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REPDIGITS IN GENERALIZED PELL SEQUENCES

Jhon J. Bravo and Jose L. Herrera

Abstract. For an integer k ≥ 2, let (P (k)
n )n be the k−generalized Pell

sequence which starts with 0, . . . , 0, 1 (k terms) and each term afterwards is
given by the linear recurrence P (k)

n = 2P (k)
n−1 + P (k)

n−2 + · · · + P (k)
n−k. In this

paper, we find all k-generalized Pell numbers with only one distinct digit (the
so-called repdigits). Some interesting estimations involving generalized Pell
numbers, that we believe are of independent interest, are also deduced. This
paper continues a previous work that searched for repdigits in the usual Pell
sequence (P (2)

n )n.

1. Introduction

Diophantine equations are one of the oldest subjects in number theory. The
mathematical community dedicated to the study of Diophantine equations has
been interested in problems involving linear recurrence sequences and with special
attention in the Fibonacci sequence F = (Fn)∞n=0, which is given by the recurrence
Fn = Fn−1 +Fn−2 for all n ≥ 2 with F0 = 0 and F1 = 1 as initial conditions. There
is also a lot of interest in studying equations that contain the Pell sequence, which
is as important as the Fibonacci sequence. The Pell sequence P = (Pn)∞n=0 is given
by P0 = 0, P1 = 1 and the linear recurrence Pn = 2Pn−1 + Pn−2 for all n ≥ 2. For
additional information on these sequences, including a numerous applications in a
range of disciplines, see Koshy’s book [11].

For an integer k ≥ 2, we consider a generalization of the Pell sequence called
the k-generalized Pell sequence or, for simplicity, the k-Pell sequence P (k) =
(P (k)
n )∞n=−(k−2) given by the following linear recurrence of higher order

P (k)
n = 2P (k)

n−1 + P
(k)
n−2 + · · ·+ P

(k)
n−k for all n ≥ 2 ,

with the initial conditions P (k)
−(k−2) = P

(k)
−(k−3) = · · · = P

(k)
0 = 0 and P

(k)
1 = 1.

We shall refer to P (k)
n as the nth k-Pell number. We note that this generalization

is in fact a family of sequences where each new choice of k produces a distinct
sequence. For example, the usual Pell sequence is obtained for k = 2, i.e., P (2) = P .
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Below we present the values of these numbers for the first few values of k and
n ≥ 1.

First non–zero k−Pell numbers
k Name First non-zero terms
2 Pell 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, . . .
3 3-Pell 1, 2, 5, 13, 33, 84, 214, 545, 1388, 3535, 9003, 22929, 58396, . . .
4 4-Pell 1, 2, 5, 13, 34, 88, 228, 591, 1532, 3971, 10293, 26680, 69156, . . .
5 5-Pell 1, 2, 5, 13, 34, 89, 232, 605, 1578, 4116, 10736, 28003, 73041, . . .
6 6-Pell 1, 2, 5, 13, 34, 89, 233, 609, 1592, 4162, 10881, 28447, 74371, . . .
7 7-Pell 1, 2, 5, 13, 34, 89, 233, 610, 1596, 4176, 10927, 28592, 74815, . . .
8 8-Pell 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4180, 10941, 28638, 74960, . . .
9 9-Pell 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10945, 28652, 75006, . . .
10 10-Pell 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28656, 75020,. . .

The k-Pell numbers and their properties have been studied by some authors (see
[3, 8, 9, 10]). In [9], Kiliç gave some relations involving Fibonacci and k-Pell
numbers showing that the k-Pell numbers can be expressed as the summation of
the Fibonacci numbers. The authors of [10] defined P (k) in matrix representation
and showed that the sums of the k-Pell numbers could be derived directly using
this representation.

The first interesting fact about the k-Pell sequence, showed by Kiliç in [9], is
that the first k + 1 non–zero terms in P (k) are Fibonacci numbers with odd index,
namely

(1) P (k)
n = F2n−1 for all 1 ≤ n ≤ k + 1 ,

while the next term is P (k)
k+2 = F2k+3 − 1. In adittion, it was also proved in [9] that

if k + 2 ≤ n ≤ 2k + 2, then

P (k)
n = F2n−1 −

n−k−1∑
j=1

F2j−1F2(n−k−j) .

Bravo, Herrera and Luca in [3] investigated the k-generalized Pell sequence and
presented some alternative recurrence relations, a generalized Binet formula and
different arithmetic properties for P (k). They also generalized some well-known
properties of P (2) to the sequence P (k) and showed the exponential growth of P (k).
For instance, the following nice formula involving Fibonacci and generalized Pell
numbers was proved in [3].

P (k)
n = F2n−1 −

n−k−1∑
j=1

F2jP
(k)
n−k−j holds for all k ≥ 2 and n ≥ k + 2 .
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Note that the above identity immediately shows that the nth k-Pell number does
not exceed the Fibonacci number with index 2n− 1. In fact

P (k)
n < F2n−1 holds for all k ≥ 2 and n ≥ k + 2 .

Recall that a positive integer is called a repdigit if it has only one distinct digit in
its decimal expansion. In particular, these numbers have the form a(10m − 1)/9 for
some m ≥ 1 and 1 ≤ a ≤ 9. There is a lot of literature dealing with Pell numbers
and repdigits. For instance, in 2018 Normenyo, Luca and Togbé [15] found all
repdigits expressible as sums of three Pell numbers, and shortly afterwards they
extended their work to four Pell numbers [16]. In 2015, Faye and Luca [7] looked for
repdigits in the usual Pell sequence and using some elementary methods concluded
that there are no Pell numbers larger than 10 which are repdigits.

In this paper, we extend the previous work [7] and search for k-Pell numbers
which are repdigits, i.e., we determine all the solutions of the Diophantine equation

(2) P (k)
n = a

(10` − 1
9

)
,

in positive integers n, k, `, a with k ≥ 2, ` ≥ 2 and a ∈ {1, 2, . . . , 9}. We clarify
that the condition ` ≥ 2 in the above equation is only meant to ensure that P (k)

n

has at least two digits and so to avoid trivial solutions.
Similar problems as the one discussed in this paper have been investigated

for the Fibonacci sequence and its generalizations. For example, in 2000 Luca
[12] showed that 55 and 11 are the largest repdigits in the Fibonacci and Lucas
sequences, respectively. A conjecture (proposed by Marques [13]) about repdigits in
k-generalized Fibonacci sequences was proved by Bravo–Luca [4]. The k-generalized
Fibonacci sequence starts with k− 1 consecutive 0’s followed by a 1 and each term
afterwards is the sum of the k preceding terms. A similar work for k-generalized
Lucas sequences was performed in [5], where the k-generalized Lucas sequence
follows the same recursive pattern as the k-generalized Fibonacci numbers but
starting with 0, . . . , 0, 2, 1 (k terms).

Before presenting our main theorem, we mention that in the Pell case, namely
when k = 2, several well known divisibility properties of the Pell numbers were used
by Faye and Luca in [7] to solve equation (2). Unfortunately, divisibility properties
similar to those used in [7] are not known for P (k) when k ≥ 3 and therefore it is
necessary to attack the problem in a different way. Our result is the following.

Theorem 1. The only solutions of the Diophantine equation (2) are

(n, k, `, a) ∈ {(5, 3, 2, 3), (6, 4, 2, 8)} ,

namely, P (3)
5 = 33 and P (4)

6 = 88.

Our method is roughly as follows. We use lower bounds for linear forms in
logarithms of algebraic numbers to bound n and ` polynomially in terms of k.
When k is small, the theory of continued fractions suffices to lower such bounds
and complete the calculations. When k is large, we deduce an important estimate
by using the fact that the dominant root of the k-Pell sequence is exponentially



252 J.J. BRAVO AND J.L. HERRERA

close to ϕ2 where ϕ denotes the golden section, so we use this estimation in our
calculations and finish the job.

2. Preliminary results

In this section we present some basic properties of the k-Pell sequences and give
some important estimations needed for the sequel. One of them is given by Lemma 2
and will play a crucial role in addressing the large values of k. Additionally, we
present a lower bound for a nonzero linear form in logarithms of algebraic numbers
and state a reduction lemma which will be the key tool used in this paper to reduce
some upper bounds. All these facts will be used in the proof of Theorem 1.

2.1. The k-Pell sequence. It is known that the characteristic polynomial of P (k),
namely

Φk(x) = xk − 2xk−1 − xk−2 − · · · − x− 1 ,
has just one real root outside the unit circle and all the roots are simple. Throughout
this paper, γ := γ(k) denotes that single root which is a Pisot number of degree k
since the other roots of Φk(x) are strictly inside the unit circle. This important
property of γ leads us to call it the dominant root of P (k). Since γ is a Pisot number
with minimal polynomial Φk(x), it follows that this polynomial is irreducible over
Q[x] (for more details on Φk(x) see Section 2 of [3]). Moreover, it is also known
that γ(k) is exponentially close to ϕ2. In fact, it was proved in [3, Lemma 3.2] that
γ(k) is located between ϕ2(1− ϕ−k) and ϕ2. To simplify notation, we shall omit
the dependence on k of γ whenever no confusion may arise.

Let us now define, for an integer k ≥ 2, the function

(3) gk(z) = z − 1
(k + 1)z2 − 3kz + k − 1 = z − 1

k(z2 − 3z + 1) + z2 − 1 .

If we consider the function gk(x) defined in (3) as a function of a real variable,
then it is not difficult to see that gk(x) has a vertical asymptote in

(4) c2(k) := 3k +
√

5k2 + 4
2(k + 1) ,

and is positive and continuous in (c2(k),+∞). The following lemma, which is an
elementary result, will be needed for some estimations in the next subsection.

Lemma 1. Keep the above notation and let k ≥ 2 be an integer. Then

0.276 < gk(γ) < 0.5 and |gk(γi)| < 1 for 2 ≤ i ≤ k ,

where γ := γ1, γ2, . . . , γk are the roots of the characteristic polynomial Φk(x).

Proof. The proof of the first part can be found in [3, Lemma 3.2]. For the second
part, i.e., for 2 ≤ i ≤ k, we consider the function hk(x) defined by

(5) hk(x) = (x− 1)Φk(x) = xk−1(x2 − 3x+ 1) + 1 .
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Evaluating expression (5) at γi and rearranging some terms of the resulting expres-
sion, we get the relation γ2

i − 3γi + 1 = −1/γk−1
i , and so

k(γ2
i − 3γi + 1) + γ2

i − 1 = γ2
i − 1− k

γk−1
i

.

Hence,

|k(γ2
i − 3γi + 1) + γ2

i − 1| =
∣∣∣ k

γk−1
i

− (γ2
i − 1)

∣∣∣ ≥ k

|γi|k−1 − |γ
2
i − 1| > k − 2 ,

where we used the fact that |γi| < 1 because 2 ≤ i ≤ k. Consequently,

|gk(γi)| =
|γi − 1|

|k(γ2
i − 3γi + 1) + γ2

i − 1| <
2

k − 2 ≤ 1 for all k ≥ 4 .

Finally, the cases k = 2 and 3 can be checked computationally. �

The following “Binet–like” formula for P (k) appears in [3]:

(6) P (k)
n =

k∑
i=1

gk(γi)γni ,

where, as before, γ := γ1, γ2, . . . , γk are the roots of the characteristic polynomial
Φk(x). It was also proved in [3] that the contribution of the roots which are inside
the unit circle to the formula (6) is very small, namely that the approximation

(7) |P (k)
n − gk(γ)γn| < 1/2 holds for all n ≥ 2− k .

From (7) we can write

(8) P (k)
n = gk(γ)γn + ek(n) where |ek(n)| < 1/2 .

Furthermore, in [3], it is shown that the inequality

(9) γn−2 ≤ P (k)
n ≤ γn−1 holds for all n ≥ 1 ,

extending a result known for the usual Pell numbers.
We finish this subsection by giving an important estimate of the dominant term

in the Binet–like formula for P (k). This estimation, based on the fact that the
dominant root of the k-Pell sequence is exponentially close to ϕ2, will be the key
point in addressing the large values of k, and we believe is of independent interest.

Lemma 2. Let γ = γ(k) be the dominant root of the characteristic polynomial
Φk(x) of the k-Pell sequence and consider the function gk(x) defined in (3). If
k ≥ 30 and n > 1 are integers satisfying n < ϕk/2, then

gk(γ)γn = ϕ2n

ϕ+ 2(1 + ζ) where |ζ| < 4
ϕk/2 .

Proof. Let λ > 0 be such that γ+λ = ϕ2. Since γ is located between ϕ2(1−ϕ−k)
and ϕ2, we get that λ < ϕ2−ϕ2(1−ϕ−k) = 1/ϕk−2, i.e., λ ∈ (0, 1/ϕk−2). Besides,

γn = (ϕ2 − λ)n = ϕ2n
(

1− λ

ϕ2

)n
= ϕ2nen log(1−λ/ϕ2) ≥ ϕ2ne−2λn/ϕ2

,
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where we used the fact that log(1− x) ≥ −2x for all x ∈ (0, 1/2). But we also have
that e−x ≥ 1− x for all x ∈ R, so, γn ≥ ϕ2n(1− 2λn/ϕ2). Moreover,

2λn/ϕ2 < 2n/ϕk < 2ϕk/2/ϕk = 2/ϕk/2 .

Hence,
γn > ϕ2n(1− 2/ϕk/2) .

It then follows that the following inequalities hold

ϕ2n − 2ϕ2n

ϕk/2 < γn < ϕ2n ,

or

(10)
∣∣γn − ϕ2n∣∣ < 2ϕ2n

ϕk/2 .

Using now the Mean-Value Theorem, we get that there exists some θ ∈ (γ, ϕ2)
such that
(11) gk(γ) = gk(ϕ2) + (γ − ϕ2)g′k(θ) .
It is a simple matter to show that

g′k(x) = −sk(x)
tk(x) ,

where
sk(x) = (k+ 1)x2− 2(k+ 1)x+ 2k+ 1 and tk(x) = ((k+ 1)x2− 3kx+ k− 1)2 .

Since the discriminant of sk(x) is negative and x = 1 is the only critical point
of sk(x), we deduce that sk(x) > 0 for all x ∈ R and is increasing in (1,∞).
Additionally, it is not difficult to see that tk(x) is increasing in (c2(k),∞) where
c2(k) is given by (4). From the above and using the fact that c2(k) < ϕ2 − 1/k <
γ < θ < ϕ2 (see [3, Lemma 3.2(c)]), we obtain, after some elementary algebra, that

tk(θ) ≥ tk(ϕ2 − 1/k) = (ϕ− 2ϕ/k − 1/k + 1/k2 + 2)2

≥ (ϕ− 2ϕ/k − 1/k + 2)2

> 12
for all k ≥ 30. As a consequence

|g′k(θ)| = sk(θ)
tk(θ) ≤

sk(ϕ2)
12 = (ϕ+ 2)k + ϕ+ 1

12 < k

for all k ≥ 30. Hence, by (11), we get

(12) |gk(γ)− gk(ϕ2)| = |γ − ϕ2||g′k(θ)| = λ |g′k(θ)| < k

ϕk−2 .

Writing
γn = ϕ2n + δ and gk(γ) = gk(ϕ2) + η ,

then inequalities (10) and (12) yield

|δ| < 2ϕ2n

ϕk/2 and |η| < k

ϕk−2 .
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Moreover, since gk(ϕ2) = 1/(ϕ+ 2), we have

gk(γ)γn = (gk(ϕ2) + η)(ϕ2n + δ) = ϕ2n

ϕ+ 2 (1 + ζ) ,

where
ζ = δ

ϕ2n + (ϕ+ 2)η + (ϕ+ 2)ηδ
ϕ2n .

Finally, we note that

|ζ| < 2
ϕk/2 + (ϕ+ 2)k

ϕk−2 + 2(ϕ+ 2)k
ϕ3k/2−2 <

4
ϕk/2 for all k ≥ 30 .

This finishes the proof of the lemma. �

2.2. Linear forms in logarithms. In order to prove our main result, we need to
use a Baker type lower bound for a nonzero linear form in logarithms of algebraic
numbers, and such a bound, which plays an important role in this paper, was given
by Matveev [14]. We begin by recalling some basic notions from algebraic number
theory.

Let η be an algebraic number of degree d with minimal primitive polynomial
over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d∏
i=1

(x− η(i)) ,

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η.
Then

h(η) = 1
d

(
log a0 +

d∑
i=1

log
(

max{|η(i)|, 1}
))

is called the logarithmic height of η. In particular, if η = p/q is a rational number
with gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}.

The following are basic properties of the logarithmic height. For α, β algebraic
numbers and s ∈ Z, we have

– h(α± β) ≤ h(α) + h(β) + log 2.
– h(αβ±1) ≤ h(α) + h(β).
– h(αs) = |s|h(α).

Matveev [14] proved the following deep theorem.

Theorem 2 (Matveev’s theorem). Let K be a number field of degree D over Q,
γ1, . . . , γt be positive real numbers of K, and b1, . . . , bt rational integers. Put

Λ := γb1
1 . . . γbtt − 1 and B ≥ max{|b1|, . . . , |bt|} .

Let Ai ≥ max{Dh(γi), | log γi|, 0.16} be real numbers, for i = 1, . . . , t. Then, assu-
ming that Λ 6= 0, we have

|Λ| > exp(−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 . . . At) .

We now give an estimation for the logarithmic height of the algebraic number
gk(γ) that will be used later.
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Lemma 3. For k ≥ 2, we have that h(gk(γ)) < 4k logϕ+ k log(k + 1).

Proof. Put

fk(x) =
k∏
i=1

(x− gk(γi)) ∈ Q[x],

where γ := γ1, γ2, . . . , γk are the roots of characteristic polynomial Φk(x) as
mentioned before. Then the leading coefficient a0 of the minimal polynomial of
gk(γ) of degree d over the integers divides

∏k
i=1((k + 1)γ2

i − 3kγi + k − 1). But,∣∣∣ k∏
i=1

((k + 1)γ2
i − 3kγi + k − 1)

∣∣∣ = (k + 1)k
∣∣∣ k∏
i=1

(c1(k)− γi)(c2(k)− γi)
∣∣∣ ,

where

(c1(k), c2(k)) :=
(3k −

√
5k2 + 4

2(k + 1) ,
3k +

√
5k2 + 4

2(k + 1)

)
.

Since

|Φk(y)| < max{yk, 1 + y + · · ·+ yk−2 + 2yk−1} < ϕ2k for all 0 < y < ϕ2 ,

and 0 < c1(k) < c2(k) < ϕ2, which are easily seen, it follows that a0 < ϕ4k(k+ 1)k.
By using this and Lemma 1, we obtain

h(gk(γ)) = 1
d

(
log a0 +

d∑
i=1

log max{|gk(γi)|, 1}
)
< 4k logϕ+ k log(k + 1) .

�

2.3. Reduction lemma. In the course of our calculations, we get some upper
bounds on the variables n and ` which are very large, so we need to reduce them to
a size that can be easily handled. To do this, we use the following lemma which is a
slight variation of a result due to Dujella and Pethö [6] and itself is a generalization
of a result of Baker and Davenport [1]. We shall use the version given by Bravo,
Gómez and Luca in [2].

Lemma 4. Let M be a positive integer, let p/q be a convergent of the continued
fraction expansion of the irrational γ̂ such that q > 6M , and let A, B, µ̂ be some
real numbers with A > 0 and B > 1. Put ε := ‖µ̂q‖ −M‖γ̂q‖, where ‖ · ‖ denotes
the distance from the nearest integer. If ε > 0, then there is no positive integer
solution (u, v, w) to the inequality

0 < |uγ̂ − v + µ̂| < AB−w ,

subject to the restrictions that

u ≤M and w ≥ log(Aq/ε)
logB .
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3. Proof of Theorem 1

Assume throughout that (n, k, `, a) is a solution of equation (2). Suppose further
that k ≥ 3 since the case k = 2 was already treated by Faye and Luca in [7]. In the
case 1 ≤ n ≤ k + 1, we obtain from (1) and (2) that F2n−1 = a(10` − 1)/9, which
is not possible because F10 = 55 is the only nontrivial repdigit in the Fibonacci
sequence (see [12]). Thus, we can assume that n ≥ k + 2. So, we get easily that
n ≥ 5.

3.1. An initial relation. Since P (k)
n is a repdigit with ` digits, it follows from (2)

and (9) that 10`−1 < P
(k)
n ≤ γn−1 and γn−2 ≤ P (k)

n < 10`. So we get

(n− 2) log γ
log 10 < ` < (n− 1) log γ

log 10 + 1 .

From this and taking into account that

0.2 < logϕ
log 10 <

log γ
log 10 <

2 logϕ
log 10 < 0.5,

because ϕ < γ < ϕ2 for all k ≥ 2, we obtain

(13) 1
5(n− 2) < ` <

1
2(n+ 1),

which is an estimate on ` in terms of n. We shall have some use for it later.

3.2. An inequality for n and ` in terms of k. We now use (2) and (8) to
obtain

(14)
∣∣∣gk(γ)γn − a10`

9

∣∣∣ =
∣∣∣ek(n) + a

9

∣∣∣ < 1
2 + a

9 ≤
3
2 .

Dividing the above inequality by gk(γ)γn, we get that

(15)
∣∣∣10` · γ−n · a9 (gk(γ))−1 − 1

∣∣∣ < 3
2gk(γ)γn <

6
γn

,

where we used the fact 3/(2gk(γ)) < 6 (see Lemma 1). In order to use the result of
Matveev Theorem 2, we take t := 3 and

γ1 := 10 , γ2 := γ , γ3 := a

9 (gk(γ))−1
.

We also take b1 := `, b2 := −n and b3 := 1. We begin by noticing that the three
numbers γ1, γ2, γ3 are positive real numbers and belong to K = Q(γ), so we can
take D := [K : Q] = k. The left-hand side of (15) is not zero. Indeed, if this were
zero, we would then get that

a

910` = gk(γ)γn .

Conjugating the above relation by some automorphism of the Galois group of the
decomposition field of Φk(x) over Q and then taking absolute values, we get that
for any i ≥ 2, we have

(16) a

910` =
∣∣gk(γi)γni

∣∣ .
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But the last equality above is not possible for i ≥ 2 because, in view of Lemma 1,
the right-hand side of (16) is at most 1, whereas its left-hand side is ≥ 100/9.

Since h(γ1) = log 10 and h(γ2) = (log γ)/k < (2 logϕ)/k we can take A1 :=
k log 10 and A2 := 2 logϕ. Further, by the previous properties of the logarithmic
height and Lemma 3, we have h(γ1) < log 9 + 4k logϕ+ k log(k + 1) < 4k log k for
all k ≥ 3. So, we can take A3 := 4k2 log k. In addition, since ` < n (see (13)), we
take B := n. Then, Matveev’s theorem together with a straightforward calculation
gives

(17)
∣∣∣10` · γ−n · a9 (gk(γ))−1 − 1

∣∣∣ > exp
(
−5.1× 1012k5 log2 k logn

)
,

where we used that 1 + log k < 2 log k for all k ≥ 3 and 1 + logn ≤ 2 logn for all
n ≥ 3. Taking logarithms in inequality (17) and comparing the resulting inequality
with (15), we get

(18) n

logn < 5.7× 1012k5 log2 k .

In the above we have used the fact that the dominant root γ > 2.5 for all k ≥ 3.
In order to get an upper bound for n depending on k we next use the fact that
x/ log x < A implies x < 2A logA whenever A ≥ 3. Indeed, taking x := n and
A := 5.7×1012k5 log2 k, and using the fact that 29.4+5 log k+2 log log k < 32 log k
for all k ≥ 3, inequality (18) yields n < 3.7 × 1014k5 log3 k. We record what we
have proved so far as a lemma.

Lemma 5. If (n, k, `, a) is a solution of equation (2) with k ≥ 3, then n ≥ k + 2
and

` < n < 3.7× 1014k5 log3 k .

3.3. The case of large k. Suppose that k > 330. In this case the following
inequalities hold

n < 3.7× 1014k5 log3 k < ϕk/2.

At this point, we require the estimation from Lemma 2 in order to find absolute
upper bounds for n and `. Indeed, since n < ϕk/2, Lemma 2 and (14) imply

(19)
∣∣∣ ϕ2n

ϕ+ 2 −
a10`

9

∣∣∣ ≤ ∣∣∣gk(γ)γn − a10`

9

∣∣∣+ ϕ2n|ζ|
ϕ+ 2 ≤

ϕ2n

ϕ+ 2

(3(ϕ+ 2)
2ϕ2n + 4

ϕk/2

)
.

Since n ≥ k + 2 we get that 2n > k/2 and so 2ϕ2n > ϕk/2. Hence, from inequality
(19) we obtain

(20)
∣∣∣ ϕ2n

ϕ+ 2 −
a10`

9

∣∣∣ < ϕ2n

ϕ+ 2

(3ϕ+ 10
ϕk/2

)
<

15ϕ2n

(ϕ+ 2)ϕk/2 ,

where we use the fact that 3ϕ+ 10 < 14.8541 . . . < 15. Dividing both sides of the
above inequality (20) by ϕ2n/(ϕ+ 2), we get that

(21)
∣∣∣a9 (ϕ+ 2) · 10` · ϕ−2n − 1

∣∣∣ < 15
ϕk/2 .
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Again, in order to use the result of Matveev Theorem 2, we take t := 3 and

γ1 := a

9 (ϕ+ 2) , γ2 := 10 , γ3 := ϕ2 .

We also take b1 := 1, b2 := ` and b3 := −n. We begin by noticing that the three
numbers γ1, γ2, γ3 are positive real numbers and belong to K = Q(ϕ) = Q(

√
5), so

we can take D := [K : Q] = 2. To see why the left-hand side of (21) is not zero,
note that otherwise, we would get that

(22) a

9 (ϕ+ 2)10` = ϕ2n .

Conjugating the above relation in Q(
√

5), we get

(23) a

9 (ϕ+ 2)10` = ϕ2n ,

where ϕ = (1 −
√

5)/2. Combining (22) and (23) we obtain that F2n = a10`/9,
which itself implies a = 9 and therefore F2n = 10`. However, this is impossible
because there are no powers of 10 in the Fibonacci sequence. Hence, the left-hand
side of inequality (21) is nonzero.

It is easy to see that h(γ1) = (log 5)/2, h(γ2) = log 10 and h(γ3) = logϕ. Hence,
we can take A1 := log 5, A2 := 2 log 10 and A3 := 2 logϕ. Here, we can also take
B := n. Then, Matveev’s theorem together with a straightforward calculation gives

(24)
∣∣∣a9 (ϕ+ 2) · 10` · ϕ−2n − 1

∣∣∣ > exp
(
−1.4× 1013 logn

)
,

where we used that 1 + logn < 2 logn for all n ≥ 3. Comparing (21) and (24),
taking logarithms and then performing the respective calculations, we get that

k < 6× 1013 logn .
But, recall that by Lemma 5, we have n < 3.7× 1014k5 log3 k. Thus

k < (6× 1013)(34 + 5 log k + 3 log log k) < 7.2× 1014 log k ,
where we used the fact that the inequality 34 + 5 log k + 3 log log k < 12 log k holds
for all k > 330. Mathematica gives k < 3 × 1016. By Lemma 5 once again, we
obtain n < 5× 10101. We record our conclusion as follows.

Lemma 6. If (n, k, `, a) is a solution on positive integers of equation (2) with
k > 330, then all inequalities

k < 3× 1016 and ` < n < 5× 10101

hold.

3.4. Reducing the bound on k. We now want to reduce our bound on k by
using Lemma 4. Let

z1 := ` log 10− 2n logϕ+ logµa ,
where µa = a(ϕ+ 2)/9. Then, from the linear form (21) we get

(25) |ez1 − 1| < 15
ϕk/2 .
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Note that z1 6= 0, thus we distinguish the following cases. If z1 > 0, then ez1−1 > 0,
so from (25) we obtain

0 < z1 ≤ ez1 − 1 < 15
ϕk/2 .

Suppose now that z1 < 0. Since |ez1 − 1| < 15/ϕ165 < 1/2, we conclude that
e|z1| < 2. Thus,

0 < |z1| ≤ e|z1| − 1 = ez1 |ez1 − 1| < 30
ϕk/2 .

In any case, we have that the inequality

0 < |z1| <
30
ϕk/2

always holds. Replacing z1 by its expression in the above inequality and dividing
through by 2 logϕ, we get

(26) 0 < |`γ̂ − n+ µ̂a| < AB−k ,

where
γ̂ := log 10

2 logϕ, µ̂a := logµa
2 logϕ, A := 32 and B := ϕ1/2 .

Note that γ̂ is an irrational number. We now put M := 5 × 10101 which is
upper bound on ` by Lemma 6. Applying Lemma 4 to the inequality (26) for all
choices a ∈ {1, 2, . . . , 9}, we obtain that k < 1010. Then Lemma 5 tells us that
` < 1.3 × 1032. With this new upper bound for ` we repeated the process, i.e.,
we now take M := 1.3 × 1032 to obtain, in view of Lemma 4, k < 370. Thus,
` < 5.4×1029. A third application of Lemma 4 gives k < 330, which contradicts our
assumption that k > 330. Hence, we deduce that the possible solutions (n, k, `, a)
of the equation (2) all have k ∈ [3, 330].

3.5. The case of small k. Suppose now that k ∈ [3, 330]. Note that for each of
these values of k, Lemma 5 gives us absolute upper bounds for n and `. However,
these upper bounds are so large and will be reduced by using Lemma 4 once again.
In order to apply Lemma 4 we put

z2 := ` log 10− n log γ + logµa ,

where now µa = a(gk(γ))−1/9. Thus, (15) can be rewritten as

(27) |ez2 − 1| < 6
γn

.

Note that z2 6= 0. Here, in a similar way as in the case of z1, we obtain from (27)
that the inequality

0 < |z2| <
12
γn

holds for all n ≥ 5 no matter whether z2 is positive or negative. Replacing z2 in the
above inequality by its formula and dividing it across by log γ, we conclude that

(28) 0 < |`γ̂k − n+ µ̂a,k| < A ·B−n ,
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where now

γ̂k := log 10
log γ , µ̂a,k := logµa

log γ , A := 14 and B := γ .

Let us show that γ̂k is an irrational number. If it were not, then with γ̂k = a/b
with coprime positive integers a and b, we would get that 10b = γa. As before,
conjugating the above relation by some automorphism of the Galois group of the
decomposition field of Φk(x) over Q and then taking absolute values, we get that
10b = |γi|a for any i ≥ 2. But this is not possible because |γi| < 1.

We put Mk :=
⌊
3.7× 1014k5 log3 k

⌋
which is an upper bound on ` from Lemma

5. A computer search with Mathematica revealed that if k ∈ [3, 330], then the
maximum value of log(Aqk/εk)/ logB is ≤ 100, where qk > 6Mk is a denominator of
a convergent of the continued fraction of γ̂k such that εk = ||µ̂a,kqk||−Mk||γ̂kqk|| >
0. It then follows from Lemma 4, applied to inequality (28) for each k ∈ [3, 330],
that n ≤ 100. Since k + 2 ≤ n, we also deduce that k ≤ 98.

Finally, a brute force search with Mathematica in the range
3 ≤ k ≤ 98 and k + 2 ≤ n ≤ 100

gives the solutions shown in the statement of Theorem 1. This completes the
analysis in the case k ∈ [3, 330] and therefore the proof of Theorem 1.
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