \alpha=[\beta, \alpha]_{r}$ and hence $r_{\#}\left(A_{\beta} \alpha\right)=\left[r_{\#}(\beta), r_{\#}(\alpha)\right]=0$ and hence the equations in (11) holds.

Conversely, suppose that (11) holds. Then $\left(c_{1}\right)$ holds obviously.
For any $\alpha, \beta \in \mathcal{I}$, the second equation in 11 is equivalent to $A_{\alpha} \beta \in \mathcal{I}$ and we have from (7) and (9) $[\alpha, \beta]_{r}=0$ and $A_{\alpha} \beta \in \mathcal{I}^{\perp}$. Thus $A_{\alpha} \beta=0$.

Take now $\alpha \in \mathcal{I}$ and $\beta \in \mathcal{I}^{\perp}$. For any $\gamma \in \mathcal{I}, \varrho^{*}\left(A_{\alpha} \beta, \gamma\right)=-\varrho^{*}\left(\beta, A_{\alpha} \gamma\right)=0$ and hence $A_{\alpha} \beta \in \mathcal{I}^{\perp}$. On the other hand,

$$
r_{\#}\left([\alpha, \beta]_{r}\right)=r_{\#}\left(A_{\alpha} \beta\right)-r_{\#}\left(A_{\beta} \alpha\right) \stackrel{|8|}{=}\left[r_{\#}(\alpha), r_{\#}(\beta)\right]=0
$$

So, for any $\gamma \in \mathcal{I}^{\perp}$,

$$
\prec \gamma, r_{\#}\left(A_{\alpha} \beta\right) \succ=\prec \gamma, r_{\#}\left(A_{\beta} \alpha\right) \succ=r\left(A_{\beta} \alpha, \gamma\right) \stackrel{\sqrt{11}}{=} 0 .
$$

This shows that $A_{\alpha} \beta \in \mathcal{I}$ and hence $A_{\alpha} \beta=0$. Finally, $\left(c_{2}\right)$ is true. Now, for any $\alpha \in \mathcal{I}^{\perp}$, the fourth equation in (11) implies that $A_{\alpha}$ leaves invariant $\mathcal{I}$ and since it is skew-symmetric it leaves invariant $\mathcal{I}^{\perp}$ and $\left(c_{3}\right)$ follows. This completes the proof.
Proposition 3.2. Let $(\mathfrak{g}, \varrho, r)$ be a Lie algebra endowed with a solution of classical Yang-Baxter equation and a bi-invariant Euclidean product, i.e.,

$$
\varrho\left(\operatorname{ad}_{u} v, w\right)+\varrho\left(v, \operatorname{ad}_{u} w\right)=0, \quad u, v, w \in \mathfrak{g} .
$$

Then $(\mathfrak{g}, \varrho, r)$ is Riemann-Poisson Lie algebra if and only if $\operatorname{Im} r_{\#}$ is an abelian subalgebra.

Proof. Since $\varrho$ is bi-invariant, one can see easily that for any $u \in \mathfrak{g}, \operatorname{ad}_{u}^{*}$ is skew-symmetric with respect to $\varrho^{*}$ and hence the Levi-Civita product $A$ associated to $\left(\mathfrak{g}^{*},[,]_{r}, \varrho^{*}\right)$ is given by $A_{\alpha} \beta=\operatorname{ad}_{r_{\#}(\alpha)}^{*} \beta$. So, $(\mathfrak{g}, \varrho, r)$ is Riemann-Poisson Lie algebra if and only if, for any $\alpha, \beta, \gamma \in \mathfrak{g}^{*}$,

$$
\begin{aligned}
0 & =r\left(\operatorname{ad}_{r_{\#}(\alpha)}^{*} \beta, \gamma\right)+r\left(\beta, \operatorname{ad}_{r_{\#}(\alpha)}^{*} \gamma\right) \\
& =\prec \beta,\left[r_{\#}(\alpha), r_{\#}(\gamma)\right] \succ-\prec \gamma,\left[r_{\#}(\alpha), r_{\#}(\beta)\right] \succ \\
& \stackrel{5}{=} \prec \alpha,\left[r_{\#}(\beta), r_{\#}(\gamma)\right] \succ
\end{aligned}
$$

and the result follows.
Let $(\mathfrak{g},[]$,$) be a Lie algebra, r \in \wedge^{2} \mathfrak{g}$ and $\varrho$ a Euclidean product on $\mathfrak{g}$. Denote by $\left(S, \omega_{r}\right)$ the symplectic vector subspace associated to $r$ and by $\#: \mathfrak{g}^{*} \longrightarrow \mathfrak{g}$ the isomorphism given by $\varrho$. Note that the Euclidean product on $\mathfrak{g}^{*}$ is given by $\varrho^{*}(\alpha, \beta)=\varrho(\#(\alpha), \#(\beta))$. We have

$$
\mathfrak{g}^{*}=\mathcal{I} \oplus \mathcal{I}^{\perp} \quad \text { and } \quad \mathfrak{g}=S \oplus S^{\perp}
$$

where $\mathcal{I}=\operatorname{ker} r_{\#}$. Moreover, $r_{\#}: \mathcal{I}^{\perp} \longrightarrow S$ is an isomorphism, we denote by $\tau: S \longrightarrow \mathcal{I}^{\perp}$ its inverse. From the relation

$$
\varrho\left(\#(\alpha), r_{\#}(\beta)\right)=\prec \alpha, r_{\#}(\beta) \succ=r(\beta, \alpha),
$$

we deduce that $\#: \mathcal{I} \longrightarrow S^{\perp}$ is an isomorphism and hence $\#: \mathcal{I}^{\perp} \longrightarrow S$ is also an isomorphism.

Consider the isomorphism $J: S \longrightarrow S$ linking $\omega_{r}$ to $\varrho_{\mid S}$, i.e.,

$$
\omega_{r}(u, v)=\rho(J u, v), \quad u, v \in S
$$

On can see easily that $J=-\# \circ \tau$.
Theorem 3.1. With the notations above, $(\mathfrak{g}, r, \varrho)$ is a Riemann-Poisson Lie algebra if and only if the following conditions hold:
(1) $\left(S, \varrho_{\mid S}, \omega_{r}\right)$ is a Kähler Lie subalgebra, i.e., for all $s_{1}, s_{2}, s_{3} \in S$,

$$
\begin{equation*}
\omega_{r}\left(\nabla_{s_{1}} s_{2}, s_{3}\right)+\omega_{r}\left(s_{2}, \nabla_{s_{1}} s_{3}\right)=0 \tag{12}
\end{equation*}
$$

where $\nabla$ is the Levi-Civita product associated to $\left(S,[],, \varrho_{\mid S}\right)$.
(2) for all $s \in S$ and all $u, v \in S^{\perp}$,

$$
\begin{equation*}
\varrho\left(\phi_{S}(s)(u), v\right)+\varrho\left(u, \phi_{S}(s)(v)\right)=0 \tag{13}
\end{equation*}
$$

where $\phi_{S}: S \longrightarrow \operatorname{End}\left(S^{\perp}\right), u \mapsto \operatorname{pr}_{S^{\perp}} \circ \operatorname{ad}_{u}$ and $\operatorname{pr}_{S^{\perp}}: \mathfrak{g} \longrightarrow S^{\perp}$ is the orthogonal projection.
(3) For all $s_{1}, s_{2} \in S$ and all $u \in S^{\perp}$,

$$
\omega_{r}\left(\phi_{S^{\perp}}(u)\left(s_{1}\right), s_{2}\right)+\omega_{r}\left(s_{1}, \phi_{S^{\perp}}(u)\left(s_{1}\right)\right)=0,
$$

where $\phi_{S^{\perp}}: S^{\perp} \longrightarrow \operatorname{End}(S), u \mapsto \operatorname{pr}_{S} \circ \operatorname{ad}_{u}$ and $\operatorname{pr}_{S}: \mathfrak{g} \longrightarrow S$ is the orthogonal projection.

Proof. Suppose first that $(\mathfrak{g}, r, \varrho)$ is a Riemann-Poisson Lie algebra. According to Propositions 3.1 and 2.2, this is equivalent to

$$
\left\{\begin{array}{l}
\left(S, \omega_{r}\right) \text { is a symplectic subalgebra, }  \tag{15}\\
\forall \alpha \in \mathcal{I}, A_{\alpha}=0, \\
\forall \alpha, \beta, \gamma \in \mathcal{I}^{\perp}, A_{\alpha} \beta \in \mathcal{I}^{\perp} \quad \text { and } \quad r\left(A_{\alpha} \beta, \gamma\right)+r\left(\beta, A_{\alpha} \gamma\right)=0
\end{array}\right.
$$

where $A$ is the Levi-Civita product of $\left(\mathfrak{g}^{*},[,]_{r}, \varrho^{*}\right)$.
For $\alpha, \beta \in \mathcal{I}$ and $\gamma \in \mathcal{I}^{\perp}$,

$$
\begin{align*}
2 \varrho^{*}\left(A_{\alpha} \beta, \gamma\right) & =\varrho^{*}\left([\alpha, \beta]_{r}, \gamma\right)+\varrho^{*}\left([\gamma, \beta]_{r}, \alpha\right)+\varrho^{*}\left([\gamma, \alpha]_{r}, \beta\right) \\
& =\varrho^{*}\left(\operatorname{ad}_{r_{\#}(\gamma)}^{*} \beta, \alpha\right)+\varrho^{*}\left(\operatorname{ad}_{r_{\#}(\gamma)}^{*} \alpha, \beta\right) \\
& =-\prec \beta,\left[r_{\#}(\gamma), \#(\alpha)\right] \succ-\prec \alpha,\left[r_{\#}(\gamma), \#(\beta)\right] \succ \\
& =-\varrho\left(\#(\beta),\left[r_{\#}(\gamma), \#(\alpha)\right]\right)-\varrho\left(\#(\alpha),\left[r_{\#}(\gamma), \#(\beta)\right]\right) \tag{16}
\end{align*}
$$

Since $\#: \mathcal{I} \longrightarrow S^{\perp}$ and $r_{\#}: \mathcal{I}^{\perp} \longrightarrow S$ are isomorphisms, we deduce from 16) that $A_{\alpha} \beta=0$ for any $\alpha, \beta \in \mathcal{I}$ is equivalent to (13).

For $\alpha \in \mathcal{I}$ and $\beta, \gamma \in \mathcal{I}^{\perp}$,

$$
\begin{align*}
2 \varrho^{*}\left(A_{\alpha} \beta, \gamma\right) & =\varrho^{*}\left([\alpha, \beta]_{r}, \gamma\right)+\varrho^{*}\left([\gamma, \beta]_{r}, \alpha\right)+\varrho^{*}\left([\gamma, \alpha]_{r}, \beta\right) \\
= & -\varrho^{*}\left(\operatorname{ad}_{r_{\#}(\beta)}^{*} \alpha, \gamma\right)-\varrho^{*}\left(\operatorname{ad}_{r_{\#}^{*}(\beta)}^{*} \gamma, \alpha\right)+\varrho^{*}\left(\operatorname{ad}_{r_{\#}^{*}(\gamma)}^{*} \beta, \alpha\right)+\varrho^{*}\left(\operatorname{ad}_{r_{\#}(\gamma)}^{*} \alpha, \beta\right) \\
= & \prec \alpha,\left[r_{\#}(\beta), \#(\gamma)\right] \succ+\prec \gamma,\left[r_{\#}(\beta), \#(\alpha)\right] \succ-\prec \beta,\left[r_{\#}(\gamma), \#(\alpha)\right] \succ \\
& -\prec \alpha,\left[r_{\#}(\gamma), \#(\beta)\right] \succ=\varrho\left(\#(\gamma),\left[r_{\#}(\beta), \#(\alpha)\right]\right) \\
& -\varrho\left(\#(\beta),\left[r_{\#}(\gamma), \#(\alpha)\right]\right)+\prec \alpha,\left[r_{\#}(\beta), \#(\gamma)\right] \succ-\prec \alpha,\left[r_{\#}(\gamma), \#(\beta)\right] \succ \\
= & -\varrho\left(J \circ r_{\#}(\gamma),\left[r_{\#}(\beta), \#(\alpha)\right]\right)+\varrho\left(J \circ r_{\#}(\beta),\left[r_{\#}(\gamma), \#(\alpha)\right]\right) \\
& +\prec \alpha,\left[r_{\#}(\beta), \#(\gamma)\right] \succ-\prec \alpha,\left[r_{\#}(\gamma), \#(\beta)\right] \succ \\
= & -\omega_{r}\left(r_{\#}(\gamma), \operatorname{pr}_{S}\left(\left[r_{\#}(\beta), \#(\alpha)\right]\right)\right)-\omega_{r}\left(\operatorname{pr}_{S}\left(\left[r_{\#}(\gamma), \#(\alpha)\right]\right), r_{\#}(\beta)\right) \\
& +\prec \alpha,\left[r_{\#}(\beta), \#(\gamma)\right] \succ-\prec \alpha,\left[r_{\#}(\gamma), \#(\beta)\right] \succ . \tag{17}
\end{align*}
$$

Now, $\#(\beta), \#(\gamma) \in S$ and $r_{\#}(\beta), r_{\#}(\gamma) \in S$ and since $S$ is a subalgebra we deduce that $\left[r_{\#}(\beta), \#(\gamma)\right],\left[r_{\#}(\gamma), \#(\beta)\right] \in S$ and hence

$$
\prec \alpha,\left[r_{\#}(\beta), \#(\gamma)\right] \succ=\prec \alpha,\left[r_{\#}(\gamma), \#(\beta)\right] \succ=0 .
$$

We have also $\#: \mathcal{I} \longrightarrow S^{\perp}$ and $r_{\#}: \mathcal{I}^{\perp} \longrightarrow S$ are isomorphisms so that, by virtue of (17), $A_{\alpha} \beta=0$ for any $\alpha \in \mathcal{I}$ and $\beta \in \mathcal{I}^{\perp}$ is equivalent to (14).

On the other hand, for any $\alpha, \beta, \gamma \in \mathcal{I}^{\perp}$, since $\#=-J \circ r_{\#}$, the relation

$$
2 \varrho^{*}\left(A_{\alpha} \beta, \gamma\right)=\varrho^{*}\left([\alpha, \beta]_{r}, \gamma\right)+\varrho^{*}\left([\gamma, \beta]_{r}, \alpha\right)+\varrho^{*}\left([\gamma, \alpha]_{r}, \beta\right)
$$

can be written

$$
\begin{aligned}
2 \varrho\left(J \circ r_{\#}\left(A_{\alpha} \beta\right), J \circ r_{\#}(\gamma)\right)= & \varrho\left(J \circ r_{\#}\left([\alpha, \beta]_{r}\right), J \circ r_{\#}(\gamma)\right) \\
& +\varrho\left(J \circ r_{\#}\left([\gamma, \beta]_{r}\right), J \circ r_{\#}(\alpha)\right) \\
& +\varrho\left(J \circ r_{\#}\left([\gamma, \alpha]_{r}\right), J \circ r_{\#}(\beta)\right) .
\end{aligned}
$$

But $r_{\#}\left([\alpha, \beta]_{r}\right)=\left[r_{\#}(\alpha), r_{\#}(\beta)\right]$ and hence

$$
\begin{aligned}
2\left\langle r_{\#}\left(A_{\alpha}, \beta\right), r_{\#}(\gamma)\right\rangle_{J}= & \left\langle\left[r_{\#}(\alpha), r_{\#}(\beta)\right], r_{\#}(\gamma)\right\rangle_{J}+\left\langle\left[r_{\#}(\mathfrak{g}), r_{\#}(\beta)\right], r_{\#}(\alpha)\right\rangle_{J} \\
& +\left\langle\left[r_{\#}(\gamma), r_{\#}(\alpha)\right], r_{\#}(\beta)\right\rangle_{J}
\end{aligned}
$$

where $\langle u, v\rangle_{J}=\varrho(J u, J v)$. This shows that $r_{\#}\left(A_{\alpha} \beta\right)=\nabla_{r_{\#}(\alpha)} r_{\#}(\beta)$ where $\nabla$ is the Levi-Civita product of $\left(S,[],,\langle,\rangle_{J}\right)$ and the third relation in (15) is equivalent to

$$
\omega_{r}\left(\nabla_{u} v, w\right)+\omega_{r}\left(v, \nabla_{u} w\right)=0, \quad u, v, w \in S
$$

This is equivalent to $\nabla_{u} J v=J \nabla_{u} v$. Let us show that $\nabla$ is actually the Levi-Civita product of $(S,[],, \varrho)$. Indeed, for any $u, v, w \in S, \nabla_{u} v-\nabla_{v} u=[u, v]$ and

$$
\begin{aligned}
\varrho\left(\nabla_{u} v, w\right)+\varrho\left(\nabla_{u} w, v\right) & =\left\langle J^{-1} \nabla_{u} v, J^{-1} w\right\rangle_{J}+\left\langle J^{-1} \nabla_{u} w, J^{-1} v\right\rangle_{J} \\
& =\left\langle\nabla_{u} J^{-1} v, J^{-1} w\right\rangle_{J}+\left\langle\nabla_{u} J^{-1} w, J^{-1} v\right\rangle_{J} \\
& =0 .
\end{aligned}
$$

So we have shown the direct part of the theorem. The converse can be deduced easily from the relations we established in the proof of the direct part.

Example 1. Let $G$ be a compact connected Lie group, $\mathfrak{g}$ its Lie algebra and $T$ an even dimensional torus of $G$. Choose a bi-invariant Riemannian metric $\langle$,$\rangle on G$, a nondegenerate $\omega \in \wedge^{2} S^{*}$ where $S$ is the Lie algebra of $T$ and put $\varrho=\langle\rangle,(e)$. Let $r \in \wedge^{2} \mathfrak{g}$ be the solution of the classical Yang-Baxter associated to ( $S, \omega$ ). By using either Proposition 3.2 or Theorem 3.1 one can see easily that $(\mathfrak{g}, \varrho, r)$ is a Riemann-Poisson Lie algebra and hence $(G,\langle\rangle,, \pi)$ is a Riemann-Poisson Lie group where $\pi$ is the left invariant Poisson tensor associated to $r$. According to Theorem [1.1, the orbits of the right action of $T$ on $G$ defines a Riemannian and Kähler foliation. For instance, $G=\mathrm{SO}(2 n), T=\operatorname{Diagonal}\left(D_{1}, \ldots, D_{n}\right)$ where $D_{i}=\left(\begin{array}{cc}\cos \left(\theta_{i}\right) & \sin \left(\theta_{i}\right) \\ -\sin \left(\theta_{i}\right) & \cos \left(\theta_{i}\right)\end{array}\right)$ and $\langle\rangle=$,$-K where K$ is the Killing form.

## 4. Construction of Riemann-Poisson Lie algebras

In this section, we give a general method for building Riemann-Poisson Lie algebras and we use it to give all Riemann-Poisson Lie algebras up to dimension 5.

According to Theorem 3.1, to build Riemann-Poisson Lie algebras one needs to solve the following problem.

Problem 1. We look for:
(1) A Kähler Lie algebra ( $\left.\mathfrak{h},[,]_{\mathfrak{h}}, \varrho_{\mathfrak{h}}, \omega\right)$,
(2) a Euclidean vector space ( $\mathfrak{p}, \varrho_{\mathfrak{p}}$ ),
(3) a bilinear skew-symmetric map $[,]_{\mathfrak{p}}: \mathfrak{p} \times \mathfrak{p} \longrightarrow \mathfrak{p}$,
(4) a bilinear skew-symmetric map $\mu: \mathfrak{p} \times \mathfrak{p} \longrightarrow \mathfrak{h}$,
(5) two linear maps $\phi_{\mathfrak{p}}: \mathfrak{p} \longrightarrow \operatorname{sp}(\mathfrak{h}, \omega)$ and $\phi_{\mathfrak{h}}: \mathfrak{h} \longrightarrow \operatorname{so}(\mathfrak{p})$ where $\operatorname{sp}(\mathfrak{h}, \omega)=$ $\left\{J: \mathfrak{h} \longrightarrow \mathfrak{h}, J^{\omega}+J=0\right\}$ and $\operatorname{so}(\mathfrak{p})=\left\{A: \mathfrak{p} \longrightarrow \mathfrak{p}, A^{*}+A=0\right\}, J^{\omega}$ is the adjoint with respect to $\omega$ and $A^{*}$ is the adjoint with respect to $\varrho_{\mathfrak{p}}$,
such that the bracket [, ] on $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}$ given, for any $a, b \in \mathfrak{p}$ and $u, v \in \mathfrak{h}$, by

$$
\begin{equation*}
[u, v]=[u, v]_{\mathfrak{h}},[a, b]=\mu(a, b)+[a, b]_{\mathfrak{p}},[a, u]=-[u, a]=\phi_{\mathfrak{p}}(a)(u)-\phi_{\mathfrak{h}}(u)(a) \tag{18}
\end{equation*}
$$

is a Lie bracket.
In this case, $(\mathfrak{g},[]$,$) endowed with r \in \wedge^{2} \mathfrak{g}$ associated to $(\mathfrak{h}, \omega)$ and the Euclidean product $\varrho=\varrho_{\mathfrak{h}} \oplus \varrho_{\mathfrak{p}}$ becomes, by virtue of Theorem 3.1] a Riemann-Poisson Lie algebra.

Proposition 4.1. With the data and notations of Problem 1 , the bracket given by (18) is a Lie bracket if and only if, for any $u, v \in \mathfrak{h}$ and $a, b, c \in \mathfrak{p}$, (19)

$$
\left\{\begin{array}{l}
\phi_{\mathfrak{p}}(a)\left([u, v]_{\mathfrak{h}}\right)=\left[u, \phi_{\mathfrak{p}}(a)(v)\right]_{\mathfrak{h}}+\left[\phi_{\mathfrak{p}}(a)(u), v\right]_{\mathfrak{h}}+\phi_{\mathfrak{p}}\left(\phi_{\mathfrak{h}}(v)(a)\right)(u)-\phi_{\mathfrak{p}}\left(\phi_{\mathfrak{h}}(u)(a)\right)(v), \\
\phi_{\mathfrak{h}}(u)\left([a, b]_{\mathfrak{p}}\right)=\left[a, \phi_{\mathfrak{h}}(u)(b)\right]_{\mathfrak{p}}+\left[\phi_{\mathfrak{h}}(u)(a), b\right]_{\mathfrak{p}}+\phi_{\mathfrak{h}}\left(\phi_{\mathfrak{p}}(b)(u)\right)(a)-\phi_{\mathfrak{h}}\left(\phi_{\mathfrak{p}}(a)(u)\right)(b), \\
\phi_{\mathfrak{h}}\left([u, v]_{\mathfrak{h}}\right)=\left[\phi_{\mathfrak{h}}(u), \phi_{\mathfrak{h}}(v)\right], \\
\phi_{\mathfrak{p}}\left([a, b]_{\mathfrak{p}}\right)(u)=\left[\phi_{\mathfrak{p}}(a), \phi_{\mathfrak{p}}(b)\right](u)+[u, \mu(a, b)]_{\mathfrak{h}}-\mu\left(a, \phi_{\mathfrak{h}}(u)(b)\right)-\mu\left(\phi_{\mathfrak{h}}(u)(a), b\right), \\
\oint\left[a,[b, c]_{\mathfrak{p}}\right]_{\mathfrak{p}}=\oint \phi_{\mathfrak{h}}(\mu(b, c))(a), \\
\oint \phi_{\mathfrak{p}}(a)(\mu(b, c))=\oint \mu\left([b, c]_{\mathfrak{p}}, a\right),
\end{array}\right.
$$

where $\oint$ stands for the circular permutation.
Proof. The equations follow from the Jacobi identity applied to ( $a, u, v$ ), ( $a, b, u$ ) and ( $a, b, c$ ).

We tackle now the task of determining the list of all Riemann-Poisson Lie algebras up to dimension 5. For this purpose, we need to solve Problem 1 in the following four cases: $(a) \operatorname{dim} \mathfrak{p}=1,(b) \operatorname{dim} \mathfrak{h}=2$ and $\mathfrak{h}$ non abelian, $(c) \operatorname{dim} \mathfrak{h}=\operatorname{dim} \mathfrak{p}=2$ and $\mathfrak{h}$ abelian, $(d) \operatorname{dim} \mathfrak{h}=2, \operatorname{dim} \mathfrak{p}=3$ and $\mathfrak{h}$ abelian.

It is easy to find the solutions of Problem 1 when $\operatorname{dim} \mathfrak{p}=1$ since in this case so $(\mathfrak{p})=0$ and the three last equations in hold obviously.
Proposition 4.2. If $\operatorname{dim} \mathfrak{p}=1$ then the solutions of Problem 1 are a Kähler Lie algebra $(\mathfrak{h}, \varrho, \omega), \phi_{\mathfrak{h}}=0,[,]_{\mathfrak{p}}=0, \mu=0$ and $\phi_{\mathfrak{p}}(a) \in \operatorname{sp}(\mathfrak{h}, \omega) \cap \operatorname{Der}(\mathfrak{h})$ where $a$ is a generator of $\mathfrak{p}$ and $\operatorname{Der}(\mathfrak{h})$ the Lie algebra of derivations of $\mathfrak{h}$.

Let us solve Problem 1 when $\mathfrak{h}$ is 2-dimensional non abelian.
Proposition 4.3. Let $\left(\left(\mathfrak{h}, \omega, \varrho_{\mathfrak{h}}\right),\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right), \mu, \phi_{\mathfrak{h}}, \phi_{\mathfrak{p}}\right)$ be a solution of Problem 1 1 with $\mathfrak{h}$ is 2-dimensional non abelian. Then there exists an orthonormal basis $\mathbb{B}=$ $\left(e_{1}, e_{2}\right)$ of $\mathfrak{h}, b_{0} \in \mathfrak{p}$ and two constants $\alpha \neq 0$ and $\beta \neq 0$ such that:
(i) $\left[e_{1}, e_{2}\right]_{\mathfrak{h}}=\alpha e_{1}, \omega=\beta e_{1}^{*} \wedge e_{2}^{*}$,
(ii) $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right)$ is a Euclidean Lie algebra,
(iii) $\phi_{\mathfrak{h}}\left(e_{1}\right)=0$, $\phi_{\mathfrak{h}}\left(e_{2}\right) \in \operatorname{Der}(\mathfrak{p}) \cap \operatorname{so}(\mathfrak{p})$ and, for any $a \in \mathfrak{p}, M\left(\phi_{\mathfrak{p}}(a), \mathbb{B}\right)=$ $\left(\begin{array}{cc}0 & \varrho_{\mathfrak{p}}\left(a, b_{0}\right) \\ 0 & 0\end{array}\right)$,
(iv) for any $a, b \in \mathfrak{p}, \mu(a, b)=\mu_{0}(a, b) e_{1}$ with $\mu_{0}$ is a 2-cocycle of $\left(\mathfrak{p},[,]_{\mathfrak{p}}\right)$ satisfying

$$
\begin{equation*}
\mu_{0}\left(a, \phi_{\mathfrak{h}}\left(e_{2}\right) b\right)+\mu_{0}\left(\phi_{\mathfrak{h}}\left(e_{2}\right) a, b\right)=-\varrho_{\mathfrak{p}}\left([a, b]_{\mathfrak{p}}, b_{0}\right)-\alpha \mu_{0}(a, b) \tag{20}
\end{equation*}
$$

Proof. Note first that from the third relation in we get that $\phi_{\mathfrak{h}}(\mathfrak{h})$ is a solvable subalgebra of $\operatorname{so}(\mathfrak{p})$ and hence must be abelian. Since $\mathfrak{h}$ is 2-dimensional non abelian then $\operatorname{dim} \phi_{\mathfrak{h}}(\mathfrak{h})=1$ and $[\mathfrak{h}, \mathfrak{h}] \subset \operatorname{ker} \phi_{\mathfrak{h}}$. So there exists an orthonormal basis $\left(e_{1}, e_{2}\right)$ of $\mathfrak{h}$ such that $\left[e_{1}, e_{2}\right]_{\mathfrak{h}}=\alpha e_{1}, \phi_{\mathfrak{h}}\left(e_{1}\right)=0$ and $\omega=\beta e_{1}^{*} \wedge e_{2}^{*}$. If we identify the endomorphisms of $\mathfrak{h}$ with their matrices in the basis $\left(e_{1}, e_{2}\right)$, we get that $\operatorname{sp}(\mathfrak{h}, \omega)=\operatorname{sl}(2, \mathbb{R})$ and there exists $a_{0}, b_{0}, c_{0} \in \mathfrak{p}$ such that, for any $a \in \mathfrak{p}$,

$$
\phi_{\mathfrak{p}}(a)=\left(\begin{array}{cc}
\varrho_{\mathfrak{p}}\left(a_{0}, a\right) & \varrho_{\mathfrak{p}}\left(b_{0}, a\right) \\
\varrho_{\mathfrak{p}}\left(c_{0}, a\right) & -\varrho_{\mathfrak{p}}\left(a_{0}, a\right)
\end{array}\right) .
$$

The first equation in (19) is equivalent to

$$
\begin{aligned}
\alpha\left(\varrho_{\mathfrak{p}}\left(a_{0}, a\right) e_{1}+\varrho_{\mathfrak{p}}\left(c_{0}, a\right) e_{2}\right)= & -\alpha \varrho_{\mathfrak{p}}\left(a_{0}, a\right) e_{1}+\alpha \varrho_{\mathfrak{p}}\left(a_{0}, a\right) e_{1} \\
& +\varrho_{\mathfrak{p}}\left(a_{0}, \phi_{\mathfrak{h}}\left(e_{2}\right)(a)\right) e_{1}+\varrho_{\mathfrak{p}}\left(c_{0}, \phi_{\mathfrak{h}}\left(e_{2}\right)(a)\right) e_{2},
\end{aligned}
$$

for any $a \in \mathfrak{p}$. Since $\phi_{\mathfrak{h}}\left(e_{2}\right)$ is sekw-symmetric, this is equivalent to

$$
\phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{0}\right)=-\alpha a_{0} \quad \text { and } \quad \phi_{\mathfrak{h}}\left(e_{2}\right)\left(c_{0}\right)=-\alpha c_{0}
$$

This implies that $a_{0}=c_{0}=0$. The second equation in 19) implies that $\phi_{\mathfrak{h}}\left(e_{2}\right)$ is a derivation of $[,]_{\mathfrak{p}}$. If we take $u=e_{1}$ in the forth equation in (19), we get that $\left[e_{1}, \mu(a, b)\right]=0$, for any $a, b \in \mathfrak{p}$ and hence $\mu(a, b)=\mu_{0}(a, b) e_{1}$. If we take $u=e_{2}$ in the forth equation in (19) we get 20 . The two last equations are equivalent to $[,]_{\mathfrak{p}}$ is a Lie bracket and $\mu_{0}$ is 2-cocycle of $\left(\mathfrak{p},[,]_{\mathfrak{p}}\right)$.

The following proposition gives the solutions of Problem 1 when $\mathfrak{h}$ is 2-dimensional abelian and $\operatorname{dim} \mathfrak{p}=2$.
Proposition 4.4. Let $\left(\left(\mathfrak{h}, \omega, \varrho_{\mathfrak{h}}\right),\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right), \mu, \phi_{\mathfrak{h}}, \phi_{\mathfrak{p}}\right)$ be a solution of Problem 1 with $\mathfrak{h}$ is 2-dimensional abelian and $\operatorname{dim} \mathfrak{p}=2$. Then one of the following situations occurs:
(1) $\phi_{\mathfrak{h}}=0$, $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right)$ is a 2-dimensional Euclidean Lie algebra, there exists $a_{0} \in \mathfrak{p}$ and $D \in \operatorname{sp}(\mathfrak{h}, \omega)$ such that, for any $a \in \mathfrak{p}, \phi_{\mathfrak{p}}(a)=\varrho_{\mathfrak{p}}\left(a_{0}, a\right) D$ and there is no restriction on $\mu$. Moreover, $a_{0} \in[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}^{\perp}$ if $D \neq 0$.
(2) $\phi_{\mathfrak{h}}=0$, $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right)$ is a 2-dimensional non abelian Euclidean Lie algebra, $\phi_{\mathfrak{p}}$ identifies $\mathfrak{p}$ to a two dimensional subalgebra of $\operatorname{sp}(\mathfrak{h}, \omega)$ and there is no restriction on $\mu$.
(3) $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right)$ is a Euclidean abelian Lie algebra and there exists an orthonormal basis $\mathbb{B}=\left(e_{1}, e_{2}\right)$ of $\mathfrak{h}$ and $b_{0} \in \mathfrak{p}$ such that $\omega=\alpha e_{1}^{*} \wedge e_{2}^{*}, \phi_{\mathfrak{h}}\left(e_{1}\right)=0$, $\phi_{\mathfrak{h}}\left(e_{2}\right) \neq 0$ and, for any $a \in \mathfrak{p}, M\left(\phi_{\mathfrak{p}}(a), \mathbb{B}\right)=\left(\begin{array}{cc}0 & \varrho_{\mathfrak{p}}\left(b_{0}, a\right) \\ 0 & 0\end{array}\right)$ and there is no restriction on $\mu$.
Proof. Note first that since $\operatorname{dim} \mathfrak{p}=2$ the last two equations in 19 hold obviously and $\left(\mathfrak{p},[,]_{\mathfrak{p}}\right)$ is a Lie algebra. We distinguish two cases:
(i) $\phi_{\mathfrak{h}}=0$. Then (19) is equivalent to $\phi_{\mathfrak{p}}$ is a representation of $\mathfrak{p}$ in $\operatorname{sp}(\mathfrak{h}, \omega) \simeq$ $\mathrm{sl}(2, \mathbb{R})$. Since $\mathrm{sl}(2, \mathbb{R})$ doesn't contain any abelian two dimensional subalgebra, if $\mathfrak{p}$ is an abelian Lie algebra then $\operatorname{dim} \phi_{\mathfrak{p}}(\mathfrak{p}) \leq 1$ and the first situation occurs. If $\mathfrak{p}$ is not abelian then the first or the second situation occurs depending on $\operatorname{dim} \phi_{\mathfrak{p}}(\mathfrak{p})$.
(ii) $\phi_{\mathfrak{h}} \neq 0$. Since $\operatorname{dimso}(\mathfrak{p})=1$ there exists an orthonormal basis $\mathbb{B}=\left(e_{1}, e_{2}\right)$ of $\mathfrak{h}$ such that $\phi_{\mathfrak{h}}\left(e_{1}\right)=0$ and $\phi_{\mathfrak{h}}\left(e_{2}\right) \neq 0$. We have $\operatorname{sp}(\mathfrak{h}, \omega)=\operatorname{sl}(2, \mathbb{R})$ and hence, for any $a \in \mathfrak{p}, M\left(\phi_{\mathfrak{p}}(a), \mathbb{B}\right)=\left(\begin{array}{cc}\varrho_{\mathfrak{p}}\left(a_{0}, a\right) & \varrho_{\mathfrak{p}}\left(b_{0}, a\right) \\ \varrho_{\mathfrak{p}}\left(c_{0}, a\right) & -\varrho_{\mathfrak{p}}\left(a_{0}, a\right)\end{array}\right)$. Choose an orthonormal basis $\left(a_{1}, a_{2}\right)$ of $\mathfrak{p}$. Then there exists $\lambda \neq 0$ such that $\phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{1}\right)=\lambda a_{2}$ and $\phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{2}\right)=-\lambda a_{1}$.

The first equation in 19 is equivalent to

$$
\phi_{\mathfrak{p}}\left(\phi_{\mathfrak{h}}\left(e_{2}\right)(a)\right)\left(e_{1}\right)=0, \quad a \in \mathfrak{p}
$$

This is equivalent to

$$
\phi_{\mathfrak{p}}\left(a_{1}\right)\left(e_{1}\right)=\phi_{\mathfrak{p}}\left(a_{2}\right)\left(e_{1}\right)=0
$$

Then $a_{0}=c_{0}=0$ and hence $\phi_{\mathfrak{p}}(a)=\left(\begin{array}{cc}0 & \varrho_{\mathfrak{p}}\left(b_{0}, a\right) \\ 0 & 0\end{array}\right)$. The second equation in 19) gives

$$
\begin{aligned}
\phi_{\mathfrak{h}}\left(e_{2}\right)\left(\left[a_{1}, a_{2}\right]_{\mathfrak{p}}\right)= & {\left.\left[a_{1}, \phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{2}\right)\right]_{\mathfrak{p}}+\phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{1}\right), a_{2}\right]_{\mathfrak{p}} } \\
& +\phi_{\mathfrak{h}}\left(\phi_{\mathfrak{p}}\left(a_{2}\right)\left(e_{2}\right)\right)\left(a_{2}\right)-\phi_{\mathfrak{h}}\left(\phi_{\mathfrak{p}}\left(a_{1}\right)\left(e_{2}\right)\right)\left(a_{2}\right),
\end{aligned}
$$

and hence $\phi_{\mathfrak{h}}\left(e_{2}\right)\left(\left[a_{1}, a_{2}\right]_{\mathfrak{p}}\right)=0$. Thus $\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=0$. All the other equations in 19) hold obviously.
To tackle the last case, we need the determination of 2-dimensional subalgebras of $\operatorname{sl}(2, \mathbb{R})$.

Proposition 4.5. The 2-dimensional subalgebras of $\mathrm{sl}(2, \mathbb{R})$ are

$$
\begin{aligned}
& \mathfrak{g}_{1}=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
0 & -\alpha
\end{array}\right), \alpha, \beta \in \mathbb{R}\right\}, \quad \mathfrak{g}_{2}=\left\{\left(\begin{array}{cc}
\alpha & 0 \\
\beta & -\alpha
\end{array}\right), \alpha, \beta \in \mathbb{R}\right\} \\
& \mathfrak{g}_{x}=\left\{\left(\begin{array}{cc}
\alpha & \frac{2 \beta-\alpha}{x} \\
(\alpha+2 \beta) x & -\alpha
\end{array}\right), \alpha, \beta \in \mathbb{R}\right\}
\end{aligned}
$$

where $x \in \mathbb{R} \backslash\{0\}$. Moreover, $\mathfrak{g}_{x}=\mathfrak{g}_{y}$ if and only if $x=y$.
Proof. Let $\mathfrak{g}$ be a 2 -dimensional subalgebra of $\mathrm{sl}(2, \mathbb{R})$. We consider the basis $\mathbb{B}=(h, e, f)$ of $\mathrm{sl}(2, \mathbb{R})$ given by

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \text { and } h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Then

$$
[h, e]=2 e,[h, f]=-2 f \quad \text { and } \quad[e, f]=h
$$

If $h \in \mathfrak{g}$ then $\operatorname{ad}_{h}$ leaves $\mathfrak{g}$ invariant. But $\mathrm{ad}_{h}$ has three eigenvalues $(0,2,-2)$ with the associated eigenvectors $(h, e, f)$ and hence it restriction to $\mathfrak{g}$ has $(0,2)$ or $(0,-2)$ as eigenvalues. Thus $\mathfrak{g}=\mathfrak{g}_{1}$ or $\mathfrak{g}=\mathfrak{g}_{2}$.

Suppose now that $h \notin \mathfrak{g}$. By using the fact that $\operatorname{sl}(2, \mathbb{R})$ is unimodular, i.e., for any $w \in \operatorname{sl}(2, \mathbb{R}) \operatorname{tr}\left(\operatorname{ad}_{w}\right)=0$, we can choose a basis $(u, v)$ of $\mathfrak{g}$ such that $(u, v, h)$ is a basis of $\operatorname{sl}(2, \mathbb{R})$ and

$$
[u, v]=u,[h, u]=a u+v \quad \text { and } \quad[h, v]=d u-a v-h
$$

If $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are the coordinates of $u$ and $v$ in $\mathbb{B}$, the brackets above gives
$\left\{\begin{array}{l}-2\left(x_{1} y_{3}-x_{3} y_{1}\right)-x_{1}=0, \\ 2\left(x_{2} y_{3}-x_{3} y_{2}\right)-x_{2}=0, \\ x_{1} y_{2}-x_{2} y_{1}-x_{3}=0,\end{array} \quad\left\{\begin{array}{l}y_{1}=(2-a) x_{1}, \\ y_{2}=-(a+2) x_{2}, \\ y_{3}=-a x_{3},\end{array} \quad\right.\right.$ and $\quad\left\{\begin{array}{l}d x_{1}=(a+2) y_{1}, \\ d x_{2}=(a-2) y_{2}, \\ d x_{3}=a y_{3}+1 .\end{array}\right.$
Note first that if $x_{1}=0$ then $\left(x_{2}, x_{3}\right)=(0,0)$ which impossible so we must have $x_{1} \neq 0$ and hence $d=4-a^{2}$. If we replace in the third equation in the second system and the last equation, we get $x_{3}=\frac{1}{4}$ and $y_{3}=-\frac{a}{4}$. The third equation in the first system gives $x_{2}=-\frac{1}{16 x_{1}}$ and hence $y_{1}=(2-a) x_{1}$ and $y_{2}=\frac{(a+2)}{16 x_{1}}$. Thus

$$
\begin{aligned}
\mathfrak{g} & =\operatorname{span}\left\{\left(\begin{array}{cc}
\frac{1}{4} & -\frac{1}{16 x_{1}} \\
x_{1} & -\frac{1}{4}
\end{array}\right),\left(\begin{array}{cc}
-\frac{a}{4} & \frac{(a+2)}{16 x_{1}} \\
(2-a) x_{1} & \frac{a}{4}
\end{array}\right)\right\} \\
& =\operatorname{span}\left\{\left(\begin{array}{cc}
1 & -\frac{1}{x} \\
x & -1
\end{array}\right),\left(\begin{array}{cc}
-a & \frac{(a+2)}{x} \\
(2-a) x & a
\end{array}\right)\right\} ; \quad x=4 x_{1} .
\end{aligned}
$$

But

$$
\left(\begin{array}{cc}
0 & \frac{2}{x} \\
2 x & 0
\end{array}\right)=a\left(\begin{array}{cc}
1 & -\frac{1}{x} \\
x & -1
\end{array}\right)+\left(\begin{array}{cc}
-a & \frac{(a+2)}{x} \\
(2-a) x & a
\end{array}\right)
$$

and hence

$$
\mathfrak{g}=\operatorname{span}\left\{\left(\begin{array}{cc}
1 & -\frac{1}{x} \\
x & -1
\end{array}\right),\left(\begin{array}{cc}
0 & \frac{2}{x} \\
2 x & 0
\end{array}\right)\right\}=\mathfrak{g}_{x}
$$

One can check easily that $\mathfrak{g}_{x}=\mathfrak{g}_{y}$ if and only if $x=y$. This completes the proof.
The following two propositions give the solutions of Problem 1 when $\mathfrak{h}$ is 2 -dimensional abelian and $\operatorname{dim} \mathfrak{p}=3$.

Proposition 4.6. Let $\left(\left(\mathfrak{h}, \omega, \varrho_{\mathfrak{h}}\right),\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right), \mu, \phi_{\mathfrak{h}}, \phi_{\mathfrak{p}}\right)$ be a solution of Problem 1 with $\mathfrak{h}$ is 2-dimensional abelian and $\operatorname{dim} \mathfrak{p}=3$ and $\phi_{\mathfrak{h}}=0$. Then one of the following situations occurs:
(i) $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right)$ is 3-dimensional Euclidean Lie algebra, $\phi_{\mathfrak{p}}=0$ and $\mu$ is 2-cocycle for the trivial representation.
(ii) $\phi_{\mathfrak{p}}$ is an isomorphism of Lie algebras between $\left(\mathfrak{p},[,]_{\mathfrak{p}}\right)$ and $\operatorname{sl}(2, \mathbb{R})$ and there exists an endomorphism $L: \mathfrak{p} \longrightarrow \mathfrak{h}$ such that for any $a, b \in \mathfrak{p}$,

$$
\mu(a, b)=\phi_{\mathfrak{p}}(a)(L(b))-\phi_{\mathfrak{p}}(b)(L(a))-L\left([a, b]_{\mathfrak{p}}\right)
$$

(iii) There exists a basis $\mathbb{B}_{\mathfrak{p}}=\left(a_{1}, a_{2}, a_{3}\right)$ of $\mathfrak{p}, \alpha \neq 0, \beta \neq 0, \gamma, \tau \in \mathbb{R}$ such that $[,]_{\mathfrak{p}}$ has one of the two following forms

$$
\left\{\begin{array}{l}
{\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=0,\left[a_{1}, a_{3}\right]_{\mathfrak{p}}=\beta a_{1},} \\
{\left[a_{2}, a_{3}\right]_{\mathfrak{p}}=\gamma a_{1}+\alpha a_{2}, \alpha \neq 0, \beta \neq 0 \quad \text { or }} \\
M\left(\varrho_{\mathfrak{p}}, \mathbb{B}_{\mathfrak{p}}\right)=\mathrm{I}_{3}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
{\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=\left[a_{1}, a_{3}\right]_{\mathfrak{p}}=0} \\
{\left[a_{2}, a_{3}\right]_{\mathfrak{p}}=\alpha a_{2}, \alpha \neq 0} \\
M\left(\varrho_{\mathfrak{p}}, \mathbb{B}_{\mathfrak{p}}\right)=\left(\begin{array}{lll}
1 & \tau & 0 \\
\tau & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{array}\right.
$$

In both cases, there exists an orthonormal basis $\mathbb{B}_{\mathfrak{h}}=\left(e_{1}, e_{2}\right)$ of $\mathfrak{h}, x \neq 0$, $u \neq 0$ and $v \in \mathbb{R}$ such that $\phi_{\mathfrak{p}}$ has one of the following forms

$$
\begin{aligned}
& \left\{\begin{array} { l } 
{ M ( \phi _ { \mathfrak { p } } ( a _ { 2 } ) , \mathbb { B } _ { \mathfrak { h } } ) = ( \begin{array} { l l } 
{ 0 } & { u } \\
{ 0 } & { 0 }
\end{array} ) , } \\
{ M ( \phi _ { \mathfrak { p } } ( a _ { 3 } ) , \mathbb { B } _ { \mathfrak { h } } ) = ( \begin{array} { c c } 
{ - \frac { \alpha } { 2 } } & { v } \\
{ 0 } & { \frac { \alpha } { 2 } }
\end{array} ) , } \\
{ \phi _ { \mathfrak { p } } ( a _ { 1 } ) = 0 , }
\end{array} \left\{\begin{array}{l}
M\left(\phi_{\mathfrak{p}}\left(a_{2}\right), \mathbb{B}_{\mathfrak{h}}\right)=\left(\begin{array}{ll}
0 & 0 \\
u & 0
\end{array}\right), \\
M\left(\phi_{\mathfrak{p}}\left(a_{3}\right), \mathbb{B}_{\mathfrak{h}}\right)=\left(\begin{array}{ll}
\frac{\alpha}{2} & 0 \\
v & -\frac{\alpha}{2}
\end{array}\right), \\
\phi_{\mathfrak{p}}\left(a_{1}\right)=0,
\end{array}\right.\right. \\
& M\left(\phi_{\mathfrak{p}}\left(a_{2}\right), \mathbb{B}_{\mathfrak{h}}\right)=\left(\begin{array}{cc}
u & -\frac{u}{x} \\
u x & -u
\end{array}\right), \\
& M\left(\phi_{\mathfrak{p}}\left(a_{3}\right), \mathbb{B}_{\mathfrak{h}}\right)=\left(\begin{array}{cc}
v & -\frac{2 v+\alpha}{2 x} \\
\frac{2 v-\alpha}{2} x & -v
\end{array}\right), \\
& \phi_{\mathfrak{p}}\left(a_{1}\right)=0 .
\end{aligned}
$$

Moreover, $\mu$ is a 2-cocycle for $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \phi_{\mathfrak{p}}\right)$.
(iv) There exists an orthonormal basis $\mathbb{B}=\left(a_{1}, a_{2}, a_{3}\right)$ of $\mathfrak{p}$ such that $\phi_{\mathfrak{p}}\left(a_{1}\right)=$ $\phi_{\mathfrak{p}}\left(a_{2}\right)=0, \phi_{\mathfrak{p}}\left(a_{3}\right)$ is a non zero element of $\operatorname{sp}(\mathfrak{h}, \omega)$ and

$$
\left\{\begin{array} { l } 
{ [ a _ { 1 } , a _ { 2 } ] _ { \mathfrak { p } } = 0 , [ a _ { 1 } , a _ { 3 } ] _ { \mathfrak { p } } = \beta a _ { 1 } + \rho a _ { 2 } , } \\
{ [ a _ { 2 } , a _ { 3 } ] _ { \mathfrak { p } } = \gamma a _ { 1 } + \alpha a _ { 2 } , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
{\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=\alpha a_{2},\left[a_{1}, a_{3}\right]_{\mathfrak{p}}=\rho a_{2},} \\
{\left[a_{2}, a_{3}\right]_{\mathfrak{p}}=\gamma a_{2}, \alpha \neq 0 .}
\end{array}\right.\right.
$$

Moreover, $\mu$ is a 2-cocycle for $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \phi_{\mathfrak{p}}\right)$.
Proof. In this case, (19) is equivalent to $\left(\mathfrak{p},[,]_{\mathfrak{p}}\right)$ is a Lie algebra and $\phi_{\mathfrak{p}}$ is a representation and $\mu$ is a 2 -cocycle of $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \phi_{\mathfrak{p}}\right)$.

We distinguish four cases:
(1) $\phi_{\mathfrak{p}}=0$ and the case ( $i$ ) occurs.
(2) $\operatorname{dim} \phi_{\mathfrak{p}}(\mathfrak{p})=3$ and hence $\mathfrak{p}$ is isomorphic to $\operatorname{sp}(\mathfrak{h}, \omega) \simeq \operatorname{sl}(2, \mathbb{R})$ and hence $\mu$ is a coboundary. Thus (ii) occurs.
(3) $\operatorname{dim} \phi_{\mathfrak{p}}(\mathfrak{p})=2$ then $\operatorname{ker} \phi_{\mathfrak{p}}$ is a one dimensional ideal of $\mathfrak{p}$. But $\phi_{\mathfrak{p}}(\mathfrak{p})$ is a 2-dimensional subalgebra of $\operatorname{sp}(\mathfrak{h}, \omega) \simeq \operatorname{sl}(2, \mathbb{R})$, therefore it is non abelian so $\mathfrak{p} / \operatorname{ker} \mathfrak{p}$ is non abelian.

If $\operatorname{ker} \mathfrak{p} \subset[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}$ then $\operatorname{dim}[\mathfrak{p}, \mathfrak{p}]_{\mathfrak{p}}=2$ so there exists an orthonormal basis $\left(a_{1}, a_{2}, a_{3}\right)$ of $\mathfrak{p}$ such that $a_{1} \in \operatorname{ker} \mathfrak{p}$ and
$\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=\xi a_{1},\left[a_{1}, a_{3}\right]_{\mathfrak{p}}=\beta a_{1} \quad$ and $\quad\left[a_{2}, a_{3}\right]_{\mathfrak{p}}=\gamma a_{1}+\alpha a_{2}, \alpha \neq 0, \beta \neq 0$
and we must have $\xi=0$ in order to have the Jacobi identity.
If $\operatorname{ker} \mathfrak{p} \not \subset[\mathfrak{p}, \mathfrak{p}]$ then $\operatorname{ker} \mathfrak{p} \subset Z(\mathfrak{p})$ and $\operatorname{dim}[\mathfrak{p}, \mathfrak{p}]=1$. Then there exits a basis $\left(a_{1}, a_{2}, a_{3}\right)$ of $\mathfrak{p}$ such that $a_{1} \in \operatorname{ker} \mathfrak{p}, a_{2} \in[\mathfrak{p}, \mathfrak{p}], a_{3} \in\left\{a_{1}, a_{2}\right\}^{\perp}$ and

$$
\left[a_{2}, a_{3}\right]_{\mathfrak{p}}=\alpha a_{2},\left[a_{3}, a_{1}\right]_{\mathfrak{p}}=\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=0, \alpha \neq 0
$$

The matrix of $\varrho_{\mathfrak{p}}$ in $\left(a_{1}, a_{2}, a_{3}\right)$ is given by

$$
\left(\begin{array}{lll}
1 & \tau & 0 \\
\tau & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We choose an orthonormal basis $\left(e_{1}, e_{2}\right)$ of $\mathfrak{h}$ and identify $\operatorname{sp}(\mathfrak{h}, \omega)$ to $\operatorname{sl}(2, \mathbb{R})$. Now $\phi_{\mathfrak{p}}(\mathfrak{p})=\left\{\phi_{p}\left(a_{2}\right), \phi_{p}\left(a_{3}\right)\right\}$ is a subalgebra of $\operatorname{sl}(2, \mathbb{R})$ and, according to Proposition 4.5 $\phi_{\mathfrak{p}}(\mathfrak{p})=\mathfrak{g}_{1}, \mathfrak{g}_{2}$ or $\mathfrak{g}_{x}$. But

$$
\left[\mathfrak{g}_{1}, \mathfrak{g}_{1}\right]=\mathbb{R} e,\left[\mathfrak{g}_{2}, \mathfrak{g}_{2}\right]=\mathbb{R} f \quad \text { and } \quad\left[\mathfrak{g}_{x}, \mathfrak{g}_{x}\right]=\left\{\left(\begin{array}{cc}
u & -\frac{u}{x} \\
u x & -u
\end{array}\right)\right\}
$$

So in order for $\phi_{\mathfrak{p}}$ to be a representation we must have

$$
\begin{gathered}
\phi_{\mathfrak{p}}\left(a_{2}\right)=\left(\begin{array}{ll}
0 & u \\
0 & 0
\end{array}\right), \quad \text { and } \quad \phi_{\mathfrak{p}}\left(a_{3}\right)=\left(\begin{array}{cc}
-\frac{\alpha}{2} & v \\
0 & \frac{\alpha}{2}
\end{array}\right) \quad \text { and } \quad \phi_{\mathfrak{p}}\left(a_{1}\right)=0 \\
\phi_{\mathfrak{p}}\left(a_{2}\right)=\left(\begin{array}{ll}
0 & 0 \\
u & 0
\end{array}\right), \quad \phi_{\mathfrak{p}}\left(a_{3}\right)=\left(\begin{array}{cc}
\frac{\alpha}{2} & 0 \\
v & -\frac{\alpha}{2}
\end{array}\right) \quad \text { and } \quad \phi_{\mathfrak{p}}\left(a_{1}\right)=0
\end{gathered}
$$

or

$$
\phi_{\mathfrak{p}}\left(a_{2}\right)=\left(\begin{array}{cc}
u & -\frac{u}{x} \\
u x & -u
\end{array}\right), \phi_{\mathfrak{p}}\left(a_{3}\right)=\left(\begin{array}{cc}
p & -\frac{2 p+\alpha}{2 x} \\
\frac{2 p-\alpha}{2} x & -p
\end{array}\right) \quad \text { and } \quad \phi_{\mathfrak{p}}\left(a_{1}\right)=0 .
$$

(4) $\operatorname{dim} \phi_{\mathfrak{p}}(\mathfrak{p})=1$ then $\operatorname{ker} \phi_{\mathfrak{p}}$ is a two dimensional ideal of $\mathfrak{p}$. Then there exists an orthonormal basis $\left(a_{1}, a_{2}, a_{3}\right)$ of $\mathfrak{p}$ such that

$$
\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=\alpha a_{2},\left[a_{3}, a_{1}\right]_{\mathfrak{p}}=p a_{1}+q a_{2} \quad \text { and } \quad\left[a_{3}, a_{2}\right]_{\mathfrak{p}}=r a_{1}+s a_{2}
$$

The Jacobi identity gives $\alpha=0$ or $(p, r)=(0,0)$. We take $\phi_{\mathfrak{p}}\left(a_{1}\right)=$ $\phi_{\mathfrak{p}}\left(a_{2}\right)=0$ and $\phi_{\mathfrak{p}}\left(a_{3}\right) \in \operatorname{sl}(2, \mathbb{R})$.

Proposition 4.7. Let $\left(\left(\mathfrak{h}, \omega, \varrho_{\mathfrak{h}}\right),\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right), \mu, \phi_{\mathfrak{h}}, \phi_{\mathfrak{p}}\right)$ be a solution of Problem 1 with $\mathfrak{h}$ is 2-dimensional abelian, $\operatorname{dim} \mathfrak{p}=3$ and $\phi_{\mathfrak{h}} \neq 0$. Then there exists an orthonormal basis $\left(e_{1}, e_{2}\right)$ of $\mathfrak{h}$, an orthonormal basis $\left(a_{1}, a_{2}, a_{3}\right)$ of $\mathfrak{p}, \lambda>0$, $\alpha, p, q, \mu_{1}, \mu_{2}, \mu_{3} \in \mathbb{R}$ such that

$$
\begin{aligned}
\phi_{\mathfrak{h}}\left(e_{1}\right) & =0, \quad \phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{1}\right)=\lambda a_{2}, \quad \phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{2}\right)=-\lambda a_{1} \quad \text { and } \quad \phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{3}\right)=0, \\
{\left[a_{1}, a_{2}\right]_{\mathfrak{p}} } & =\alpha a_{3},\left[a_{1}, a_{3}\right]_{\mathfrak{p}}=p a_{1}+q a_{2},\left[a_{2}, a_{3}\right]_{\mathfrak{p}}=-q a_{1}+p a_{2} \quad \text { and } \\
\phi_{\mathfrak{p}}\left(a_{i}\right) & =\left(\begin{array}{cc}
0 & \mu_{i} \\
0 & 0
\end{array}\right), \quad i=1,2,3
\end{aligned}
$$

and one of the following situations occurs:
(i) $p \neq 0, \alpha=0$ and $\mu\left(a_{1}, a_{2}\right)=0, \mu\left(a_{2}, a_{3}\right)=-\lambda^{-1}\left(p \mu_{1}+q \mu_{2}\right) e_{1} \quad$ and $\mu\left(a_{1}, a_{3}\right)=\lambda^{-1}\left(-q \mu_{1}+p \mu_{2}\right) e_{1}$.
(ii) $p=0, \mu_{3} \neq 0, \alpha=0$ and

$$
\mu\left(a_{1}, a_{2}\right)=c e_{1}, \mu\left(a_{2}, a_{3}\right)=-\lambda^{-1}\left(p \mu_{1}+q \mu_{2}\right) e_{1} \quad \text { and } \quad \mu\left(a_{1}, a_{3}\right)=\lambda^{-1}\left(-q \mu_{1}+p \mu_{2}\right) e_{1} .
$$

(iii) $p=0, \mu_{3}=0$ and

$$
\begin{gathered}
\mu\left(a_{1}, a_{2}\right)=c_{1} e_{1}+c_{2} e_{2}, \mu\left(a_{2}, a_{3}\right)=-\lambda^{-1}\left(p \mu_{1}+q \mu_{2}\right) e_{1} \quad \text { and } \\
\mu\left(a_{1}, a_{3}\right)=\lambda^{-1}\left(-q \mu_{1}+p \mu_{2}\right) e_{1} .
\end{gathered}
$$

Proof. Since $\phi_{\mathfrak{h}} \neq 0$ then $\phi_{\mathfrak{h}}(\mathfrak{h})$ is a non trivial abelian subalgebra of so $(\mathfrak{p})$ and hence it must be one dimensional. Then there exists an orthonormal basis $\left(e_{1}, e_{2}\right)$ of $\mathfrak{h}$ and an orthonormal basis $\left(a_{1}, a_{2}, a_{3}\right)$ of $\mathfrak{p}$ and $\lambda>0$ such that $\phi_{\mathfrak{h}}\left(e_{1}\right)=0$ and

$$
\phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{1}\right)=\lambda a_{2}, \phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{2}\right)=-\lambda a_{1} \quad \text { and } \quad \phi_{\mathfrak{h}}\left(e_{2}\right)\left(a_{3}\right)=0 .
$$

The first equation in 19) is equivalent to

$$
\phi_{\mathfrak{p}}\left(\phi_{\mathfrak{h}}\left(e_{2}\right)(a)\right)\left(e_{1}\right)=0, \quad a \in \mathfrak{p} .
$$

This is equivalent to

$$
\phi_{\mathfrak{p}}\left(a_{1}\right)\left(e_{1}\right)=\phi_{\mathfrak{p}}\left(a_{2}\right)\left(e_{1}\right)=0
$$

Thus $\phi_{\mathfrak{p}}\left(a_{i}\right)=\left(\begin{array}{cc}0 & \mu_{i} \\ 0 & 0\end{array}\right)$ for $i=1,2$ and $\phi_{\mathfrak{p}}\left(a_{3}\right)=\left(\begin{array}{cc}u & v \\ w & -u\end{array}\right)$. Consider now the second equation in 19
$\phi_{\mathfrak{h}}(u)\left([a, b]_{\mathfrak{p}}\right)=\left[a, \phi_{\mathfrak{h}}(u)(b)\right]_{\mathfrak{p}}+\left[\phi_{\mathfrak{h}}(u)(a), b\right]_{\mathfrak{p}}+\phi_{\mathfrak{h}}\left(\phi_{\mathfrak{p}}(b)(u)\right)(a)-\phi_{\mathfrak{h}}\left(\phi_{\mathfrak{p}}(a)(u)\right)(b)$.
This equation is obviously true when $u=e_{1}$ and $(a, b)=\left(a_{1}, a_{2}\right)$. For $u=e_{1}$ and $(a, b)=\left(a_{1}, a_{3}\right)$, we get

$$
\phi_{\mathfrak{h}}\left(\phi_{\mathfrak{p}}\left(a_{3}\right)\left(e_{1}\right)\right)\left(a_{1}\right)=0
$$

and hence $w=0$.
For $u=e_{2}$ and $(a, b)=\left(a_{1}, a_{2}\right)$, we get $\phi_{\mathfrak{h}}\left(e_{2}\right)\left(\left[a_{1}, a_{2}\right]_{\mathfrak{p}}\right)=0$ and hence $\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=$ $\alpha a_{3}$.

For $u=e_{2}$ and $(a, b)=\left(a_{1}, a_{3}\right)$ or $(a, b)=\left(a_{2}, a_{3}\right)$, we get
$\phi_{\mathfrak{h}}\left(e_{2}\right)\left(\left[a_{1}, a_{3}\right]_{\mathfrak{p}}\right)=\lambda\left[a_{2}, a_{3}\right]_{\mathfrak{p}}-\lambda u a_{2} \quad$ and $\quad \phi_{\mathfrak{h}}\left(e_{2}\right)\left(\left[a_{2}, a_{3}\right]_{\mathfrak{p}}\right)=-\lambda\left[a_{1}, a_{3}\right]_{\mathfrak{p}}+\lambda u a_{1}$. This implies that $\left[a_{1}, a_{3}\right]_{\mathfrak{p}},\left[a_{2}, a_{3}\right]_{\mathfrak{p}} \in \operatorname{span}\left\{a_{1}, a_{2}\right\}$ and hence

$$
\left[a_{1}, a_{3}\right]_{\mathfrak{p}}=p a_{1}+q a_{2} \quad \text { and } \quad\left[a_{2}, a_{3}\right]_{\mathfrak{p}}=r a_{1}+s a_{2} .
$$

So

$$
\left\{\begin{array}{l}
\lambda\left(p a_{2}-q a_{1}\right)=\lambda\left(r a_{1}+s a_{2}-u a_{2}\right) \\
\lambda\left(r a_{2}-s a_{1}\right)=-\lambda\left(p a_{1}+q a_{2}-u a_{1}\right)
\end{array}\right.
$$

This is equivalent to

$$
u=0, p=s \quad \text { and } \quad r=-q
$$

To summarize, we get

$$
\begin{aligned}
{\left[a_{1}, a_{2}\right]_{\mathfrak{p}} } & =\alpha a_{3},\left[a_{1}, a_{3}\right]_{\mathfrak{p}}=p a_{1}+q a_{2},\left[a_{2}, a_{3}\right]_{\mathfrak{p}}=-q a_{1}+p a_{2} \quad \text { and } \\
\phi_{\mathfrak{p}}\left(a_{i}\right) & =\left(\begin{array}{cc}
0 & \mu_{i} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Let consider now the fourth equation in 19

$$
\phi_{\mathfrak{p}}\left([a, b]_{\mathfrak{p}}\right)(u)=\left[\phi_{\mathfrak{p}}(a), \phi_{\mathfrak{p}}(b)\right](u)+[u, \mu(a, b)]_{\mathfrak{h}}-\mu\left(a, \phi_{\mathfrak{h}}(u)(b)\right)-\mu\left(\phi_{\mathfrak{h}}(u)(a), b\right) .
$$

This equation is obviously true for $u=e_{1}$.

For $u=e_{2}$ and $(a, b)=\left(a_{1}, a_{2}\right),(a, b)=\left(a_{1}, a_{3}\right)$ or $(a, b)=\left(a_{2}, a_{3}\right)$, we get

$$
\left\{\begin{array}{l}
\alpha \mu_{3}=0 \\
\left(p \mu_{1}+q \mu_{2}\right) e_{1}=-\lambda \mu\left(a_{2}, a_{3}\right) \\
\left(-q \mu_{1}+p \mu_{2}\right) e_{1}=\lambda \mu\left(a_{1}, a_{3}\right)
\end{array}\right.
$$

The last two equations are equivalent to

$$
\phi_{\mathfrak{p}}\left(a_{3}\right)\left(\mu\left(a_{1}, a_{2}\right)\right)=-2 p \mu\left(a_{1}, a_{2}\right) \quad \text { and } \quad p\left[a_{1}, a_{2}\right]_{\mathfrak{p}}=0
$$

- $p \neq 0$ then

$$
\begin{aligned}
\alpha & =0, \mu\left(a_{1}, a_{2}\right)=0, \mu\left(a_{2}, a_{3}\right)=-\lambda^{-1}\left(p \mu_{1}+q \mu_{2}\right) e_{1} \quad \text { and } \\
\mu\left(a_{1}, a_{3}\right) & =\lambda^{-1}\left(-q \mu_{1}+p \mu_{2}\right) e_{1} .
\end{aligned}
$$

- $p=0$ and $\mu_{3} \neq 0$ then $\alpha=0$ and

$$
\begin{aligned}
& \mu\left(a_{1}, a_{2}\right)=c e_{1}, \mu\left(a_{2}, a_{3}\right)=-\lambda^{-1}\left(p \mu_{1}+q \mu_{2}\right) e_{1} \quad \text { and } \\
& \mu\left(a_{1}, a_{3}\right)=\lambda^{-1}\left(-q \mu_{1}+p \mu_{2}\right) e_{1}
\end{aligned}
$$

- $p=0$ and $\mu_{3}=0$ then

$$
\begin{aligned}
& \mu\left(a_{1}, a_{2}\right)=c_{1} e_{1}+c_{2} e_{2}, \mu\left(a_{2}, a_{3}\right)=-\lambda^{-1}\left(p \mu_{1}+q \mu_{2}\right) e_{1} \quad \text { and } \\
& \mu\left(a_{1}, a_{3}\right)=\lambda^{-1}\left(-q \mu_{1}+p \mu_{2}\right) e_{1}
\end{aligned}
$$

By using Propositions 4.2 4.7 we can give all the Riemann-Poisson Lie algebras of dimension 3,4 or 5 .

Let $(\mathfrak{g},[],, \varrho, r)$ be a Riemann-Poisson Lie algebra of dimension less or equal to 5. According to what above then $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{p}$ and the Lie bracket on $\mathfrak{g}$ is given by (18) and $\left(\left(\mathfrak{h}, \omega, \varrho_{\mathfrak{h}}\right),\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right), \mu, \phi_{\mathfrak{h}}, \phi_{\mathfrak{p}}\right)$ are solutions of Problem 1
$\bullet \operatorname{dim} \mathfrak{g}=3$. In this case $\operatorname{dim} \mathfrak{h}=2$ and $\operatorname{dim} \mathfrak{p}=1$ and, by applying Proposition 4.2, the Lie bracket of $\mathfrak{g}, \varrho$ and $r$ are given in Table 1 where $e^{12}=e_{1} \wedge e_{2}$.

| Non vanishing Lie brackets | Bivector $r$ | Matrix of $\varrho$ | Conditions |
| :--- | :--- | :--- | :--- |
| $\left[e_{1}, e_{2}\right]=a e_{1},\left[e_{3}, e_{2}\right]=b e_{1}$ | $\alpha e^{12}$ | $\mathrm{I}_{3}$ | $a \neq 0, \alpha \neq 0$ |
| $\left[e_{3}, e_{1}\right]=-b e_{1}+c e_{2},\left[e_{3}, e_{2}\right]=d e_{1}+b e_{2}$ | $\alpha e^{12}$ | $\mathrm{I}_{3}$ | $\alpha \neq 0$ |

TAB. 1. Three dimensional Riemann-Poisson Lie algebras

- $\operatorname{dim} \mathfrak{g}=4$. We have three cases:
(c41) $\operatorname{dim} \mathfrak{h}=2, \operatorname{dim} \mathfrak{p}=2$ and $\mathfrak{h}$ is non abelian and we can apply Proposition 4.3 to get the Lie brackets on $\mathfrak{g}, \varrho$ and $r$. They are described in rows 1 and 2 in Table 2.
(c42) $\operatorname{dim} \mathfrak{h}=2, \operatorname{dim} \mathfrak{p}=2$ and $\mathfrak{h}$ is abelian and we can apply Propositions 4.4 and 4.5 to get the Lie brackets on $\mathfrak{g}, \varrho$ and $r$. They are described in rows 3 and 8 in Table 2.
(c43) $\operatorname{dim} \mathfrak{h}=4$. In this case $\mathfrak{g}$ is a Kähler Lie algebra. We have used 12 to derive all four dimensional Kähler Lie algebra together with their symplectic derivations. The results are given in Table 3 The notation $\operatorname{Der}^{s}(\mathfrak{h})$ stands
for the vector spaces of derivations which are skew-symmetric with respect the symplectic form. The vector space $\operatorname{Der}^{s}(\mathfrak{h})$ is described by a family of generators and $E_{i j}$ is the matrix with 1 in the $i$ row and $j$ column and 0 elsewhere.

| Non vanishing Lie brackets | Bivector $r$ | Matrix of $\varrho$ | Conditions |
| :---: | :---: | :---: | :---: |
| $\left[e_{1}, e_{2}\right]=a e_{1},\left[e_{3}, e_{2}\right]=b e_{1}+c e_{4}$, $\left[e_{4}, e_{2}\right]=d e_{1}-c e_{3}$ | $\alpha e^{12}$ | $\mathrm{I}_{4}$ | $a \neq 0, \alpha \neq 0$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=a e_{1},\left[e_{3}, e_{2}\right]=b e_{1}} \\ & {\left[e_{4}, e_{2}\right]=d e_{1},\left[e_{3}, e_{4}\right]=c e_{3}-a^{-1} c b e_{1}} \end{aligned}$ | $\alpha e^{12}$ | $\mathrm{I}_{4}$ | $\alpha a c \neq 0$, |
| $\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2}$ | $\alpha e^{12}$ | $\mathrm{I}_{4}$ | $\alpha \neq 0$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2}+c e_{3},\left[e_{4}, e_{1}\right]=x e_{1}+y e_{2}} \\ & {\left[e_{4}, e_{2}\right]=z e_{1}-x e_{2}} \end{aligned}$ | $\alpha e^{12}$ | $\mathrm{I}_{4}$ | $\alpha \neq 0$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2}+2 e_{4},\left[e_{3}, e_{1}\right]=e_{1}} \\ & {\left[e_{3}, e_{2}\right]=-e_{2},\left[e_{4}, e_{2}\right]=e_{1}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}\left(1,1,\left(\begin{array}{ll}\mu & \nu \\ \nu & \rho\end{array}\right)\right)$ | $\begin{aligned} & \alpha \neq 0, \mu, \rho>0 \\ & \mu \rho>\nu^{2} \end{aligned}$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2}-2 e_{4},\left[e_{3}, e_{1}\right]=e_{1}} \\ & {\left[e_{3}, e_{2}\right]=-e_{2},\left[e_{4}, e_{1}\right]=e_{2}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}\left(1,1,\left(\begin{array}{ll}\mu & \nu \\ \nu & \rho\end{array}\right)\right)$ | $\begin{aligned} & \alpha \neq 0, \mu, \rho>0 \\ & \mu \rho>\nu^{2} \end{aligned}$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2}-2 e_{3},\left[e_{3}, e_{1}\right]=e_{1}+x e_{2}} \\ & {\left[e_{3}, e_{2}\right]=-\frac{1}{x} e_{1}-e_{2},\left[e_{4}, e_{1}\right]=x e_{2},\left[e_{4}, e_{2}\right]=\frac{1}{x} e_{1}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}\left(1,1,\left(\begin{array}{ll}\mu & \nu \\ \nu & \rho\end{array}\right)\right)$ | $\begin{aligned} & \alpha \neq 0, \mu, \rho>0 \\ & \mu \rho>\nu^{2}, x \neq 0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2},\left[e_{3}, e_{2}\right]=x e_{1}+y e_{4}} \\ & {\left[e_{4}, e_{2}\right]=z e_{1}-y e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\mathrm{I}_{4}$ | $\alpha y \neq 0$ |

TAB. 2. Four dimensional Riemann-Poisson Lie algebras of rank 2
$\left.\begin{array}{|l|l|l|l|}\hline \text { Non vanishing Lie brackets } & \text { Bivector } r & \text { Matrix of } \varrho & \text { Der }(\mathfrak{h}) \\ \hline\left[e_{1}, e_{2}\right]=e_{2}, & \alpha e^{12}+\beta e^{34} & \operatorname{Diag}(a, b, c, d) & \left\{E_{21}, E_{33}-E_{44}, E_{43}, E_{34}\right\} \\ \hline\left[e_{1}, e_{2}\right]=-e_{3},\left[e_{1}, e_{3}\right]=e_{2}, & \alpha e^{14}+\beta e^{23} & \operatorname{Diag}(a, b, b, c) & \left\{E_{23}-E_{32}, E_{41}\right\} \\ \hline\left[e_{1}, e_{2}\right]=e_{2},\left[e_{3}, e_{4}\right]=e_{4}, & \alpha e^{12}+\beta e^{34} & \operatorname{Diag}(a, b, c, d) & \left\{E_{21}, E_{43}\right\} \\ \hline\left[e_{4}, e_{1}\right]=e_{1},\left[e_{4}, e_{2}\right]=-\delta e_{3}, & \alpha e^{14}+\beta e^{23} & \operatorname{Diag}(a, b, b, c) & \left\{E_{14}, E_{23}-E_{32}\right\} \\ {\left[e_{4}, e_{3}\right]=\delta e_{2}}\end{array}\right)$

TAB. 3. Four-dimensional Kähler Lie algebras and their symplectic derivations, $a, b, c, d>0, \alpha \beta \neq 0$

- $\operatorname{dim} \mathfrak{g}=5$. We have:
(c51) $\operatorname{dim} \mathfrak{h}=4$ and $\mathfrak{h}$ abelian and hence a symplectic vector space. We can apply Proposition 4.2 and $\mathfrak{g}$ is semi-direct product.
(c52) $\operatorname{dim} \mathfrak{h}=4$ and $\mathfrak{h}$ non abelian. We can apply Proposition 4.2 and Table 3 to get the Lie brackets on $\mathfrak{g}, \varrho$ and $r$. The result is summarized in Table 4
(c53) $\operatorname{dim} \mathfrak{h}=2$ and $\mathfrak{h}$ non abelian. We apply Proposition 4.3 In this case $\left(\mathfrak{p},[,]_{\mathfrak{p}}, \varrho_{\mathfrak{p}}\right)$ is a 3-dimensional Euclidean Lie algebra and one must compute $\operatorname{Der}(\mathfrak{p}) \cap \operatorname{so}(\mathfrak{p})$ and solve 20 . Three dimensional Euclidean Lie algebras were classified in [9]. For each of them we have computed $\operatorname{Der}(\mathfrak{p}) \cap \operatorname{so}(\mathfrak{p})$
and solved 20 by using Maple. The result is summarized in Table 5 when $\mathfrak{p}$ is unimodular and Table 6 when $\mathfrak{p}$ is nonunimodular.
(c54) $\operatorname{dim} \mathfrak{h}=2$ and $\mathfrak{h}$ abelian and $\phi_{\mathfrak{h}}=0$. We apply Proposition 4.6 and we perform all the needed computations. We use the classification of 3-dimensional Euclidean Lie algebras given in [9]. The results are given in Tables 7 78
(c55) $\operatorname{dim} \mathfrak{h}=2$ and $\mathfrak{h}$ abelian and $\phi_{\mathfrak{h}} \neq 0$. We apply Proposition 4.7 and we perform all the needed computations. The results are given in Table 9 .

| Non vanishing Lie brackets | Bivector $r$ | Matrix of $\varrho$ | Conditions |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{2},\left[e_{5}, e_{1}\right]=x e_{2},} \\ & {\left[e_{5}, e_{3}\right]=y e_{3}+t e_{4},\left[e_{5}, e_{4}\right]=z e_{3}-y e_{4}} \end{aligned}$ | $\alpha e^{12}+\beta e^{34}$ | $\operatorname{Diag}(a, b, c, d, e)$ | $\begin{aligned} & \alpha \beta \neq 0 \\ & a, b, c, d, e>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=-e_{3},\left[e_{1}, e_{3}\right]=e_{2}} \\ & {\left[e_{5}, e_{1}\right]=y e_{4},\left[e_{5}, e_{2}\right]=-x e_{3},\left[e_{5}, e_{3}\right]=x e_{2}} \end{aligned}$ | $\alpha e^{14}+\beta e^{23}$ | $\operatorname{Diag}(a, b, b, c, d)$ | $\begin{aligned} & \alpha \beta \neq 0 \\ & a, b, c, d>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{2},\left[e_{3}, e_{4}\right]=e_{4}} \\ & {\left[e_{5}, e_{1}\right]=x e_{2},\left[e_{5}, e_{3}\right]=y e_{4}} \end{aligned}$ | $\alpha e^{12}+\beta e^{34}$ | $\operatorname{Diag}(a, b, c, d, e)$ | $\begin{aligned} & \alpha \beta \neq 0 \\ & a, b, c, d, e>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{4}, e_{1}\right]=e_{1},\left[e_{4}, e_{2}\right]=-\delta e_{3},\left[e_{4}, e_{3}\right]=\delta e_{2}} \\ & {\left[e_{5}, e_{2}\right]=-y e_{3},\left[e_{5}, e_{3}\right]=y e_{2},\left[e_{5}, e_{4}\right]=x e_{1}} \end{aligned}$ | $\alpha e^{14}+\beta e^{23}$ | $\operatorname{Diag}(a, b, b, c, d)$ | $\begin{aligned} & \alpha \beta \neq 0, \delta>0 \\ & a, b, c, d>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{4}, e_{3}\right]=e_{3},\left[e_{4}, e_{1}\right]=\frac{1}{2} e_{1}} \\ & {\left[e_{4}, e_{2}\right]=\frac{1}{2} e_{2},\left[e_{5}, e_{1}\right]=x e_{1}+y e_{2}} \\ & {\left[e_{5}, e_{2}\right]=y e_{1}-x e_{2},\left[e_{5}, e_{4}\right]=z e_{3}} \end{aligned}$ | $\alpha\left(e^{12}-e^{34}\right)$ | $\operatorname{Diag}(a, \mu b, \mu a, b, c)$ | $\begin{aligned} & \alpha \neq 0 \\ & a, b, c, \mu>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{4}, e_{3}\right]=e_{3},\left[e_{4}, e_{1}\right]=2 e_{1}} \\ & {\left[e_{4}, e_{2}\right]=-e_{2},\left[e_{5}, e_{2}\right]=x e_{3},\left[e_{5}, e_{4}\right]=-2 x e_{1}} \end{aligned}$ | $\alpha\left(e^{23}+e^{14}\right)$ | $\operatorname{Diag}(a, a, 2 a, 2 a, b)$ | $\begin{aligned} & \alpha \neq 0 \\ & a, b>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{3},\left[e_{4}, e_{3}\right]=e_{3},\left[e_{4}, e_{1}\right]=\frac{1}{2} e_{1}-e_{2}} \\ & {\left[e_{4}, e_{2}\right]=e_{1}+\frac{1}{2} e_{2},\left[e_{5}, e_{1}\right]=-x e_{2},\left[e_{5}, e_{2}\right]=x e_{1}} \\ & {\left[e_{5}, e_{4}\right]=y e_{3}} \end{aligned}$ | $\alpha\left(e^{12}-e^{34}\right)$ | $\operatorname{Diag}(a, a, a, a, b)$ | $\begin{aligned} & \alpha \neq 0 \\ & a, b>0 \end{aligned}$ |

TAB. 4. Five-dimensional Riemann-Poisson Lie algebras of rank 4

| Non vanishing Lie brackets | $r$ | Matrix of $\varrho$ | Conditions |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b \mu e_{1}-c e_{4},\left[e_{4}, e_{2}\right]=d \mu e_{1}+c e_{3}} \\ & {\left[e_{5}, e_{2}\right]=f e_{1},\left[e_{3}, e_{4}\right]=-f e_{1}+e_{5}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1, \rho, \mu, \mu, 1)$ | $\begin{aligned} & c \alpha \neq 0 \\ & \mu, \rho>0 \\ & \hline \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b e_{1},\left[e_{4}, e_{2}\right]=c e_{1}} \\ & {\left[e_{5}, e_{2}\right]=d \mu e_{1},\left[e_{3}, e_{5}\right]=b e_{1}-e_{3},\left[e_{4}, e_{5}\right]=-c e_{1}+e_{4}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1, \rho, 1,1, \mu)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=(b+c) e_{1},\left[e_{4}, e_{2}\right]=(c x+b) e_{1}} \\ & {\left[e_{5}, e_{2}\right]=d \mu e_{1},\left[e_{3}, e_{5}\right]=(b+c) e_{1}-e_{3}} \\ & {\left[e_{4}, e_{5}\right]=-(x c+b) e_{1}+e_{4}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}\left(1, \rho,\left(\begin{array}{ll}1 & 1 \\ 1 & x\end{array}\right), \mu\right)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b e_{1},\left[e_{4}, e_{2}\right]=c \mu e_{1}} \\ & {\left[e_{5}, e_{2}\right]=d \nu e_{1},\left[e_{3}, e_{5}\right]=-\mu c e_{1}+e_{4},\left[e_{4}, e_{5}\right]=b e_{1}-e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1, \rho, 1, \mu, \nu)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu, \nu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b \mu e_{1},\left[e_{4}, e_{2}\right]=c \nu e_{1}} \\ & {\left[e_{5}, e_{2}\right]=d \rho e_{1},\left[e_{3}, e_{4}\right]=-2 \rho d e_{1}+2 e_{5}} \\ & {\left[e_{3}, e_{5}\right]=2 \nu c e_{1}-2 e_{4},\left[e_{4}, e_{5}\right]=2 \mu b e_{1}-2 e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1, \xi, \mu, \nu, \rho)$ | $\begin{aligned} & \alpha \neq 0, \nu \neq \rho \\ & \mu, \nu, \rho, \xi>0 \\ & \mu \neq \nu, \mu \neq \rho \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b \mu e_{1},\left[e_{4}, e_{2}\right]=c \nu e_{1}-\lambda e_{5}} \\ & {\left[e_{5}, e_{2}\right]=d \nu e_{1}+\lambda e_{4},\left[e_{3}, e_{4}\right]=-\frac{2 \nu(\lambda c+d)}{1+\lambda^{2}} e_{1}+2 e_{5},} \\ & {\left[e_{3}, e_{5}\right]=\frac{2 \nu(c-\lambda d)}{1+\lambda^{2}} e_{1}-2 e_{4},\left[e_{4}, e_{5}\right]=2 \mu b e_{1}-2 e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1, \rho, \mu, \nu, \nu)$ | $\begin{aligned} & \lambda \alpha \neq 0 \\ & \mu, \nu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b \mu e_{1},\left[e_{4}, e_{2}\right]=c \nu e_{1}} \\ & {\left[e_{5}, e_{2}\right]=d \rho e_{1},\left[e_{3}, e_{4}\right]=-\rho d e_{1}+e_{5}} \\ & {\left[e_{3}, e_{5}\right]=\nu c e_{1}-e_{4},\left[e_{4}, e_{5}\right]=-\mu b e_{1}+e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1, \xi, \mu, \nu, \rho)$ | $\begin{aligned} & \alpha \neq 0, \nu \neq \rho \\ & \mu, \nu, \rho, \xi>0 \\ & \mu \neq \nu, \mu \neq \rho \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b \mu e_{1},\left[e_{4}, e_{2}\right]=c \nu e_{1}-\lambda e_{5}} \\ & {\left[e_{5}, e_{2}\right]=d \nu e_{1}+\lambda e_{4},\left[e_{3}, e_{4}\right]=-\frac{\nu(\lambda c+d)}{1+\lambda^{2}} e_{1}+e_{5},} \\ & {\left[e_{3}, e_{5}\right]=\frac{\nu(c-\lambda d)}{1+\lambda^{2}} e_{1}-e_{4},\left[e_{4}, e_{5}\right]=-\mu b e_{1}+e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1, \rho, \mu, \nu, \nu)$ | $\begin{aligned} & \lambda \alpha \neq 0 \\ & \mu, \nu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b \mu e_{1}-u e_{4}-v e_{5},} \\ & {\left[e_{4}, e_{2}\right]=c \mu e_{1}+u e_{3}-w e_{5},\left[e_{5}, e_{2}\right]=d \mu e_{1}+v e_{3}+w e_{4},} \\ & {\left[e_{3}, e_{4}\right]=x e_{1}+e_{5},\left[e_{3}, e_{5}\right]=y e_{1}-e_{4},\left[e_{4}, e_{5}\right]=z e_{1}+e_{3}} \\ & x=-\frac{\mu\left(b u w-c u v+d u^{2}+b v+c w+d\right)}{1+u^{2}+v^{2}+w^{2}} \\ & y=\frac{\mu\left(-b v w+c v^{2}-d u w+b u-d w+c\right)}{1+u^{2}+v^{2}+w^{2}} \\ & z=-\frac{\mu\left(b w^{2}-c v w+d u w-c u-d v+b\right)}{1+u^{2}+v^{2}+w^{2}} \\ & \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1, \rho, \mu, \mu, \mu)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu, \rho>0 \end{aligned}$ |

TAB. 5. Five-dimensional Riemann-Poisson Lie algebras of rank 2 with non abelian Kähler subalgebra and unimodular complement

| Non vanishing Lie brackets | $r$ | Matrix of $\varrho$ |
| :---: | :---: | :---: |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=\left(f+c \lambda+f \lambda^{2}\right) e_{1}-\lambda e_{4}, \lambda \neq 0,} \\ & {\left[e_{4}, e_{2}\right]=c e_{1}+\lambda e_{3},\left[e_{5}, e_{2}\right]=d \mu e_{1},} \\ & {\left[e_{3}, e_{5}\right]=f e_{1}-e_{3},\left[e_{4}, e_{5}\right]=(\lambda f+c) e_{1}-e_{4},} \end{aligned}$ | $\alpha e^{12}$ | $\begin{aligned} & \operatorname{Diag}(1, \rho, 1,1, \mu) \\ & \mu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=b e_{1},\left[e_{4}, e_{2}\right]=c \mu e_{1},} \\ & {\left[e_{5}, e_{2}\right]=d \nu e_{1},\left[e_{3}, e_{5}\right]=\mu c e_{1}-e_{4},} \\ & {\left[e_{4}, e_{5}\right]=(-f b+2 \mu c) e_{1}+f e_{3}-2 e_{4}, f=1 \text { or } f \leq 0} \end{aligned}$ | $\alpha e^{12}$ | $\begin{aligned} & \operatorname{Diag}(1, \rho, 1, \mu, \nu) \\ & 0<\mu<\|f\|, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=(b+c \mu) e_{1},\left[e_{4}, e_{2}\right]=(c+b \mu) e_{1},} \\ & {\left[e_{5}, e_{2}\right]=d \nu e_{1},\left[e_{3}, e_{5}\right]=(\mu b+c) e_{1}-e_{4},} \\ & {\left[e_{4}, e_{5}\right]=((2-\mu) c+(2 \mu-1) b) e_{1}+e_{3}-2 e_{4}} \end{aligned}$ | $\alpha e^{12}$ | $\begin{aligned} & \operatorname{Diag}\left(1, \rho,\left(\begin{array}{ll} 1 & \mu \\ \mu & 1 \end{array}\right), \nu\right) \\ & \mu, \nu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=(b+c) e_{1},\left[e_{4}, e_{2}\right]=(b+c \mu) e_{1},} \\ & {\left[e_{5}, e_{2}\right]=d \nu e_{1},\left[e_{3}, e_{5}\right]=(b+c \mu) e_{1}-e_{4},} \\ & {\left[e_{4}, e_{5}\right]=((2-f) b+(2 \mu-f) c) e_{1}+f e_{3}-2 e_{4}} \end{aligned}$ | $\alpha e^{12}$ | $\begin{aligned} & \operatorname{Diag}\left(1, \rho,\left(\begin{array}{ll} 1 & 1 \\ 1 & \mu \end{array}\right), \nu\right) \\ & \nu, \rho>0, c>\mu>1 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=\left(b+\frac{1}{2} c\right) e_{1},\left[e_{4}, e_{2}\right]=\left(c+\frac{1}{2} b\right) e_{1},} \\ & {\left[e_{5}, e_{2}\right]=d \nu e_{1},\left[e_{3}, e_{5}\right]=\left(c+\frac{1}{2} b\right) e_{1}-e_{4},} \\ & {\left[e_{4}, e_{5}\right]=(b+2 c) e_{1}-2 e_{4}} \end{aligned}$ | $\alpha e^{12}$ | $\begin{aligned} & \operatorname{Diag}\left(1, \rho,\left(\begin{array}{ll} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array}\right), \nu\right) \\ & \rho, \nu>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{1}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=x e_{1},\left[e_{4}, e_{2}\right]=y e_{1},} \\ & {\left[e_{5}, e_{2}\right]=d \nu e_{1},\left[e_{3}, e_{5}\right]=z e_{1}-e_{4},} \\ & {\left[e_{4}, e_{5}\right]=t e_{1}+f e_{3}-2 e_{4}, 0<f<1,} \\ & x=\frac{((\mu+1) b+(\mu-1) c) f-2 b}{2 f^{2}(f-1)}, y=z=\frac{(\mu-1)(c f+b)}{2 f(f-1)} \\ & t=\frac{(1-\mu) c f(f-2) \mu+f) b}{2 f(1-f)} \end{aligned}$ | $\alpha e^{12}$ | $\begin{aligned} & A^{t} B A \\ & A=\left(\begin{array}{ccc} \frac{1+s}{2+s_{s}} & -\frac{1}{2 s} & 0 \\ \frac{1-f^{2}}{2 f s} & \frac{1}{2 s} & \\ 0 & 0 & 1 \end{array}\right) \\ & B=\operatorname{Diag}\left(1, \rho,\left(\begin{array}{cc} 1 & \mu \\ \mu & 1 \end{array}\right), \nu\right) \\ & \nu, \rho>0 \\ & s=\sqrt{1-f}, 0 \leq \mu<1 \end{aligned}$ |

TAB. 6. Five-dimensional Riemann-Poisson Lie algebras of rank 2 with non abelian Kähler subalgebra and non unimodular complement. $(\alpha \neq 0)$

| Non vanishing Lie brackets | Bivector $r$ | Matrix of $\varrho$ | Conditions |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2}+e_{5},\left[e_{3}, e_{5}\right]=c e_{1}+d e_{2}} \\ & {\left[e_{4}, e_{5}\right]=f e_{1}+g e_{2}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1, \mu, \mu, 1)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2},\left[e_{3}, e_{5}\right]=c e_{1}+d e_{2}-e_{3}} \\ & {\left[e_{4}, e_{5}\right]=f e_{1}+g e_{2}+e_{4}} \end{aligned}$ | $\alpha e^{12}$ | $\begin{aligned} & \operatorname{Diag}(1,1,1,1, \mu) \\ & \operatorname{Diag}\left(1,1,\left(\begin{array}{ll} 1 & 1 \\ 1 & x \end{array}\right), \mu\right) \end{aligned}$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2},\left[e_{3}, e_{5}\right]=c e_{1}+d e_{2}+e_{4}} \\ & {\left[e_{4}, e_{5}\right]=f e_{1}+g e_{2}-e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1,1, \mu, \nu)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu, \nu>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2}+2 e_{5},\left[e_{3}, e_{5}\right]=c e_{1}+d e_{2}-2 e_{4}} \\ & {\left[e_{4}, e_{5}\right]=f e_{1}+g e_{2}-2 e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1, \mu, \nu, \rho)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu, \nu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{3}, e_{4}\right]=a e_{1}+b e_{2}+e_{5},\left[e_{3}, e_{5}\right]=c e_{1}+d e_{2}-e_{4}} \\ & {\left[e_{4}, e_{5}\right]=f e_{1}+g e_{2}+e_{3}} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1, \mu, \nu, \rho)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu, \nu, \rho>0 \end{aligned}$ |
| $\left[e_{3}, e_{5}\right]=c e_{1}+d e_{2}-e_{3}$ $\left[e_{4}, e_{5}\right]=f e_{1}+g e_{2}-e_{4}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1,1,1, \mu)$ | $\begin{aligned} & \alpha \neq 0 \\ & \mu>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{3}, e_{5}\right]=c e_{1}+d e_{2}-e_{4}} \\ & {\left[e_{4}, e_{5}\right]=f e_{1}+g e_{2}+x e_{3}-2 e_{4}} \end{aligned}$ | $\alpha e^{12}$ | There are many cases See 9 | $\alpha \neq 0$ |

TAB. 7. Five-dimensional Riemann-Poisson Lie algebras of rank 2 with abelian Kähler subalgebra

| Non vanishing Lie brackets | $r$ | Matrix of $\varrho$ |
| :---: | :---: | :---: |
| $\begin{aligned} & {\left[e_{3}, e_{1}\right]=-e_{2},\left[e_{3}, e_{2}\right]=e_{1},\left[e_{4}, e_{1}\right]=e_{2},\left[e_{4}, e_{2}\right]=e_{1}} \\ & {\left[e_{5}, e_{1}\right]=e_{1},\left[e_{5}, e_{2}\right]=-e_{2},} \\ & {\left[e_{3}, e_{4}\right]=2 e_{5}+\left(l_{22}-l_{21}-2 l_{13}\right) e_{1}-\left(l_{12}+l_{11}+2 l_{23}\right) e_{2}} \\ & {\left[e_{3}, e_{5}\right]=-2 e_{4}+\left(l_{23}-l_{11}+2 l_{12}\right) e_{1}-\left(l_{13}-l_{21}-2 l_{22}\right) e_{2},} \\ & {\left[e_{4}, e_{5}\right]=-2 e_{3}+\left(l_{23}-l_{12}+2 l_{11}\right) e_{1}+\left(l_{13}+l_{22}+2 l_{21}\right) e_{2}} \end{aligned}$ | $\alpha e^{12}$ | $\begin{aligned} & \operatorname{Diag}(1,1, \mu, \nu, \rho) \\ & \mu, \nu, \rho>0 \end{aligned}$ |
| $\begin{aligned} & {\left[e_{4}, e_{2}\right]=u e_{1},\left[e_{5}, e_{1}\right]=-\frac{a}{2} e_{1},\left[e_{5}, e_{2}\right]=v e_{1}+\frac{a}{2} e_{2},} \\ & {\left[e_{3}, e_{4}\right]=x e_{1}+y e_{2},\left[e_{3}, e_{5}\right]=b e_{3}+z e_{1}+t e_{2},} \\ & {\left[e_{4}, e_{5}\right]=c e_{3}+a e_{4}+r e_{1}+s e_{2},} \\ & (a+2 b) x-2 t u+2 y v=0, a \neq 0, b \neq 0,(3 a+2 b) y=0 \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1,1,1,1)$ |
| $\begin{aligned} & {\left[e_{4}, e_{2}\right]=u e_{1},\left[e_{5}, e_{1}\right]=-\frac{a}{2} e_{1},\left[e_{5}, e_{2}\right]=v e_{1}+\frac{a}{2} e_{2},} \\ & {\left[e_{3}, e_{4}\right]=x e_{1},\left[e_{3}, e_{5}\right]=z e_{1}+t e_{2},} \\ & {\left[e_{4}, e_{5}\right]=a e_{4}+r e_{1}+s e_{2}, a \neq 0,} \\ & a x-2 t u=0 \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}\left(1,1,\left(\begin{array}{cc}1 & \mu \\ \mu & 1\end{array}\right), 1\right)$ |
| $\begin{aligned} & {\left[e_{4}, e_{1}\right]=u e_{2},\left[e_{5}, e_{1}\right]=\frac{a}{2} e_{1}+v e_{2},\left[e_{5}, e_{2}\right]=-\frac{a}{2} e_{2},} \\ & {\left[e_{3}, e_{4}\right]=x e_{1}+y e_{2},\left[e_{3}, e_{5}\right]=b e_{3}+z e_{1}+t e_{2},} \\ & {\left[e_{4}, e_{5}\right]=c e_{3}+a e_{4}+r e_{1}+s e_{2},} \\ & (3 a+2 b) x=0, a \neq 0, b \neq 0 \\ & (a+2 b) y-2 z u+2 x v=0 \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1,1,1,1)$ |
| $\begin{aligned} & {\left[e_{4}, e_{1}\right]=u e_{2},\left[e_{5}, e_{1}\right]=\frac{a}{2} e_{1}+v e_{2},\left[e_{5}, e_{2}\right]=-\frac{a}{2} e_{2},} \\ & {\left[e_{3}, e_{4}\right]=y e_{2},\left[e_{3}, e_{5}\right]=z e_{1}+t e_{2},} \\ & {\left[e_{4}, e_{5}\right]=a e_{4}+r e_{1}+s e_{2}, a \neq 0, a y-2 z u=0} \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}\left(1,1,\left(\begin{array}{cc}1 & \mu \\ \mu & 1\end{array}\right), 1\right)$ |
| $\begin{aligned} & {\left[e_{4}, e_{1}\right]=u e_{1}+u p e_{2},\left[e_{4}, e_{2}\right]=-\frac{u}{p} e_{1}-u e_{2},,} \\ & {\left[e_{5}, e_{1}\right]=v e_{1}+\frac{(2 v-a) p}{2} e_{2},\left[e_{5}, e_{2}\right]=-\frac{(2 v+a)}{2 p} e_{1}-v e_{2}} \\ & {\left[e_{3}, e_{4}\right]=x e_{1}+y e_{2},\left[e_{3}, e_{5}\right]=b e_{3}+z e_{1}+t e_{2}, a \neq 0, b \neq 0} \\ & {\left[e_{4}, e_{5}\right]=c e_{3}+a e_{4}+r e_{1}+s e_{2},} \\ & ((2 a+2 b+2 v) x-2 z u) p-a y+2 t u-2 y v=0 \\ & (2 x v-a x-2 z u) p+(2 a+2 b-2 v) y+2 t u=0 \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1,1,1,1)$ |
| $\begin{aligned} & {\left[e_{4}, e_{1}\right]=u e_{1}+u p e_{2},\left[e_{4}, e_{2}\right]=-\frac{u}{p} e_{1}-u e_{2},,} \\ & {\left[e_{5}, e_{1}\right]=v e_{1}+\frac{(2 v-a) p}{2} e_{2},\left[e_{5}, e_{2}\right]=-\frac{(2 v+a)}{2 p} e_{1}-v e_{2}} \\ & {\left[e_{3}, e_{4}\right]=x e_{1}+y e_{2},\left[e_{3}, e_{5}\right]=z e_{1}+t e_{2},} \\ & {\left[e_{4}, e_{5}\right]=a e_{4}+r e_{1}+s e_{2}, a \neq 0, b \neq 0} \\ & ((2 a+2 v) x-2 z u) p-a y+2 t u-2 y v=0 \\ & (2 x v-a x-2 z u) p+(2 a-2 v) y+2 t u=0 \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}\left(1,1,\left(\begin{array}{cc}1 & \mu \\ \mu & 1\end{array}\right), 1\right)$ |
| $\begin{aligned} & {\left[e_{5}, e_{1}\right]=u e_{1}+v e_{2},\left[e_{5}, e_{2}\right]=w e_{1}-u e_{2},} \\ & {\left[e_{3}, e_{4}\right]=x e_{1}+y e_{2},\left[e_{3}, e_{5}\right]=a e_{3}+b e_{4}+z e_{1}+t e_{2},} \\ & {\left[e_{4}, e_{5}\right]=c e_{3}+d e_{4}+r e_{1}+s e_{2}} \\ & (a+d+u) x+y w=0, x v+(a+d-u) y=0 \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1,1,1,1)$ |
| $\begin{aligned} & {\left[e_{5}, e_{1}\right]=u e_{1}+v e_{2},\left[e_{5}, e_{2}\right]=w e_{1}-u e_{2}} \\ & {\left[e_{3}, e_{4}\right]=x e_{1}+y e_{2}+a e_{4},\left[e_{3}, e_{5}\right]=b e_{4}+z e_{1}+t e_{2},} \\ & {\left[e_{4}, e_{5}\right]=c e_{4}+r e_{1}+s e_{2}, a \neq 0} \\ & (c+u) x-a r+y w=0 \\ & (c-u) y-a s+x v=0 \end{aligned}$ | $\alpha e^{12}$ | $\operatorname{Diag}(1,1,1,1,1)$ |

TAB. 8. Five-dimensional Riemann-Poisson Lie algebras of rank 2 with abelian Kähler subalgebra $(\alpha \neq 0)$ (Continued)

| Non vanishing Lie brackets | Bivector $r$ | Matrix of $\varrho$ | Conditions |
| :--- | :--- | :--- | :--- |
| $\left[e_{3}, e_{2}\right]=x e_{1}-a e_{4},\left[e_{4}, e_{2}\right]=y e_{1}+a e_{3},\left[e_{5}, e_{2}\right]=z e_{1}$ | $\alpha e^{12}$ | Diag $(1,1,1,1,1)$ | $\alpha \neq 0$ |
| $\left[e_{3}, e_{5}\right]=p e_{3}+q e_{4}+a^{-1}(-q x+p y) e_{1}$, |  |  | $a \neq 0$ |
| $\left[e_{3}, e_{5}\right]=-q e_{3}+p e_{4}-a^{-1}(p x+q y) e_{1}$ |  |  |  |
| $\left[e_{3}, e_{2}\right]=x e_{1}-a e_{4},\left[e_{4}, e_{2}\right]=y e_{1}+a e_{3},\left[e_{5}, e_{2}\right]=z e_{1}$ | $\alpha e^{12}$ |  |  |
| $\left[e_{3}, e_{4}\right]=b e_{1}$ |  |  | $a \neq 0, z \neq 0$ |
| $\left[e_{3}, e_{5}\right]=q e_{4}-a^{-1} q x e_{1}$, |  |  |  |
| $\left[e_{3}, e_{5}\right]=-q e_{3}-a^{-1} q y e_{1}$ | $\alpha e^{12}$ | iag $(1,1,1,1,1,1)$ | $\alpha \neq 0$ |
| $\left[e_{3}, e_{2}\right]=x e_{1}-a e_{4},\left[e_{4}, e_{2}\right]=y e_{1}+a e_{3}$, |  | $a \neq 0$ |  |
| $\left[e_{3}, e_{4}\right]=b e_{1}+c e_{2}$ |  |  |  |
| $\left[e_{3}, e_{5}\right]=q e_{4}-a^{-1} q x e_{1}$, |  |  |  |
| $\left[e_{3}, e_{5}\right]=-q e_{3}-a^{-1} q y e_{1}$ |  |  |  |

TAB. 9. Five-dimensional Riemann-Poisson Lie algebras of rank 2 with abelian Kähler subalgebra (Continued)

This theorem unknown to our knowledge can be used to build examples of Riemann-Poisson Lie algebras.

Theorem 4.1. Let $(G,\langle\rangle$,$) be an even dimensional flat Riemannian Lie group.$ Then there exists a left invariant differential $\Omega$ on $G$ such that $(G,\langle\rangle,, \Omega)$ is a Kähler Lie group.

Proof. Let $\mathfrak{g}$ be the Lie algebra of $G$ and $\varrho=\langle\rangle,(e)$. According to Milnor's Theorem [11, Theorem 1.5] and its improved version [1, Theorem 3.1] the flatness of the metric on $G$ is equivalent to $[\mathfrak{g}, \mathfrak{g}]$ is even dimensional abelian, $[\mathfrak{g}, \mathfrak{g}]^{\perp}=$ $\left\{u \in \mathfrak{g}, \operatorname{ad}_{u}+\mathrm{ad}_{u}^{*}=0\right\}$ is also even dimensional abelian and $\mathfrak{g}=[\mathfrak{g}, \mathfrak{g}] \oplus[\mathfrak{g}, \mathfrak{g}]^{\perp}$. Moreover, the Levi-Civita product is given by

$$
\mathrm{L}_{a}=\left\{\begin{array}{lll}
\mathrm{ad}_{a} & \text { if } & a \in[\mathfrak{g}, \mathfrak{g}]^{\perp},  \tag{21}\\
0 & \text { if } & a \in[\mathfrak{g}, \mathfrak{g}]
\end{array}\right.
$$

and there exists a basis $\left(e_{1}, f_{1}, \ldots, e_{r}, f_{r}\right)$ of $[\mathfrak{g}, \mathfrak{g}]$ and $\lambda_{1}, \ldots, \lambda_{r} \in[\mathfrak{g}, \mathfrak{g}]^{\perp} \backslash\{0\}$ such that for any $a \in[\mathfrak{g}, \mathfrak{g}]^{\perp}$,

$$
\left[a, e_{i}\right]=\lambda_{i}(a) f_{i} \quad \text { and } \quad\left[a, f_{i}\right]=-\lambda_{i}(a) e_{i}
$$

We consider a nondegenerate skew-symmetric 2 -form $\omega_{0}$ on $[\mathfrak{g}, \mathfrak{g}]^{\perp}$ and $\omega_{1}$ the nondegenerate skew-symmetric 2-form on $[\mathfrak{g}, \mathfrak{g}]^{\perp}$ given by $\omega_{1}=\sum_{i=1}^{r} e_{i}^{*} \wedge f_{i}^{*}$. One can sees easily that $\omega=\omega_{0} \oplus \omega_{1}$ is a Kähler form on $\mathfrak{g}$.

## References

[1] Ait Haddou, M., Boucetta, M., Lebzioui, H., Left-invariant Lorentzian flat metrics on Lie groups, J. Lie Theory 22 (1) (2012), 269-289.
[2] Boucetta, M., Compatibilité des structures pseudo-riemanniennes et des structures de Poisson, C.R. Acad. Sci. Paris Sér. I 333 (2001), 763-768.
[3] Boucetta, M., Riemann-poisson manifolds and kähler-riemann foliations, C.R. Acad. Sci. Paris, Sér. I 336 (2003), 423-428.
[4] Boucetta, M., Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras, Differential Geom. Appl. 20 (2004), 279-291.
[5] Boucetta, M., On the Riemann-Lie algebras and Riemann-Poisson Lie groups, J. Lie Theory 15 (1) (2005), 183-195.
[6] Deninger, C., Singhof, W., Real polarizable hodge structures arising from foliation, Ann. Global Anal. Geom. 21 (2002), 377-399.
[7] Dufour, J.P., Zung, N.T., Poisson Structures and Their Normal Forms, Progress in Mathematics, vol. 242, Birkhäuser Verlag, 2005.
[8] Fernandes, R.L., Connections in Poisson Geometry 1: Holonomy and invariants, J. Differential Geom. 54 (2000), 303-366.
[9] Ha, K.Y., Lee, J.B., Left invariant metrics and curvatures on simply connected three dimensional Lie groups, Math. Nachr. 282 (2009), 868-898.
[10] Hawkin, E., The structure of noncommutative deformations, J. Differential Geom. 77 (2007), 385-424.
[11] Milnor, J., Curvatures of left invariant metrics on Lie Groups, Adv. Math. 21 (1976), 293-329.
[12] Ovando, G., Invariant pseudo-Kähler metrics in dimension four, J. Lie Theory 16 (2006), 371-391.
[13] Vaisman, I., Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, vol. 118, Birkhäuser, Berlin, 1994.
${ }^{a}$ Université de Nouakchott,
Faculté des sciences et techniques
E-mail: pacha.ali86@gmail.com
${ }^{b}$ Université Cadi-Ayyad,
Faculté des sciences et techniques, BP 549 Marrakech Maroc
E-mail: m.boucetta@uca.ac.ma
${ }^{c}$ Université de Nouakchott,
Faculté des sciences et techniques
E-mail: lessiadahmed@gmail.com

