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GLOBAL SOLVABILITY CRITERIA FOR QUATERNIONIC
RICCATI EQUATIONS

G.A. Grigorian

Abstract. Some global existence criteria for quaternionic Riccati equations
are established. Two of them are used to prove a completely non conjugation
theorem for solutions of linear systems of ordinary differential equations.

1. Introduction

Let a(t), b(t), c(t) and d(t) be continuous quaternionic valued functions on
[t0; +∞), i.e.: a(t) ≡ a0(t) + ia1(t) + ja2(t) + ka3(t), b(t) ≡ b0(t) + ib1(t) + jb2(t) +
kb3(t), c(t) ≡ c0(t) + ic1(t) + jc2(t) + kc3(t), d(t) ≡ d0(t) + id1(t) + jd2(t) + kd3(t),
where an(t), bn(t), cn(t), dn(t) (n = 0, 3) are real valued continuous functions on
[t0; +∞), i, j, k are the imaginary unities satisfying the conditions

(1.1) i2 = j2 = k2 = ijk = −1 , ij = −ji = k .

Consider the quaternionic Riccati equation

(1.2) q′ + qa(t)q + b(t)q + qc(t) + d(t) = 0 , t ≥ t0 .

Here q = q(t) is the unknown continuously differentiable quaternionic valued
function. Currently, there is a growing interest in quaternionic differential equations,
in particular, in Eq. (1.2) in connection with their various applications (see e.g.,
[3]–[9]). Criteria for the existence of periodic (and, therefore, global) solutions of Eq.
(1.2) with periodic coefficients were obtained in [1, 10]. Explicit global existence
criteria for complex solutions of Eq. (1.2) in the case of its complex coefficients
were obtained in [7].

In this paper some global existence criteria for scalar quaternionic Riccati
equations are obtained. Two of them are used to prove a completely non conjugation
theorem for solutions of linear systems of ordinary differential equations.
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2. Auxiliary propositions

Substituting q = q0 − iq1 − jq2 − kq3 in (1.2), where q0 is the real and −qn(1, 3)
are the imaginary parts of q, and separating the real and imaginary parts we come
to the following nonlinear system

(2.1)



q′0 + a0(t)q2
0 + {b0(t) + c0(t) + 2[a1(t)q1 + a2(t)q2 + a3(t)q3]}q0

− P (t, q1, q2, q3) = 0 ;

q′1 + a1(t)q2
1 + {b0(t) + c0(t) + 2[a0(t)q0 + a2(t)q2 + a3(t)q3]}q1

−Q(t, q0, q2, q3) = 0 ;

q′2 + a2(t)q2
2 + {b0(t) + c0(t) + 2[a0(t)q0 + a1(t)q1 + a3(t)q3]}q2

−R(t, q0, q1, q3) = 0 ;

q′3 + a3(t)q2
3 + {b0(t) + c0(t) + 2[a0(t)q0 + a1(t)q1 + a2(t)q2]}q3

− S(t, q0, q1, q2) = 0 ;

where

P (t, q1, q2, q3) ≡ a0(t)[q2
1 + q2

2 + q2
3 ]− (b1(t) + c1(t))q1 − (b2(t) + c2(t))q2 − (b3(t)

+ c3(t))q3 − d0(t) ;

Q(t, q0, q2, q3) ≡ a1(t)[q2
0 + q2

2 + q2
3 ] + (b1(t) + c1(t))q0 + (b3(t)− c3(t))q2 − (b2(t)

− c2(t))q3 + d1(t) ;

R(t, q0, q1, q3) ≡ a2(t)[q2
0 + q2

1 + q2
3 ] + (b2(t) + c2(t))q0 − (b3(t)− c3(t))q1 + (b1(t)

− c1(t))q3 + d2(t) ;

S(t, q0, q1, q2) ≡ a3(t)[q2
0 + q2

1 + q2
2 ] + (b3(t) + c3(t))q0 + (b2(t)− c2(t))q1 − (b1(t)

− c1(t))q2 + d3(t) ;

t ≥ t0. Consider the square matrices

E ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , I ≡


0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −1 0

 ,

J ≡


0 0 1 0
0 0 0 −1
−1 0 0 0

0 1 0 0

 , K ≡


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .

It is not difficult to check that I2 = J2 = K2 = IJK = −E, IJ = −JI = K.
Then by (1.1) there is an one to one correspondence between the quaternions
m ≡ m0 + im1 + jm2 + km3 and the matrices of the form M ≡ m0E + m1I +
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m2J +m3K:

(2.2) m ≡ m0 + im1 + jm2 + km3 ↔M ≡


m0 m1 m2 −m3
−m1 m0 −m3 −m2
−m2 m3 m0 m1
m3 m2 −m1 m0


The matrix M corresponding to the quaternion m by the rule (2.2) we will call the
symbol of the quaternion m and will denote by m̂.

Let A(t), B(t), C(t) and D(t) be the symbols of a(t), b(t), c(t) and d(t) respec-
tively. Consider the matrix Riccati equation
(2.3) Y ′ + Y A(t)Y +B(t)Y + Y C(t) +D(t) = 0 , t ≥ t0 .
By (2.2) the solutions q(t) of Eq. (1.2), existing on some interval [t1; t2) (t0 ≤ t1 <
t2 ≤ +∞), are connected wit solutions Y (t) of Eq. (2.3) by equalities

(2.4) q̂(t) = Y (t) , t ∈ [t1; t2), q̂(t1) = Y (t1) .
Along with Eq. (2.3) consider the system of matrix equations

(2.5)
{

Φ′ = C(t)Φ +A(t)Ψ ;

Ψ′ = −D(t)Φ−B(t)Ψ , t ≥ t0 .

Here Φ ≡ Φ(t), Ψ ≡ Ψ(t) are the unknown continuously differentiable matrix
functions of dimension 4× 4 on [t0; +∞). Let Y0(t) be a solution of Eq. (2.3) on
[t1; t2). The substitution
(2.6) Ψ = Y0(t)Φ , t ∈ [t1; t2) ,
in (2.5) leads to the system{

Φ′ = [A(t)Y0(t) + C(t)]Φ ;
[Y ′0(t) + Y0(t)A(t)Y0(t) +B(t)Y0(t) + Y0(t)C(t) +D(t)]Φ = 0 t ∈ [t1; t2).

Therefore (Φ0(t), Y0(t)Φ0(t)) is a solution of the system (2.5) on [t1; t2), where
Φ0(t) is a solution to the following matrix equation
(2.7) Φ′ = [A(t)Y0(t) + C(t)]Φ , t ∈ [t1; t2) .
Let Y (t) (q(t)) be a solution to Eq. (2.3) (to Eq. (1.2)) on [t1; t2).

Definition 2.1. The set [t1; t2) is called the maximum existence interval for the
solution Y (t) of Eq. (2.3) (for the solution q(t) of Eq. (1.2)), if Y (t) (q(t)) cannot
be continued to the right from t2.

Lemma 2.1. Let Y (t) be a solution of Eq. (2.3) on [t1; t2) (t0 ≤ t1 < t2 < +∞).
Then [t1; t2) is not the maximum existence interval for Y (t) provided the function

f0(t) ≡
t∫

t0

tr [A(τ)Y (τ)]dτ , t ∈ [t1; t2) ,

is bounded from below on [t1; t2).
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Proof. Let Φ(t) be a solution to the matrix equation

Φ′ = [A(t)Y (t) + C(t)]Φ , t ∈ [t1; t2) , with

(2.8) det Φ(t1) 6= 0 .

By (2.6) and (2.7), (Φ(t), Y (t)Φ(t)) is a solution to the system (2.5) on [t1; t2)
which can be continued on [t0; +∞) as a solution (Φ(t),Ψ(t)) of the system (2.5).
According to the Liouville’s formula (see [8, p. 46, Theorem 1.2]) we have:

det Φ(t) = det Φ(t1) exp
{ t∫
t0

tr [A(τ)Y (τ) + C(τ)]dτ
}
, t ∈ [t1; t2) .

From here from the conditions of lemma and from (2.8) it follows that det Φ(t) 6=
0, t ∈ [t1; t3), for some t3 > t2. Then by (2.6) and (2.7) the matrix function
Ỹ (t) ≡ Ψ(t)Φ−1(t), t ∈ [t1; t3), is a solution to Eq. (2.3) on [t1; t3). Obviously
Ỹ (t) coincides with Y (t) on [t1; t2). Therefore [t1; t2) is not the maximum existence
interval for Y (t).
The lemma is proved. �

Let f(t), g(t), h(t), f1(t), g1(t), h1(t) be real valued continuous functions on
[t0; +∞). Consider the Riccati equations

y′ + f(t)y2 + g(t)y + h(t) = 0 , t ≥ t0 ;(2.9)

y′ + f1(t)y2 + g1(t)y + h1(t) = 0 , t ≥ t0 .(2.10)

and the differential inequalities

y′ + f(t)y2 + g(t)y + h(t) ≥ 0 , t ≥ t0 ;(2.11)

y′ + f1(t)y2 + g1(t)y + h1(t) ≥ 0 , t ≥ t0 .(2.12)

Remark 2.1. For f(t) ≥ 0, t ≥ t0, every solution of the linear equation y′+g(t)y+
h(t) = 0 on [t0; τ0) (t0 < τ0 ≤ +∞) is a solution of the inequality (2.11) on [t0; τ0).

Remark 2.2. Every solution of Eq. (2.10) on [t0; τ0) (t0 < τ0 ≤ +∞) is also a
solution of the inequality (2.12) on [t0; τ0).

Theorem 2.1. Let Eq. (2.10) has a real solution y1(t) on [t0; τ0) (τ0 ≤ +∞), and
let the following conditions be satisfied: f(t) ≥ 0,

t∫
t0

exp
{ τ∫
t0

[
f(s)(η0(s) + η1(s)) + g(s)

]
ds
}

×
[
(f1(τ)− f(τ))y2

1(τ) + (g1(τ)− g(τ))y1(τ) + h1(τ)− h(τ)
]
dτ ≥ 0 ,

t ∈ [t0; τ0) .

where η0(t) and η1(t) are solutions of the inequalities (2.11) and (2.12) on [t0; τ0)
such that ηj(t0) ≥ y1(t0), j = 0, 1. Then for every γ0 ≥ y1(t0) Eq. (2.9) has a
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solution y0(t) on [t0; τ0), satisfying the initial conditions y0(t0) = γ0, and y0(t) ≥
y1(t), t ∈ [t0; τ0).

This theorem is proved in [4] (see [4, Theorem 3.1]).
Let t0 < t1 < · · · be a finite or infinite sequence such that tm ∈ [t0; τ0]

(t0 < τ0 ≤ +∞). We assume that if {tm} is finite then max{tm} = τ0 otherwise
lim

m→+∞
tm = τ0. Denote:

Ig,h(ξ, t) ≡
t∫
ξ

exp
{
−

t∫
τ

g(s)ds
}
h(τ)dτ , t ≥ ξ ≥ t0.

Theorem 2.2. Let f(t) ≥ 0, t ∈ [t0; τ0), and
t∫

tk

exp
{ τ∫
tk

[
g(s)− f(s)Ig,h(tk, s)

]
ds
}
h(τ)dτ ≤ 0 , t ∈ [tk; tk+1), k = 1, 2, . . . .

Then for every γ0 ≥ 0 Eq. (2.9) has a solution y0(t) on [t0; τ0) satisfying the initial
condition y0(t0) = γ0 and y0(t) ≥ 0, t ∈ [t0; τ0).

This theorem is proved in [5] (see [5, Theorem 4.1]).

Theorem 2.3. Let α(t) and β(t) be continuously differentiable on [t0; τ0) functions
and α(t) > 0, β(t) > 0, t ∈ [t0; τ0);
A) 0 ≤ f(t) ≤ α(t), h(t) ≤ β(t), t ∈ [t0; τ0);

B) g(t) ≥ 1
2
[α′(t)
α(t) −

β′(t)
β(t)

]
+ 2
√
α(t)β(t), t ∈ [t0; τ0).

Then for every γ0 ≥ −
√

β(t0)
α(t0) Eq. (2.9) has a solution y0(t) on [t0; τ0) with y0(t0) =

γ0 and

y0(t) ≥ −

√
β(t)
α(t) , t ∈ [t0; τ0) .

This theorem is proved in [6] (see [6, Theorem 8]).

Theorem 2.4. Let α(t) and β(t) be the same as in Theorem 2.3. If assumption A
of Theorem 2.3 and the inequality

D) g(t) ≤ 1
2
[α′(t)
α(t) −

β′(t)
β(t)

]
− 2
√
α(t)β(t), t ∈ [t0; τ0),

are valid, then for every γ0 ≥
√

β(t0)
α(t0) Eq. (2.9) has a solution y0(t) on [t0; τ0) with

y0(t0) = γ0 and

y0(t) ≥

√
β(t)
α(t) , t ∈ [t0; τ0) .

This theorem is proved in [6] (see [6, Theorem 7]).

Theorem 2.5. Let αm(t) and βm(t), m = 1, 2, be continuously differentiable
functions on [t0; τ0), and let (−1)mαm(t) > 0, (−1)mβm(t) > 0, t ∈ [t0; τ0),
m = 1, 2. If:
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E) α1(t) ≤ f(t) ≤ α2(t), β1(t) ≤ h(t) ≤ β2(t), t ∈ [t0; τ0);

F) g(t) ≥ 1
2
(α′m(t)
αm(t) −

β′m(t)
βm(t)

)
+ 2(−1)m

√
αm(t)βm(t), t ∈ [t0; τ0), m = 1, 2,

then for any y(0) ∈
[
−
√

β2(t0)
α2(t0) ;

√
β1(t0)
α1(t0)

]
Eq. (2.9) has a solution y0(t) on [t0; τ0)

satisfying the initial condition y0(t0) = y(0), and

−

√
β2(t)
α2(t) ≤ y0(t) ≤

√
β1(t)
α1(t) , t ∈ [t0; τ0) .

This theorem is proved in [5] (see [5, Theorem 4.2]).

Let p, q, r, s, l be real numbers and let ε > 0.

Definition 2.2. The ordered fiver (p, q, r, s, l) is called ε-semi definite positive if:
1) p > 0, l > 0;
2) max{q, r, s} ≥

√
l + ε or

0 ≤ min{q, r, s} ≤ max{q, r, s} ≤
√
l + ε and

q2 + r2 + s2 ≥ l + ε.

Remark 2.3. From the geometrical point of view the relations 1) and 2) mean
that the ball of radius

√
l + ε with its center in the point (q, r, s) may be located

in any such position in the space of coordinates x, y, z, that its intersection with
the octant x > 0, y > 0, z > 0 is empty.

Consider the quadratic form

W (x, y, z) ≡ p
[(
x+ q

2p

)2
+
(
y+ r

2p

)2
+
(
z+ s

2p

)2]
− l

4p , x, y, z ∈ (−∞; +∞) .

Lemma 2.2. If for some ε > 0 the ordered fiver (p, q, r, s, l) is ε-semi definite
positive then for every x ≥ 0, y ≥ 0, z ≥ 0 the inequality

W (x, y, z) ≥ ε/4p
is satisfied.

Proof. For every x ≥ 0, y ≥ 0, z ≥ 0 we have: if max{q, r, s} ≥
√
l + ε, then

W (x, y, z) ≥ p l+ε4p2 − l
4p = ε

4p , and if 0 ≤ min{q, r, s} ≤ max{q, r, s} ≤
√
l + ε, then

since q ≥ 0, r ≥ 0, s ≥ 0, we will get: W (x, y, z) ≥ p
(
q2

4p2 + r2

4p2 + s2

4p2

)
− l

4p ≥
l+ε
4p −

l
4p = ε

4p .
The lemma is proved. �

3. Global solvability criteria

In this section we study the global solvability conditions of Eq. (1.2) in the
case when an(t) ≥ 0, t ≥ t0, n = 0, 3. The cases when (−1)mnan(t) ≥ 0, t ≥ t0,
mn = 0, 1, n = 0, 3, m0 + m1 + m2 + m3 > 0 are reducible to the studying one
by the simple transformations q → −q, q → q, q → iq, q → jq, q → kq and their
combinations in (1.2). Denote:
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p0,m(t) ≡ bm(t) + cm(t), m = 1, 3, p1,1(t) ≡ b1(t) + c1(t), p1,2(t) ≡ b2(t)− c2(t),
p1,3(t) ≡ b3(t)− c3(t), p2,1(t) ≡ b1(t)− c1(t), p2,2(t) ≡ b2(t) + c2(t), p2,3(t) ≡
b3(t)− c3(t), p3,m(t) ≡ bm(t)− cm(t), m = 1, 3, t ≥ t0.

D0(t) ≡


3∑

m=1
p2

0,m(t) + 4a0(t)d0(t), if a0(t) 6= 0 ;

4d0(t) if a0(t) = 0 ,

Dn(t) ≡


3∑

m=1
p2
n,m(t)− 4an(t)dn(t) , if an(t) 6= 0 ;

−4dn(t) if an(t) = 0 ,
n = 1, 3, t ≥ t0 .

Let S be a nonempty subset of the set {0, 1, 2, 3} and let O be its complement,
i.e., O = {0, 1, 2, 3}\S.

Theorem 3.1. Assume an(t) ≥ 0, n ∈ S and if an(t) = 0 then pn,m(t) = 0,
m = 1, 3, n ∈ S; an(t) ≡ 0, n ∈ O, Dn(t) ≤ 0, n ∈ S, t ≥ t0.

Then for every γn ≥ 0, n ∈ S, γn ∈ (−∞; +∞)G, n ∈ O, Eq. (1.2) has
a solution q(t) ≡ q0(t) − iq1(t) − jq2(t) − kq3(t) on [t0; +∞) with qn(t0) = γn,
n = 0, 3 and

(3.1) qn(t) ≥ 0 , n ∈ S , t ≥ t0 .

Moreover if for some n ∈ S, γn > 0, then also qn(t) > 0.

Proof. Let [t0;T ) be the maximum existence interval for the solution q(t) ≡
q0(t)−iq1(t)−jq2(t)−kq3(t) of Eq. (1.2) satisfying the initial conditions qn(t0) = γn,
n = 0, 3 (existence of [t0;T ) follows from the theory of normal systems of ordinary
differential equations and from (2.1)). Show that

(3.2) qn(t) ≥ 0 , t ∈ [t0;T ) , n ∈ S .

Let us prove the theorem in the case when 0 ∈ S. The proof of the theorem for
other nonempty S can be proved by analogy. Consider the Riccati equations

x′ + a0(t)x2 +
{
b0(t) + c0(t) + 2

[
a1(t)q1(t) + a2(t)q2(t) + a3(t)q3(t)

]}
x

− P (t, q1(t), q2(t), q3(t)) = 0 , t ∈ [t0;T ) ,(3.3)

x′ + a0(t)x2 +
{
b0(t) + c0(t) + 2

[
a1(t)q1(t) + a2(t)q2(t) + a3(t)q3(t)

]}
x

= 0 , t ∈ [t0;T ) .(3.4)

From the conditions of the theorem it follows that P (t, q1(t), q2(t), q3(t)) ≥ 0,
t ∈ [t0;T ). Then using Theorem 2.1 to the equations (3.3) and (3.4) we conclude
that the solution x(t) of Eq. (3.3) with x(t0) = γ0 ≥ 0 exists on [t0;T ) and is
non negative (since x1(t) ≡ 0 is a solution to Eq. (3.4) on [t0;T )). Obviously q0(t)
is a solution of Eq. (3.3). Hence q0(t) = x(t) ≥ 0, t ∈ [t0;T ). By analogy can
be proved the remaining inequalities (3.2). By (2.4) Y (t) ≡ q̂(t), t ∈ [t0;T ), is a
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solution of Eq. (2.3) on [t0;T ). Then it is not difficult to verify that tr[A(t)Y (t)] =
3∑

n=0
an(t)qn(t) =

∑
n∈S

an(t)qn(t), t ∈ [t0;T ). From here and from (3.2) we have:

(3.5) tr [A(t)Y (t)] ≥ 0 , t ∈ [t0;T ) .
Show that
(3.6) T = +∞ .

Suppose T < +∞. Then by virtue of Lemma 2.1 from (3.5) it follows that [t0;T ) is
not the maximum existence interval for Y (t). Therefore [t0;T ) is not the maximum
existence interval for q(t). The obtained contradiction proves (3.6). From (3.6)
and (3.2) it follows (3.1). Assume γ0 > 0. By already proven the solution x̃(t) of
Eq. (3.3) with x̃(t0) = 0 exists on [t0; +∞) and is nonnegative. Then by virtue of
Theorem 2.1 the solution x(t) of Eq. (3.3) with x(t0) = γ0 > 0 exists on [t0; +∞)
and x(t) 6= x̃(t), t ≥ t0. Therefore x(t) > 0, t ≥ t0. Obviously x(t) ≡ q0(t), t ≥ t0.
Hence q0(t) > 0, t ≥ t0. By analogy it can be shown that if γn > 0 for some other
n ∈ S, then also qn(t) > 0, t ≥ t0.
The theorem is proved. �

Remark 3.1. Theorem 3.1 is a generalization of Theorem 3.1 of work [7].

Set: L0(t) ≡
(
a0(t),−b1(t)− c1(t),−b2(t)− c2(t),−b3(t)− c3(t), D0(t)

)
;

L1(t) ≡
(
a1(t), b1(t) + c1(t),−b2(t) + c2(t), b3(t)− c3(t), D1(t)

)
;

L2(t) ≡
(
a2(t), b1(t)− c1(t), b2(t) + c2(t), b3(t)− c3(t), D2(t)

)
;

L3(t) ≡
(
a3(t),−b1(t) + c1(t), b2(t)− c2(t), b3(t) + c3(t), D3(t)

)
.

Theorem 3.2. Let for some ε > 0 and for every t ≥ t0 the ordered fivers Ln(t),
n = 0, 3 be ε-semi definite positive. Then for every γn > 0, n = 0, 3, Eq. (1.2)
has a solution q(t) ≡ q0(t)− iq1(t)− jq2(t)− kq3(t) on [t0; +∞) with qn(t0) = γn,
n = 0, 3, and
(3.7) qn(t) > 0, t ≥ t0 , n = 0, 3 .

Proof. Let [t0;T ) be the maximum existence interval for the solution q(t) ≡
q0(t)− iq1(t)− jq2(t)− kq3(t) of Eq. (1.2) satisfying the initial conditions qn(t0) =
γn n = 0, 3. Show that
(3.8) qn(t) ≥ 0 , t ∈ [t0;T ) n = 0, 3 .
Set: T1 ≡ sup{t ∈ [t0;T ) : qn(t) ≥ 0, t ∈ [t0;T ) n = 0, 3}. Suppose (3.8) is not
true. Then (obviously T1 > t0)
(3.9) T1 < T .

On the other hand from the conditions of the theorem it follows that

P
(
t, q1(t), q2(t), q3(t)

)
≥ ε

4a0(t) , Q
(
t, q0(t), q2(t), q3(t)

)
≥ ε

4a1(t) ,

R
(
t, q0(t), q1(t), q3(t)

)
≥ ε

4a2(t) , S
(
t, q0(t), q1(t), q2(t)

)
≥ ε

4a3(t) , t ∈ [t0;T1) .
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By the continuity property of the functions P , Q, R, S, q0, q1, q2 and q3 it follows
that for some T2 > T1 (T2 < T ) the following inequalities are fulfilled:

(3.10)

P
(
t, q1(t), q2(t), q3(t)

)
≥ 0 ; Q

(
t, q0(t), q2(t), q3(t)

)
≥ 0 ,

R
(
t, q0(t), q1(t), q3(t)

)
≥ 0 ; S

(
t, q0(t), q1(t), q2(t)

)
≥ 0 ,

for all t ∈ [t0;T2). Consider on [t0;T2) the Riccati equations

x′ + a0(t)x2 + {b0(t) + c0(t) + 2[a1(t)q1(t) + a2(t)q2(t) + a3(t)q3(t)]}x
− P

(
t, q1(t), q2(t), q3(t)

)
= 0 ;(3.11)

x′ + a1(t)x2 + {b0(t) + c0(t) + 2[a0(t)q0(t) + a2(t)q2(t) + a3(t)q3(t)]}x
−Q

(
t, q0(t), q2(t), q3(t)

)
= 0 ;(3.12)

x′ + a2(t)x2 + {b0(t) + c0(t) + 2[a0(t)q0(t) + a1(t)q1(t) + a3(t)q3(t)]}x
−R

(
t, q0(t), q1(t), q3(t)

)
= 0 ;(3.13)

x′ + a3(t)x2 + {b0(t) + c0(t) + 2[a0(t)q0(t) + a1(t)q1(t) + a2(t)q2(t)]}x
− S

(
t, q0(t), q1(t), q2(t)

)
= 0 .(3.14)

Let x0(t), x1(t), x2(t) and x3(t) be the solutions of the equations (3.11), (3.12),
(3.13) and (3.14) respectively with xn(t0) = 0, n = 0, 3. By virtue of Theorem 2.1
from (3.10) it follows that xn(t), n = 0, 3, exist on [t0;T2) and are non negative.
Then since q0(t), q1(t), q2(t) and q3(t) are solutions of the equations (3.11), (3.12),
(3.13) and (3.14) on [t0;T2) and qn(t0) > xn(t0), n = 0, 3, the last functions (i.e.
qn(t), n = 0, 3) are also non negative on [t0;T2), which contradicts (3.9). The
obtained contradiction proves (3.8). By virtue of Lemma 2.2 from (3.8) and from
the conditions of the theorem it follows that on [t0;T ) the inequalities (3.10) are
fulfilled. Hence the solutions xn(t0) (n = 0, 3) exist on [t0;T ) and are non negative.
Obviously q0(t), q1(t), q2(t) and q3(t) are solutions of the equations (3.11), (3.12),
(3.13) and (3.14)) respectively on [t0;T ) and qn(t0) > xn(t0), n = 0, 3. Therefore
qn(t) > 0, t ∈ [t0;T ), n = 0, 3. Further, the proof of the theorem is carried out
similar to the proof of Theorem 3.1.
The theorem is proved. �

Theorem 3.3. Let a0(t) ≥ 0, an(t) ≡ 0, n = 1, 3, t ≥ t0, and

t∫
tm

exp
{ t∫
tm

[
b0(s) + c0(s)− Ib0+c0,D0(tm, s)

]
ds
}
D0(τ)dτ ≤ 0 ,

t ∈ [tm; tm+1) , m = 0, 1, . . .

Then for every γ0 ≥ 0, γn ∈ (−∞; +∞), n = 1, 3, Eq. (1.2) has a solution
q(t) ≡ q0(t)− iq1(t)− jq2(t)− kq3(t) with qn(tn) = γn, n = 0, 3 on [t0; +∞) and

(3.15) q0(t) ≥ 0 , t ≥ t0 .
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Proof. Let q(t) ≡ q0(t)− iq1(t)− jq2(t)− kq3(t) be the solution of Eq. (1.2) with
qn(t0) = γn, n = 0, 3, and let [t0;T ) be the maximum existence interval for q(t).
Show that
(3.16) T = +∞ .

Consider the Riccati equation
(3.17) y′ + a0(t)y2 + [b0(t) + c0(t)]y +D0(t) = 0 , t ≥ t0 .
By Theorem 2.2 from the conditions of the theorem it follows that for every γ0 ≥ 0
this equation has a solution y0(t) on [t0; +∞) and y0(t) ≥ 0, t ≥ t0. Then using
Theorem 2.1 to Eq. (3.11) and Eq. (3.17) and taking into account the fact that
q0(t) is a solution to Eq. (3.11) we conclude that
(3.18) q0(t) ≥ y0(t) ≥ 0 , t ≥ t0 .
Suppose T < +∞. Then from (3.18) it follows that

tr[A(t)Y (t)] =
t∫

t0

a0(s)q0(s)ds ≥ 0 , t ∈ [t0;T ) .

By virtue of Lemma 2.1 from here it follows that [t0;T ) is not the maximum
existence interval for q(t) which contradicts our supposition. The obtained contra-
diction proves (3.16). From (3.16) and (3.18) it follows (3.15). The theorem is
proved. �

Remark 3.2. Unlike of the conditions of Theorem 3.1 and Theorem 3.2 the condi-
tions of Theorem 3.3 allow D0(t) to change sign in every [tm; tm+1),
m = 0, 1, . . . .

By use of Theorem 2.3 and Theorem 2.4 analogically can be proved the following
two theorems respectively.

Theorem 3.4. Let α(t) and β(t) be continuously differentiable on [t0; +∞) func-
tions and α(t) > 0, β(t) > 0, t ≥ t0,

(A1) 0 ≤ a0(t) ≤ α(t), D0(t) ≤ β(t), an(t) ≡ 0, n = 1, 3, t ≥ t0;

(B1) b0(t) + c0(t) ≥ 1
2

[
α′(t)
α(t) −

β′(t)
β(t)

]
+
√
α(t)β(t), t ≥ t0.

Then for every γ0 ≥ −
√

β(t0)
α(t0) , γn ∈ (−∞; +∞), n = 1, 3, Eq. (1.2) has a solution

q(t) ≡ q0(t)− iq1(t)− jq2(t)− kq3(t) on [t0; +∞) with qn(t0) = γn, n = 0, 3, and

q0(t) ≥ −

√
β(t)
α(t) , t ≥ t0 .

2

Theorem 3.5. Let α(t) and β(t) be the same as in Theorem 3.4. If assumption
(A1) of Theorem 3.4 and the inequality

(C1) b0(t) + c0(t) ≤ 1
2

[
α′(t)
α(t) −

β′(t)
β(t)

]
−
√
α(t)β(t), t ≥ t0,
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are valid. Then for every γ0 ≥
√

β(t0)
α(t0) , γn ∈ (−∞; +∞), n = 1, 3, Eq. (1.2) has

a solution q(t) ≡ q0(t) − iq1(t) − jq2(t) − kq3(t) on [t0; +∞) with qn(t0) = γn,
n = 0, 3, and

q0(t) ≥

√
β(t)
α(t) , t ≥ t0 .

2

4. The case when a0(t) may change sign

In this section we consider the case when a0(t) my change sign. Set:
√∑3

n=1(bn(t) + cn(t))2

a0(t)


0

≡


√∑3

n=1
(bn(t)+cn(t))2

a0(t) , if a0(t) 6= 0;
0 , if a0(t) = 0 ,

M(t) ≡
t∫

t0

‖
(
d1(τ), d2(τ), d3(τ)

)
‖dτ + 1

2 sup
τ∈[t0;t]


√∑3

n=1(bn(τ) + cn(τ))2

a0(τ)


0

,

RΓ(t) ≡ |a0(t)|(Γ + M(t))2 +
3∑

n=1
|bn(t) + cn(t)|(Γ + M(t)) , t ≥ t0 ,

where Γ > 0 is a parameter. For any quaternion q ≡ q0 + iq1 + jq2 + kq3 (qn ∈
R, n = 0.3), set [q]v ≡ (q1, q2, q3).

Theorem 4.1. Let αm(t) and βm(t), m = 1, 2 be the same as in Theorem 2.5.
If:

1) an(t) ≡ 0, n = 1, 3;

2) α1(t) ≤ a0(t) ≤ α2(t), β1(t) ≤ RΓ(t) + d0(t) ≤ β2(t), t ∈ [t0; τ0);

3) b0(t) + c0(t) ≥ 1
2
(α′m(t)
αm(t) −

β′m(t)
βm(t)

)
+ 2(−1)m

√
αm(t)βm(t), t ∈ [t0; τ0),

m = 1, 2;

4) b0(t) + c0(t) ≥ 2|a0(t)|RΓ(t), t ∈ [t0; τ0);

5) supp (bn(t) + cn(t)) ⊂ supp a0(t), n = 1, 3, the function[√∑3
n=1

(bn(t)+cn(t))2

a0(t)

]
0

is bounded on [t0; τ0) if τ0 < +∞ and is locally

bounded on [t0; τ0) if τ0 = +∞,

then for every γ0 ∈
[
−
√

β2(t0)
α2(t0) ;

√
β1(t0)
α1(t0)

]
, γn ∈ R, n = 1, 3, with ‖(γ1, γ2, γ3)‖ ≤ Γ

Eq. (1.1) has a solution q(t) ≡ q0(t)− iq1(t)− jq2(t)− kq3(t) on [t0; τ0) satisfying
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the initial conditions qn(t0) = γn, n = 0, 3, and

−

√
β2(t)
α2(t) ≤ q0(t) ≤

√
β1(t)
α1(t) , t ∈ [t0; τ0) ;(4.1)

‖[q(t)]v‖ ≤ ‖[q(t0)]v|+ M(t) , t ∈ [t0; τ0) .(4.2)

If τ0 < +∞ then q(t) is continuable on [t0; τ0].

Proof. Let q(t) ≡ q0(t)− iq1(t)− jq2(t)− kq3(t) be the solution of Eq. (1.1) with
qn(t0) = γn, n = 0, 3, and let [t0;T ) be the maximum existence interval for q(t).
We must show that

(4.3) T ≥ τ0 .

Under the restriction 1) the system (2.1) takes the form

(4.4)
{
q′0 + a0(t)q2

0 + {b0(t) + c0(t)}q0 − P (t, q1, q2, q3) = 0;

q̃ ′ + Lq0(t)q̃ − fq0(t) = 0 , t ≥ t0 ,

where

fq0(t) ≡
((
b1(t)+c1(t)

)
q0+d1(t),

(
b2(t)+c2(t)

)
q0+d2(t),

(
b3(t)+c3(t)

)
q0+d3(t)

)
,

Lq0(t) ≡b0(t) + c0(t) + 2a0(t)q0 c3(t)− b3(t) b2(t)− c2(t)
b3(t)− c3(t) b0(t) + c0(t) + 2a0(t)q0 c1(t)− b1(t)
c2(t)− b2(t) b1(t)− c1(t) b0(t) + c0(t) + 2a0(t)q0

 ,

t ≥ t0, q̃ ≡ (q1, q2, q3). Since the hermitian part LHq0(t)(t) of the matrix Lq0(t)(t)
is LHq0(t)(t) = diag

{
b0(t) + c0(t) + 2a0(t)q0(t), b0(t) + c0(t) + 2a0(t)q0(t), b0(t) +

c0(t) + 2a0(t)q0(t)
}
, by the second equation of the system (4.4) ‖[q(t)]v‖ we have

the estimate (see [8, p. 56, Lemma 4.2]):

‖[q(t)]v‖ ≤ ‖[q(t0)]v‖ exp
{
−

t∫
t0

(
b0(τ) + c0(τ) + 2a0(τ)q0(τ)

)
dτ
}

+
t∫

t0

exp
{
−

t∫
τ

(
b0(s) + c0(s) + 2a0(s)q0(s)

)
ds
}
‖fq0(τ)(τ)‖ dτ ,(4.5)

t ∈ [t0; t1) .

From the condition 4) of the theorem it follows that

(4.6) b0(t) + c0(t) + 2a0(t)q0(t) ≥ 0 , t ∈ [t0; t1) ,
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for some t1 > t0. Show that

−

√
β2(t)
α2(t) ≤ q0(t) ≤

√
β1(t)
α1(t) , t ∈ [t0;T2) ;(4.7)

‖[q(t)]v‖ ≤ ‖[q(t0)]v‖+ M(t) , t ∈ [t0 : T2) .(4.8)

From (4.5) and (4.6) it follows

‖[q(t)]v‖ ≤ ‖[q(t0)]v‖+ 1
2 exp

{
−

t∫
t0

(
b0(s) + c0(s) + 2a0(s)q0(s)

)
ds
}

×
t∫

t0

(
exp
{ τ∫
t0

(
b0(s) + c0(s) + 2a0(s)q0(s)

)
ds
})′

×

[√∑3
n=1(bn(τ) + cn(τ))2

a0(τ)

]
0

dτ +
t∫

t0

‖
(
d1(τ), d2(τ), d3(τ)

)
‖dτ ,

for t ∈ [t0; t1). From here from (4.6) and 5) it follows (4.8). Since ‖[q(t0)]v| ≤ Γ
from (4.8) we obtain

−RΓ(t) + q0(t) ≤ P
(
t, q1(t), q2(t), q3(t)

)
≤ RΓ(t) + q0(t) , t ∈ [t0; t1) .

From here and from 2) it follows

(4.9) β1(t) ≤ P
(
t, q1(t), q2(t), q3(t)

)
≤ β2(t) , t ∈ [t0; t1) .

Consider the Riccati equation

(4.10) r′+ a0(t)r2 + {b0(t) + c0(t)}r−P
(
t, q1(t), q2(t), q3(t)

)
= 0 , t ∈ [t0; t1) .

Let r(t) be a solution of this equation with r(t0) = q0(t0). Then by virtue of
Theorem 2.1 from 1), 2) and (4.9) it follows that r(t) exists on [t0; t1) and

−

√
β2(t)
α2(t) ≤ r(t) ≤

√
β1(t)
α1(t) , t ∈ [t0; t1) .

Obviously q0(t) is a solution of Eq. (4.7) on [t0; t1). Hence by the uniqueness
theorem q0(t) coincides with r(t) on [t0; t1), and therefore (4.7) is valid. Let T1 be
the upper bound of all t1 ∈ [t0;T ) for which (4.7)–(4.9) are satisfied. We assert
that

(4.11) T1 = T .

Indeed otherwise from (4.7) it follows that

q0(t) ≥ −

√
β2(T1)
α2(T1) .
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From here and from 4) it follows that b0(t) + c0(t) + 2a0(t)q0(t) ≥ 0, t ∈ [T1;T2)
for some T2 > T1. Hence

(4.12) b0(t) + c0(t) + 2a0(t)q0(t) ≥ 0 , t ∈ [t0;T2) .

Then repeating the arguments of the proof of (4.7) and (4.8) we conclude that

−

√
β2(t)
α2(t) ≤ q0(t) ≤

√
β1(t)
α1(t) , t ∈ [t0;T2) ;

‖[q(t)]v‖ ≤ ‖[q(t0)]v‖+ M(t) , t ∈ [t0 : T2) ,

which with (4.12) contradicts the definition of T1. The obtained contradiction
proves (4.11). Thus

−

√
β2(t)
α2(t) ≤ q0(t) ≤

√
β1(t)
α1(t) , t ∈ [t0;T ) ;

‖[q(t)]v‖ ≤ ‖[q(t0)]v‖+ M(t) , t ∈ [t0 : T ) .

By virtue of Lemma 2.1 from here it follows (4.3) and fulfillment of (4.1) and
(4.2). If τ0 < +∞ then by Lemma 2.1 from (4.1) and (4.2) it follows that q(t) is
continuable on [t0; τ0].
The theorem is proved. �

Let τ0 < +∞. Set:

M∗(t) ≡
τ0∫
t

‖(d1(τ), d2(τ), d3(τ))‖ dτ + 1
2 sup
τ∈[t;τ0]

[√∑3
n=1(bn(τ) + cn(τ))2

a0(τ)

]
0

,

R∗Γ(t) ≡ |a0(t)|(Γ + M∗(t))2 +
3∑

n=1
|bn(t) + cn(t)|(Γ + M∗(t)) , t ∈ [t0; τ0] .

Corollary 4.1. Let αm(t) and βm(t), m = 1, 2, be continuously differentiable on
[t0; τ0] functions such that (−1)mαm(t) > 0, (−1)mβ(t) > 0, t ∈ [t0; τ0], m = 1, 2.
If:

1) an(t) ≡ 0, n = 1, 3;

1∗) α1(t) ≤ a0(t) ≤ α2(t);

2∗) b0(t) + c0(t) ≤ − 1
2
(α′m(t)
αm(t) −

β′m(t)
βm(t)

)
+ 2(−1)m

√
αm(t)βm(t), t ∈ [t0; τ0],

m = 1, 2;

3∗) b0(t) + c0(t) ≤ −2|a0(t)|R∗Γ(t), t ∈ [t0; τ0];

4∗) supp (bn(t) + cn(t)) ⊂ supp a0(t), n = 1, 3, the function[√∑3
n=1

(bn(t)+cn(t))2

a0(t)

]
0

is bounded on [t0; τ0],
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then for every γ0 ∈
[
−
√

β1(τ0)
α1(τ0) ;

√
β2(τ0)
α2(τ0)

]
, γn ∈ R, n = 1, 3, with ‖(γ1, γ2, γ3)‖ ≤ Γ

Eq. (1.1) has a solution q(t) ≡ q0(t)− iq1(t)− jq2(t)− kq3(t) on [t0; τ0] satisfying
the initial conditions qn(τ0) = γn, n = 0, 3, and

−

√
β1(t)
α1(t) ≤ q0(t) ≤

√
β2(t)
α2(t) , t ∈ [t0; τ0] ;(4.13)

‖[q(t)]v‖ ≤ ‖[q(τ0)]v‖+ M∗(t) , t ∈ [t0; τ0] .(4.14)

Proof. Set: λ0 ≡ t0 = τ0, ã(t) ≡ −a(λ0 − t), b̃(t) ≡ −b(λ0 − t), c̃(t) ≡
−c(λ0− t), d̃(t) ≡ −d(λ0− t), ã0(t) ≡ −a0(λ0− t), b̃n(t) ≡ −bn(λ0− t), c̃n(t) ≡
−cn(λ0 − t), d̃n(t) ≡ −dn(λ0 − t),

M̃(t) ≡
t∫

t0

‖(d̃1(τ), d̃2(τ), d̃3(τ))‖dτ + 1
2 sup
τ∈[t0;t]


√∑3

n=1(̃bn(τ) + c̃n(τ))2

ã0(τ)


0

,

R̃Γ(t) ≡ |ã0(t)|(Γ + M̃(t))2 +
3∑

n=1
|̃bn(t) + c̃n(t)|(Γ + M̃(t)) , t ∈ [t0; τ0] ,

where
√∑3

n=1(̃bn(t) + c̃n(t))2

ã0(t)


0

≡


√∑3

n=1
(̃bn(t)+c̃n(t))2

ã0(t)
, if ã0(t) 6= 0;

0 , if ã0(t) = 0 .

In Eq. (1.1) make the substitution

q(t) = u(λ0 − t) , t ∈ [t0; τ0] .

we obtain

(4.15) u′ + uã(t)u+ b̃(t)u+ uc̃(t) + d̃(t) = 0 , t ∈ [t0; τ0] .

It is not difficult to verify that

M̃(λ0 − t) = M∗(t) , R̃Γ(λ0 − t) = R∗Γ(t) , t ∈ [t0; τ0 .

From here and from the conditions 1), 1∗)–4∗) of the corollary we get:

α̃1(t) ≤ ã0(t) ≤ α̃2(t) , β̃1(t) ≤ R̃Γ(t) + d̃0(t) ≤ β̃2(t) ,

b̃0(t) + c̃0(t) ≥ 2|ã0(t)|R̃Γ(t) ,

b̃0(t) + c̃0(t) ≥ 1
2

(
α̃′m(t)
α̃m(t) −

β̃′m(t)
β̃m(t)

)
+ 2(−1)m

√
α̃m(t)β̃m(t) , t ∈ [t0; τ0] ,

where α̃m(t) ≡ −α3−m(λ0 − t), β̃m(t) ≡ −β3−m(λ0 − t), m = 1, 2, t ∈ [t0; τ0],

supp (̃bn(t)+c̃n(t)) ⊂ supp ã0(t), n = 1, 3, the function
[√∑3

n=1
(̃bn(t)+c̃n(t))2

ã0(t)

]
0

is

bounded on [t0; τ0]. By Theorem 4.1 from here is seen that for every
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γ0 ∈
[
−
√

β̃2(t0)
α̃2(t0)

;
√

β̃1(t0)
α̃1(t0)

]
, γn ∈ R, n = 1, 3, with ||(γ1, γ2, γ3)|| ≤ Γ Eq. (4.15)

has a solution u(t) ≡ u0(t)− iu1(t)− ju2(t)− ku3(t) on [t0; τ0] and

− β̃2(t)
α̃2(t) ≤ u0(t) ≤ β̃1(t)

α̃1(t) ,

‖[u(t)]v‖ ≤ ‖[u(t0)]v‖+ M̃(t) , t ∈ [t0; τ0] .

From here it follows that Eq. (1.1) has a solution q(t) ≡ q0(t)−iq1(t)−jq2(t)−kq3(t)
on [t0; τ0], satisfying the initial conditions qn(τ0) = γn, n = 0, 3 and the estimates
(4.13) and (4.14) are valid.
The corollary is proved. �

5. A completely non conjugation theorem

Consider the linear system

(5.1)
{
φ′ = C(t)φ+A(t)ψ ;

ψ′ = −D(t)φ−B(t)ψ , t ≥ t0 .

where φ = φ(t) and ψ = ψ(t) are the unknown continuously differentiable vector
functions of dimension 4, A(t), B(t), C(t) and D(t) are the same matrix functions
as in (2.5).

Definition 5.1. We will say that the solution (φ(t), ψ(t)) of the system (5.1)
satisfies the completely non conjugation condition if φ(t) 6= θ, ψ(t) 6= θ t ≥ t0,
where θ is the null vector of dimension 4.

Theorem 5.1. Let the conditions of Theorem 3.1 (of Theorem 3.2) are satisfied.
Then the solution (φ(t), ψ(t)) of the system (5.1) with ψ(t0) = (γ0E − γ1I − γ2J −
γ3K)φ(t0) 6= θ, where γn ≥ 0, n ∈ S( 6= ∅),

∑
n∈S

γn 6= 0, γn ∈ (−∞; +∞), n ∈ O

(where γn > 0, n = 0, 3) satisfies of the completely non conjugation condition.

Proof. Let the conditions of Theorem 3.1 (of Theorem 3.2) be satisfied and let
q(t) ≡ q0(t)− iq1(t)− jq2(t)− kq3(t) be the solutions of Eq. (1.2) with qn(t0) = γ0,
n = 0, 3 By virtue of Theorem 3.1 (Theorem 3.2) q(t) exists on [t0; +∞). From the
condition

∑
n∈S

γn > 0 (γn > 0, n = 0, 3) it follows that

(5.2) q(t) 6= 0 , t ≥ t0 .

By (2.4) Y1(t) ≡ q̂(t) is a solution of Eq. (2.3) on [t0; +∞). From (5.2) it follows
that

(5.3) detY1(t) 6= 0 , t ≥ t0 .

Let Φ1(t) be the solution of the matrix equation

Φ′ = [A(t)Y1(t) + C(t)]Φ = 0 , t ≥ t0 ,
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satisfying the initial condition Φ1(t0) = E. Them by the Liouville’s formula we
have

(5.4) det Φ(t) = exp
{ t∫
t0

tr [A(τ)Y1(τ) + C(τ)] dτ
}
> 0 , t ≥ t0 .

Let (φ(t), ψ(t)) be the solution of the system (5.1) satisfying the initial condition
of the theorem. Then

φ(t) = Φ(t)φ(t0) , ψ(t) = Y1(t)Φ(t)φ(t0) .
From here from (5.3) and (5.4) it follows that φ(t) 6= θ, ψ(t) 6= θ, t ≥ t0.
The theorem is proved. �

Remark 5.1. Except in a special case when A(t) and D(t) are diagonal matrices
and C(t) = B∗(t), t ≥ t0 (here ∗ is the transpose sign) the system (5.1) is not
hamiltonian.
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