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STRUCTURE OF GEODESICS IN WEAKLY SYMMETRIC
FINSLER METRICS ON H-TYPE GROUPS

Zdeněk Dušek

Abstract. Structure of geodesic graphs in special families of invariant weakly
symmetric Finsler metrics on modified H-type groups is investigated. Geodesic
graphs on modified H-type groups with the center of dimension 1 or 2 are
constructed. The new patterns of algebraic complexity of geodesic graphs are
observed.

1. Introduction

Let (M,F ) be a Finsler manifold. If there is a connected Lie group G which acts
transitively on M as a group of isometries, then M is called a homogeneous manifold.
Homogeneous manifold M can be naturally identified with the homogeneous space
G/H, where H is the isotropy group of the origin p ∈M . A homogeneous Finsler
space (G/H,F ) is always a reductive homogeneous space: We denote by g and h
the Lie algebras of G and H respectively and consider the adjoint representation
Ad: H × g → g of H on g. There exists a reductive decomposition of the form
g = m + h where m ⊂ g is a vector subspace such that Ad(H)(m) ⊂ m. For a fixed
reductive decomposition g = m+h there is the natural identification of m ⊂ g = TeG
with the tangent space TpM via the projection π : G → G/H = M . Using this
natural identification, from the Minkovski norm and its fundamental tensor on
TpM , we obtain the Ad(H)-invariant Minkowski norm and the Ad(H)-invariant
fundamental tensor on m and we denote these again by F and g.

We further recall that the slit tangent bundle TM0 is defined as TM0 = TM \{0}.
Using the restriction of the natural projection π : TM →M to TM0, we naturally
construct the pullback vector bundle π∗TM over TM0. The Chern connection is
the unique linear connection on the vector bundle π∗TM which is torsion free and
almost g-compatible, see some monograph, for example [2] by D. Bao, S.-S. Chern
and Z. Shen or [5] by S. Deng for details. Using the Chern connection, the derivative
along a curve γ(t) can be defined. A regular smooth curve γ with tangent vector
field T is a geodesic if DT ( T

F (T ) ) = 0. In particular, a geodesic of constant speed
satisfies DTT = 0. A geodesic γ(s) through the point p is homogeneous if it is
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an orbit of a one-parameter group of isometries. More explicitly, if there exists
a nonzero vector X ∈ g such that γ(t) = exp(tX)(p) for all t ∈ R. The vector
X is called a geodesic vector. Geodesic vectors are characterized by the following
geodesic lemma.

Lemma 1 ([14]). Let (G/H,F ) be a homogeneous Finsler space with a reductive
decomposition g = m + h. A nonzero vector Y ∈ g is geodesic vector if and only if
it holds
(1) gYm(Ym, [Y,U ]m) = 0 ∀U ∈ m ,

where the subscript m indicates the projection of a vector from g to m.

Definition 2. A homogeneous space (G/H,F ) is called a Finsler g.o. space, if
each geodesic of (G/H,F ) (with respect to the Chern connection) is an orbit of a
one-parameter subgroup {exp(tZ)}, Z ∈ g, of the group of isometries G.

We remark that a homogeneous manifold (M,F ) may admit more presentations
as a homogeneous space in the form G/H, corresponding to various transitive
isometry groups. In a g.o. space G/H, we investigate some sets of geodesic vectors
which generate all geodesics through a fixed point. Those sets which are reasonable
in a good sense are called geodesic graphs. The first concept originated from the
work of J. Szenthe [18].

Definition 3. Let (G/H,F ) be a g.o. space and g = m + h an Ad(H)-invariant
decomposition of the Lie algebra g. A geodesic graph is an Ad(H)-equivariant map
ξ : m→ h such that X + ξ(X) is a geodesic vector for each o 6= X ∈ m.

It often happens that the vector ξ(X) is uniquely determined. Then the map ξ is
Ad(H)-equivariant and we are interested in the algebraic structure of the mapping
ξ. Sometimes, there are more choices for the vector ξ(X). Then we want to choose
it in a way that the algebraic structure of the mapping ξ is as simple as possible.

Theory of Riemannian geodesic graphs (canonical and general) was developed
and examples of geodesic graphs on compact and noncompact g.o. manifolds and
also on g.o. nilmanifolds in dimensions 5,6 and 7 were described by O. Kowalski
and S. Nikčević in [12]. Geodesic graph is either linear, which is equivalent with
the natural reductivity of the space G/H, or its components are rational functions
ξi = Pi/P , where Pi and P are homogeneous polynomials and deg(Pi) = deg(P )+1.
The degree of the geodesic graph ξ is defined as deg(ξ) = deg(P ). The special
situation of geodesic graph of degree 0 corresponds to the linear geodesic graph. If
the geodesic graph is unique, its degree is also the degree of the g.o. space G/H. If
there are more geodesic graphs in G/H, the degree of the g.o. space is the minimum
of the degrees of these geodesic graphs.

The degree of the mentioned examples in [12] is 0 (linear geodesic graph) or 2.
Further geodesic graphs of degree 0 or 2 on H-type groups were described by the
author in [6]. Geodesic graph of degree 4 on the flag manifold SO(7)/U(3) was
constructed by the author in [7]. In [10], the author with O. Kowalski constructed
the canonical geodesic graph of degree 6 and a general geodesic graph of degree 3
on the H-type group of dimension 13 with 5-dimensional center.
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We recall that in dimension ≤ 5, all Riemannian g.o. manifolds (M, g) are
naturally reductive, hence they admit a presentation M = G/H in which a linear
geodesic graph exist. Equivalently, they admit a reductive decomposition g = m + h
such that all vectors from m are geodesic. In dimension 6, all g.o. manifolds which
are not naturally reductive were classified by O. Kowalski and L. Vanhecke in [13].
Interesting compact Riemannian g.o. manifolds are, for example, the two series of
flag manifolds described by D. Alekseevsky, A. Arvanitoyeorgos in [1]. Interesting
Riemannian g.o. nilmanifolds are the modified H-type groups, see Section 3 for
details. For a more detailed exposition about geodesic graphs in Riemannian g.o.
manifolds, some related topics and further references, we refer the reader to the
recent survey paper [8] by the author. Another structural approach to Riemannian
g.o. manifolds using the Lie theory can be found in the recent papers [11] and [16]
by C.S. Gordon and Yu.G. Nikonorov.

In [19], Z. Yan and S. Deng studied Finsler g.o. spaces and their relation with
Riemannian g.o. spaces. Some particular results were obtained for Randers g.o.
metrics and for weakly symmetric metrics. Nilpotent examples of reversible Finsler
g.o. spaces which are neither Berwaldian nor weakly symmetric and examples of
invariant Randers g.o. metrics on spheres S2n+1 were constructed in this paper.

In [9], the author investigated invariant Randers g.o. metrics on modified H-type
groups and constructed Finslerian geodesic graphs on these g.o. manifolds. In
all these examples, geodesic graph is unique. The simplest geodesic graph of the
Randers metric is a cone. This situation occurs for H-type groups whose underlying
Riemannian metric α is naturally reductive. In other cases, geodesic graph of the
Randers g.o. metrics arise as the Riemannian geodesic graph with a deformation
term in the numerators.

In the present paper, special families of weakly symmetric Finsler metrics will
be considered. A Finsler manifold (M,F ) is weakly symmetric if for any two points
x, y ∈ M there exist an isometry g of M such that g(x) = y and g(y) = x. It
is well known that weakly symmetric Finsler metrics are g.o. metrics, see [3] for
Riemannian metrics and [5] for Finsler metrics. We shall focus on the special
weakly symmetric metrics on modified H-type groups which were studied also in
[19]. We shall construct geodesic graphs on 5-dimensional and 6-dimensional H-type
groups with these Finsler metrics and compare it with Riemannian geodesic graphs
constructed in [12] and with Randers geodesic graphs constructed in [9].

2. Modified H-type groups

Let n be a 2-step nilpotent Lie algebra with an inner product 〈, 〉. Let z be the
center of n and let v be its orthogonal complement. For each vector Z ∈ z, define
the operator JZ : v→ v by the formula

〈JZ(X), Y 〉 = 〈Z, [X,Y ]〉 ∀X,Y ∈ v .

The algebra n is called a modified H-type algebra if, for each o 6= Z ∈ z, the operator
JZ satisfies the identity

(JZ)2 = λ(Z) · idv
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for some λ(Z) < 0. A connected and simply connected Lie group whose Lie algebra
is a modified H-type algebra is diffeomorphic to Rn and it is called a modified H-type
group. It is endowed with a left-invariant Riemannian metric. The special case of
a generalized Heisenberg algebra (H-type algebra) and corresponding generalized
Heisenberg group (H-type group) is obtained for

λ(Z) = −〈Z,Z〉 .
It was proved by J. Lauret in [15], that modified H-type algebras are just the pairs
(n, 〈 , 〉S), where (n, 〈 , 〉) is an H-type algebra and S is a positive definite symmetric
transformation of z which determines the inner product 〈 , 〉S by the formula

〈X + U, Y + V 〉S = 〈X,Y 〉+ 〈S(U), V 〉 ∀X,Y ∈ v, ∀U, V ∈ z .

H-type algebras are completely classified, see for example the book [4] by J. Berndt,
F. Tricerri and L. Vanhecke. For each dimension of the center z, there is a series of
H-type algebras. Each algebra of the series contains the center z and the complement
v which decomposes into irreducible z-modules (the operators JZ make v a z-module).
Irreducible z-modules are all equivalent if dimz 6= 3 (mod 4), otherwise there exist
two nonequivalent irreducible modules of the same dimension (called nonisotypic
modules). The classification of H-type groups which are Riemannian g.o. manifolds
was obtained by C. Riehm in [17]. The refinement of this classification for modified
H-type groups was obtained by J. Lauret in [15]: Modified H-type groups with
Riemannian g.o. metrics are:
– all infinite series with dimz ∈ {1, 2, 3} or
– isolated low-dimensional cases with dimz ∈ {5, 6, 7}.
Further, naturally reductive modified H-type groups are:
– the infinite series with dimz = 1 or
– special infinite series with dimz = 3.
In particular, modified H-type groups with invariant Riemannian g.o. metrics are
weakly symmetric, up to special situations with dimz ∈ {3, 7}. See [15] for details
of the classification. In the present paper, we examine a class of special weakly
symmetric Finsler g.o. metrics on low-dimensional modified H-type groups with
dimz ∈ {1, 2}. We construct geodesic graphs for these metrics to compare it with
geodesic graphs of Riemannian and Randers g.o. metrics.

3. Weakly symmetric metrics on nilpotent groups

We shall consider a special class of weakly symmetric Finsler metrics on 2-step
nilpotent Lie groups, which are described for example in [19]. On a 2-step nilpotent
Lie algebra n = v + z, consider coordinates (xi)ri=1 on v and (zk)sk=1 on z (where
r = dim v, s = dim z). For ε ≥ 0 and p ∈ N, define the Finsler function in the form

F (xi, zk) =

√√√√√ r∑
i=1

x2
i +

s∑
k=1

z2
k + ε · p

√√√√(
r∑
i=1

x2
i )p + (

s∑
k=1

z2
k)p

=
√
‖x‖2 + ‖z‖2 + εM

1
p .(2)
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Here we put, for short,

‖x‖2 =
r∑
i=1

x2
i , ‖z‖2 =

s∑
k=1

z2
k , M = (

r∑
i=1

x2
i )p + (

s∑
k=1

z2
k)p .

Obviously, for ε = 0 or for p = 1 the above Finsler norm is Euclidean and it gives
rise to an invariant Riemannian metric α. In general, it gives rise to an invariant
Finsler metric F on N . It was proved in [19] that the isometry group of (M,F ) is
the same as the isometry group of the underlying Riemannian metric α and (M,F )
is weakly symmetric if and only if the Riemannian metric α is weakly symmetric.

For i, j = 1 . . . r and k, l = 1 . . . s, we obtain by the direct calculations the
components of the funtamental tensor g(xi, zk) in the form

gii = 1
2(F 2)xixi = 1 + ε

(‖x‖2)p−1M + 2(p− 1)x2
i (‖x‖2)p−2(‖z‖2)p

M2− 1
p

,

gr+k,r+k = 1
2(F 2)zkzk = 1 + ε

(‖z‖2)p−1M + 2(p− 1)z2
i (‖z‖2)p−2(‖x‖2)p

M2− 1
p

,

gij = 1
2(F 2)xixj = 2ε(p− 1)xixj(‖x‖2)p−2(‖z‖2)p

M2− 1
p

,

gr+k,r+l = 1
2(F 2)zkzl = 2ε(p− 1)zkzl(‖x‖2)p(‖z‖2)p−2

M2− 1
p

,

gi,r+k = 1
2(F 2)xizk = −2ε(p− 1)xizk(‖x‖2)p−1(‖z‖2)p−1

M2− 1
p

.

For the later use, we calculate already now the components of the vector obtained
by the contraction gY (Y, .), which are

∑r
i=1 xigij +

∑s
k=1 zkgr+k,j for j = 1 . . . r

and
∑r
i=1 xigi,r+l +

∑s
k=1 zkgr+k,r+l for l = 1 . . . s, respectively. We obtain the

components of this vector in the form

(3)
(
xj + εxj(‖x‖2)p−1

M1− 1
p

, zl + εzl(‖z‖2)p−1

M1− 1
p

)
.

Here components for j = 1, . . . , r are followed by the components for l = 1, . . . , s.
We shall use this formula later in the application of geodesic lemma.

4. Geodesic graphs

4.1. Dim(z)=1. We consider first the 5-dimensional modified H-type group with
1-dimensional center and two 2-dimensional z-modules vi. Let us consider the
Lie algebra n with the scalar product 〈 , 〉 determined by the orthonormal basis
B = {E1, . . . , E4, Z} and generated by the nontrivial relations

[E1, E2] = Z , [E3, E4] = µZ , µ > 0 .
We obtain the 1-parameter family of modified H-type algebras and corresponding
modified H-type groups (N,α) with the invariant Riemannian metric induced by
the above scalar product, in the sense of J. Lauret [15]. Let us further denote by
Aij the elementary operators on n with the action generated by the relations

Aij(Ei) = Ej , Aij(Ej) = −Ei , Aij(Ek) = 0 , i < j , i 6= k 6= j .
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It is easy to verify that the operatorsD1 = A12 andD2 = A34 act as skew-symmetric
derivations on n. Because these two operators commute, it holds h = span(D1, D2) '
so(2)×so(2). We put g = n+h and we express each group N in the form N = G/H,
where H = SO(2)× SO(2) and G = N oH.

We now introduce a Finsler metric on each group N , by the function F in
formula (2) with respect to the basis B. Obviously, for ε = 0, it reduces to the
norm determined by the Riemannian metric α above. The isometry group of the
Finsler manifold (M,F ) is also G = N oH, see for example [19].

We shall describe first the geodesic graph in the reductive decomposition g =
n + h. We put Y = X + ξ(X), where X = x1E1 + · · · + x4E4 + zZ ∈ n and
ξ(X) = ξ1D1 + ξ2D2 ∈ h, where ξ1, ξ2 will be determined to satisfy the geodesic
lemma. We write down the Lie brackets

[X + ξ(X), E1]n = −x2Z + ξ1E2 ,

[X + ξ(X), E2]n = x1Z − ξ1E1 ,

[X + ξ(X), E3]n = −x4µZ + ξ2E4 ,

[X + ξ(X), E4]n = x3µZ − ξ2E3 .(4)

Now we use geodesic lemma, where we substitute, step by step, U = E1, . . . , E4, Z.
Using expressions (4) and formula (3), we obtain the system of five equations,
which reduces to the system of two equations

ξ1

(
1 + ε

(‖x‖2)p−1

M1− 1
p

)
= z
(

1 + ε
z2(p−1)

M1− 1
p

)
,

ξ2

(
1 + ε

(‖x‖2)p−1

M1− 1
p

)
= µz

(
1 + ε

z2(p−1)

M1− 1
p

)
.

As the unique solution, we obtain the compoments of the geodesic graph

ξ1 = z
M1− 1

p + εz2(p−1)

M1− 1
p + ε(‖x‖2)p−1

,

ξ2 = µz
M1− 1

p + εz2(p−1)

M1− 1
p + ε(‖x‖2)p−1

.(5)

For ε = 0 or for p = 1, our Finsler metric is Riemannian and geodesic graph
reduces to the linear map with components ξ1 = z, ξ2 = µz. The existence of a
linear geodesic graph is equivalent with the natural reductivity of the Riemannian
metric. However, the decomposition g = n + h above is not the naturally reductive
one. We are now going to construct the geodesic graph in the naturally reductive
decomposition of the underlying Riemannian metric α. We define Z̃ = Z +A12 +
µA34 and we put n′ = span(E1, . . . , E4, Z̃). The nontrivial Lie brackets with respect
to n′ are

[E1, E2]n′ = Z̃ , [E3, E4]n′ = µZ̃
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and

[E1, Z̃]n′ = −E2, [E2, Z̃]n′ = E1 ,

[E3, Z̃]n′ = −µE4, [E4, Z̃]n′ = µE3 .

Now g = n′ + h is the naturally reductive decomposition, as we will see later.
We put again Y = X + ξ(X), where X = x1E1 + · · · + x4E4 + z̃Z̃ ∈ n′ and
ξ(X) = ξ1D1 + ξ2D2 ∈ h; ξ1, ξ2 to be determined. We write down the Lie brackets

[X + ξ(X), E1]n′ = −x2Z̃ + z̃E2 + ξ1E2 ,

[X + ξ(X), E2]n′ = x1Z̃ − z̃E1 − ξ1E1 ,

[X + ξ(X), E3]n′ = −x4µZ̃ + z̃µE4 + ξ2E4 ,

[X + ξ(X), E4]n′ = x3µZ̃ − z̃µE3 − ξ2E3 .(6)
Now we use again geodesic lemma, where we substitute, step by step, U =
E1, . . . , E4, Z̃. Using expressions (6) and formula (3), we obtain the system of
five equations

ξ1x2

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
= x2z̃

(
1 + ε

z̃2(p−1)

M̃1− 1
p

)
− z̃x2

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
,

ξ1x1

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
= x1z̃

(
1 + ε

z̃2(p−1)

M̃1− 1
p

)
− z̃x1

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
,

ξ2x4

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
= µx4z̃

(
1 + ε

z̃2(p−1)

M̃1− 1
p

)
− µz̃x4

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
,

ξ2x3

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
= µx3z̃

(
1 + ε

z̃2(p−1)

M̃1− 1
p

)
− µz̃x3

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
,

the last equation is satisfied identically. Here M̃ =
(∑r

i=1 x
2
i

)p + z̃2p. This system
simipifies into the system of two equations

ξ1

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
= εz̃

( z̃2(p−1)

M̃1− 1
p

− (‖x‖2)p−1

M̃1− 1
p

)
,

ξ2

(
1 + ε

(‖x‖2)p−1

M̃1− 1
p

)
= εµz̃

( z̃2(p−1)

M̃1− 1
p

− (‖x‖2)p−1

M̃1− 1
p

)
.

The components of the geodesic graph are obtained as the unique solution of this
system, which is

ξ1 = εz̃
z̃2(p−1) − (‖x‖2)p−1

M̃1− 1
p + ε(‖x‖2)p−1

,

ξ2 = εµz̃
z̃2(p−1) − (‖x‖2)p−1

M̃1− 1
p + ε(‖x‖2)p−1

.(7)

For ε = 0 or for p = 1, we obtain the zero map ξ, which is always the case in the
naturally reductive decomposition of any naturally reductive Riemannian metric.
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Comparing formulas (7) with formulas (5), we conclude that the naturally
reductive decomposition of the underlying Riemannian metric probably does not
have any distinguished properties in Finsler geometry, in contrast to Riemannian
geometry. From the algebraic point of view, the complexity formulas (7) and (5) is
comparable, for general values of parameters ε 6= 0 and p > 1.

4.2. Dim(z)=2. Let us consider the Lie algebra n with the scalar product 〈 , 〉
determined by the orthonormal basis {E1, . . . , E4, Z1, Z2} and generated by the
nontrivial relations

[E1, E2] = 0 , [E2, E3] = bZ1 + cZ2 ,

[E1, E3] = aZ1 , [E2, E4] = −aZ1 ,

[E1, E4] = bZ1 + cZ2 , [E3, E4] = 0
for arbitrary parameters a, b, c ∈ R. We have the 3-parameter family of modified
H-type algebras in the sense of J. Lauret [15]. Some of these modified H-type
algebras are isometric, because in [15], the modified H-type metrics in this case
form a 2-parameter family. However, we keep this notation from [12] to keep
the possibility to compare formulas for our new geodesic graphs with formulas
for Riemannian metrics in [12] and formulas for the Randers metrics in [9]. We
denote by (N,α) the modified H-type groups with the invariant Riemannian metric
corresponding to Lie algebras n with the scalar product 〈 , 〉. The skew-symmetric
derivations on n are

D1 = A12 −A34 ,

D2 = A13 +A24 ,

D3 = A14 −A23 .

If a2 = c2 and b = 0, then also the operator D4 = 2B12 +A12 +A34 is the derivation
on n. It can be shown that a component of any geodesic graph to this operator
is zero. Hence put h = span(D1, . . . , D3) for all groups N . If we write down the
commutator relations for these operators, we easily verify that h ' su(2). We put
g = n + h and we consider the homogeneous space N = G/H, where H = SU(2)
and G = N oH.

We now introduce a Finsler metric on each group N , again by the function F
in formula (2) with respect to the basis B. Obviously, for ε = 0, it reduces to the
norm determined by the Riemannian metric α above. The isometry group of any
Finsler manifold (M,F ) is again G = N oH.

We construct the geodesic graph now. The homogeneous space N = G/H
with the Riemannian metric α is not naturally reductive and we shall work in
the reductive decomposition g = n + h. We put again Y = X + ξ(X), where
X = x1E1 + · · ·+ x4E4 + z1Z1 + z2Z2 ∈ n and ξ(X) = ξ1D1 + · · ·+ ξ3D3 ∈ h. The
Lie brackets are now

[X + ξ(X), E1] = −x3aZ1 − x4(bZ1 + cZ2) + ξ1E2 + ξ2E3 + ξ3E4 ,

[X + ξ(X), E2] = −x3(bZ1 + cZ2) + x4aZ1 − ξ1E1 + ξ2E4 − ξ3E3 ,



GEODESICS IN WEAKLY SYMMETRIC FINSLER METRICS 273

[X + ξ(X), E3] = x1aZ1 + x2(bZ1 + cZ2)− ξ1E4 − ξ2E1 + ξ3E2 ,

[X + ξ(X), E2] = x1(bZ1 + cZ2)− x2aZ1 + ξ1E3 − ξ2E2 − ξ3E1 .(8)

We use again geodesic lemma for U = E1, . . . , E4, Z1, Z2, expressions (8) and
formula (3). We obtain the system of equations(

1+ε (‖x‖2)p−1

M1− 1
p

)
[−ξ1x2−ξ2x3−ξ3x4] =

(
1+ε (‖z‖2)p−1

M1− 1
p

)
[−(x3a+ x4b)z1−x4cz2] ,(

1+ε (‖x‖2)p−1

M1− 1
p

)
[ξ1x1−ξ2x4+ξ3x3] =

(
1+ε (‖z‖2)p−1

M1− 1
p

)
[(x4a−x3b)z1−x3cz2] ,

(1+ε (‖x‖2)p−1

M1− 1
p

)[ξ1x4+ξ2x1−ξ3x2] =
(

1+ε (‖z‖2)p−1

M1− 1
p

)
[(x1a+x2b)z1+x2cz2] ,(

1+ε (‖x‖2)p−1

M1− 1
p

)
[−ξ1x3+ξ2x2+ξ3x1] =

(
1+ε (‖z‖2)p−1

M1− 1
p

)
[(−x2a+x1b)z1+x1cz2] .

The last two equations, for U = Zi, are satisfied identically. The rank of this system
is equal to 3 and using the Cramer’s rule, we obtain the unique solution

ξ1 =
M

1− 1
p + ε(‖z‖2)p−1

M
1− 1
p + ε(‖x‖2)p−1

·
2az1(x1x4 + x2x3) + 2

[
bz1 + cz2

]
(x2x4 − x1x3)

x2
1 + · · ·+ x2

4
,

ξ2 =
M

1− 1
p + ε(‖z‖2)p−1

M
1− 1
p + ε(‖x‖2)p−1

·
az1(x2

1 − x
2
2 + x2

3 − x
2
4) + 2

[
bz1 + cz2

]
(x1x2 + x3x4)

x2
1 + · · ·+ x2

4
,

ξ3 =
M

1− 1
p + ε(‖z‖2)p−1

M
1− 1
p + ε(‖x‖2)p−1

·
2az1(x3x4 − x1x2) +

[
bz1 + cz2

]
(x2

1 − x
2
2 − x

2
3 + x2

4)

x2
1 + · · ·+ x2

4
.(9)

These formulas determine the geodesic graph. For ε = 0, the factor

t = M1− 1
p + ε(‖z‖2)p−1

M1− 1
p + ε(‖x‖2)p−1

= 1 + ε(‖z‖2)p−1M
1
p−1

1 + ε(‖x‖2)p−1M
1
p−1

in these formulas is equal to 1 and the geodesic graph reduces to the Riemannian
geodesic graph as in [12].

5. Conclusions

From the viewpoint of homogeneous geodesics in Riemannian geometry, the
naturally reductive decomposition for the Riemannian metric is a distinguished one.
The complexity of geodesic graphs given by formulas (5) and (7) above illustrate
that probably there is no hope for such a nice property for general Finsler g.o.
metrics, even if the underlying Riemannian metric is naturally reductive. The
reader can also check geodesic graphs for Randers g.o. metrics on these H-type
groups in [9], which also confirm this conclusion.

All geodesic graphs presented in this paper illustrate the fact that a vector
X +D, where X ∈ n and D ∈ h, is geodesic vector of the Riemannian metric α if
and only if X+ tD is geodesic vector for the Finsler metric F given by formulas (2).
This fact was observed in [19], see Lemma 5.10, Theorem 5.11 and Corollary 5.12
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there. We point a mistake in Lemma 5.10, where η and δ should be exchanged and
the correct formula is t = δ/η and not t = η/δ, in the notation of [19].

On the other hand, the factor t in formula (9) above is algebraically rather
complicated function. Comparing geodesic graphs (5), (7) and (9) here and geodesic
graphs of Randers g.o. metrics in [9], we conclude that there is probably not a
straightforward way how to generalize the concept of the degree of the geodesic
graph from Riemannian geometry to Finsler geometry, to fit well at least for these
two special situations. For the moment, we can at least observe certain patterns
which appear in the special situations of Randers metrics, or weakly symmetric
metrics, respectively.
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