ON SOME DIOPHANTINE EQUATIONS INVOLVING BALANCING NUMBERS

Euloge Tchammou and Alain Togbé

Abstract

In this paper, we find all the solutions of the Diophantine equation $B_{1}^{p}+2 B_{2}^{p}+\cdots+k B_{k}^{p}=B_{n}^{q}$ in positive integer variables (k, n), where B_{i} is the $i^{\text {th }}$ balancing number if the exponents p, q are included in the set $\{1,2\}$.

1. Introduction

In 1999, A. Behera, and G.K. Panda [2] studied balancing numbers $n \in \mathbb{Z}^{+}$as solutions of the Diophantine equation

$$
\begin{equation*}
1+2+\cdots+(n-1)=(n+1)+(n+2)+\cdots+(n+r), \tag{1.1}
\end{equation*}
$$

for some positive integer r, in which case the number r is called a balancer or a cobalancing number. If n is a balancing number with balancer r, then $\frac{n(n-1)}{2}=$ $n r+\frac{r(r+1)}{2}$. This means that

$$
\begin{equation*}
r=\frac{-(2 n+1)+\sqrt{8 n^{2}+1}}{2} \quad \text { and } \quad n=\frac{2 r+1+\sqrt{8 r^{2}+8 r+1}}{2} . \tag{1.2}
\end{equation*}
$$

Let B_{n} denote the $n^{t h}$ balancing number and b_{n} the $n^{\text {th }}$ cobalancing number. Then,

$$
\begin{aligned}
& B_{1}=1, B_{2}=6 \text { and } B_{n+1}=6 B_{n}-B_{n-1}, \quad \text { for } n \geq 2 \text {, } \\
& b_{1}=0, b_{2}=2 \quad \text { and } \quad b_{n+1}=6 b_{n}-b_{n-1}+2, \quad \text { for } n \geq 2 .
\end{aligned}
$$

From (1.2), we see that B_{n} is a balancing number if and only if $8 B_{n}^{2}+1$ is a perfect square and b_{n} is a cobalancing number if and only if $8 b_{n}^{2}+8 b_{n}+1$ is a perfect square. The numbers

$$
C_{n}=\sqrt{8 B_{n}^{2}+1} \quad \text { and } \quad c_{n}=\sqrt{8 b_{n}^{2}+8 b_{n}+1}
$$

are then called the $n^{\text {th }}$ Lucas-balancing number and the $n^{\text {th }}$ Lucas-cobalancing number, respectively. P.K. Ray [10] derived some nice results on balancing numbers and Pell numbers which are given by

$$
P_{0}=0, P_{1}=1 \quad \text { and } \quad P_{n}=2 P_{n-1}+P_{n-2}
$$

for $n \geq 2$. More generally, for $n \geq 0, P_{-n}=(-1)^{n+1} P_{n}$ (extension of the sequence for negative subscripts). Since an integer x is a balancing number if and only if $8 x^{2}+1$ is a square, we set $8 x^{2}+1=y^{2}$, so that $y^{2}-8 x^{2}=1$, for some integer $y \neq 0$, which is a Pell's equation. The fundamental solution is $\left(x_{1}, y_{1}\right)=(1,3)$. So $y_{n}+x_{n} \sqrt{8}=(3+\sqrt{8})^{n}$ for $n \geq 1$ and hence $y_{n}-x_{n} \sqrt{8}=(3-\sqrt{8})^{n}$. Put $\gamma=3+\sqrt{8}$ and $\delta=3-\sqrt{8}$. The Binet's formula for balancing numbers is

$$
\begin{equation*}
B_{n}=\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}, \quad \text { for } n \geq 1 \tag{1.3}
\end{equation*}
$$

Putting $\alpha=1+\sqrt{2}$ and $\beta=1-\sqrt{2}$, the roots of the characteristic quadratic equation $x^{2}-2 x-1=0$ of the Pell's sequence $\left(P_{n}\right)_{n \geq 0}$, the Binet's formula for P_{n} is

$$
P_{n}=\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{2}}, \quad \text { for } n \in \mathbb{Z}
$$

This easily implies that the inequalities

$$
\begin{equation*}
\alpha^{n-2} \leq P_{n} \leq \alpha^{n-1} \tag{1.4}
\end{equation*}
$$

hold, for $n \geq 1$. Since $\alpha^{2}=\gamma$ and $\beta^{2}=\delta$, we easily get that $B_{n}=\frac{\alpha^{2 n}-\beta^{2 n}}{4 \sqrt{2}}$ for $n \geq 1$. Thus, there is a correspondence between balancing numbers and Pell numbers. More precisely, we have that $B_{n}=\frac{P_{2 n}}{2}$. See [7], [8] and [9] for further details.

The Diophantine equation

$$
\sum_{j=1}^{k} j F_{j}^{p}=F_{n}^{q}
$$

has been studied in 2018 by G. Soydan, L. Németh, and L. Szalay [11], where F_{i} is the $i^{\text {th }}$ Fibonacci number. They solved this equation for $(p, q) \in\{(1,1),(1,2),(2,1)$, $(2,2)\}$. Further, they conjectured that the only non-trivial solutions are given by: $F_{4}^{2}=9=F_{1}+2 F_{2}+3 F_{3}, F_{8}=21=F_{1}+2 F_{2}+3 F_{3}+4 F_{4}, F_{4}^{3}=27=F_{1}^{3}+2 F_{2}^{3}+3 F_{3}^{3}$.
Later in 2019, K. Gueth, F. Luca and L. Szalay [4] confirmed the conjecture, for $\max \{p, q\} \leq 10$. This result is again improved by Altassan and Luca 1 who proved that if such equation is satisfied, then $\max \{k, n, p, q\} \leq 10^{2500}$. The authors of this paper studied a similar equation where the Fibonacci sequence is replaced by the Pell sequence. See [12].

A question is what will happen if Fibonacci numbers are replaced by balancing numbers. Therefore, in this paper, we investigate the Diophantine equation

$$
\begin{equation*}
B_{1}^{p}+2 B_{2}^{p}+\cdots+k B_{k}^{p}=B_{n}^{q} \tag{1.5}
\end{equation*}
$$

in positive integers k and n, where p and q are fixed in $\{1,2\}$. We consider $B_{1}^{p}=1=B_{1}^{q}$ as a trivial solution to 1.5 . The main results proved in this paper are described as follows.

Theorem 1. The Diophantine equation

$$
\begin{equation*}
B_{1}+2 B_{2}+\cdots+k B_{k}=B_{n} \tag{1.6}
\end{equation*}
$$

has only the trivial solution $(k, n)=(1,1)$.
Theorem 2. The Diophantine equation

$$
\begin{equation*}
B_{1}^{2}+2 B_{2}^{2}+\cdots+k B_{k}^{2}=B_{n}^{2} \tag{1.7}
\end{equation*}
$$

possesses only the trivial solution $(k, n)=(1,1)$.
Theorem 3. The Diophantine equation

$$
\begin{equation*}
B_{1}+2 B_{2}+\cdots+k B_{k}=B_{n}^{2} \tag{1.8}
\end{equation*}
$$

possesses only the trivial solution $(k, n)=(1,1)$.
Theorem 4. The Diophantine equation

$$
\begin{equation*}
B_{1}^{2}+2 B_{2}^{2}+\cdots+k B_{k}^{2}=B_{n} \tag{1.9}
\end{equation*}
$$

possesses only the trivial solution $(k, n)=(1,1)$.
We will prove our main results using modular arithmetic. We organize this paper as follows. In Section 2 we will recall some known properties and prove key lemmas. Our main results will be proved in Sections $3 \sqrt{6}$

2. Some useful lemmas

In this section, we present some useful lemmas. Some of them are a few well-known results and we also prove some preliminary results. We start by recalling Euler's totient function, denoted φ, which is defined for each positive integer n by the number of integers k in the range $1 \leq k \leq n$ such that $\operatorname{gcd}(n, k)=1$. The following lemma is a well-known result. One can see Theorem 2.8 of [6].
Lemma 1 (Euler's Totient Theorem). Let n be a positive integer. For each non-zero integer a relatively prime to n,

$$
a^{\varphi(n)} \equiv 1 \quad(\bmod n)
$$

The next lemma is a collection of well-known results. One can see for instance Proposition 2.1, Proposition 2.2, Proposition 2.3, and Proposition 2.6 in [3] and [5].

Lemma 2. Let k and n be arbitrary positive integers.
(i) $B_{k+n} B_{k-n}-B_{k}^{2}=-B_{n}^{2}$ if $k>n$ (Catalan's identity). In particular, $B_{n-1} B_{n+1}-B_{n}^{2}=-1$ (Cassini's identity) and $B_{2 n+1}=B_{n+1}^{2}-B_{n}^{2}$.
(ii) $\sum_{j=1}^{k} B_{j}=\frac{B_{k+1}-B_{k}-1}{4}$.
(iii) $\operatorname{gcd}\left(B_{k}, B_{n}\right)=B_{g c d(k, n)}$. In particular, B_{k} and B_{n} are coprime if and only if k and n are coprime.
(iv) $P_{n-1} P_{n+1}-P_{n}^{2}=(-1)^{n}$.
(v) $P_{k+n}=P_{k} P_{n+1}+P_{k-1} P_{n}$. In particular, $P_{2 n+1}=P_{n}^{2}+P_{n+1}^{2}$.

Remark 5. Properties (iv) and (v) hold for any integers k and n, using the formula of the extension to negative subscripts.

We will prove the following results.

Lemma 3. Let k be a positive integer.
(i) $6 B_{k} B_{k-1}=B_{k}^{2}+B_{k-1}^{2}-1$ and $33 B_{k}^{2}-B_{k-1}^{2}=B_{2 k+1}-2$ if $k \geq 2$.
(ii) $\sum_{j=1}^{k} B_{j}^{2}=\frac{B_{2 k+1}-2 k-1}{32}$.
(iii) $\sum_{j=1}^{k} j B_{j}=\frac{k\left(B_{k+1}-B_{k}\right)-B_{k}}{4}$.
(iv) $\sum_{j=1}^{k} j B_{j}^{2}=\frac{k B_{2 k+1}-B_{k}^{2}-k(k+1)}{32}$.
(v) $B_{k+n}-B_{k+1-n}=\left(B_{k+1}-B_{k}\right)\left(P_{2 n-1}+P_{2 n-2}\right)$, for $n \in\{1,2, \ldots, k\}$. In particular, $B_{k+n} \equiv B_{k+1-n}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$.
(vi) $4 B_{k+1-n}^{2}-4 B_{n}^{2}+P_{4 n-1}=P_{2 k-4 n+3}\left(B_{k+1}-B_{k}\right)$, for $n \in\{1,2, \ldots, k\}$. In particular, $4 B_{k+1-n}^{2} \equiv 4 B_{n}^{2}-P_{4 n-1}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$.

Proof.

- The property (i) can be obtained easily, using the recurrence formula of $\left(B_{n}\right)_{n \geq 1}$ and Lemma 2 (i).
- We prove property (ii). It is obvious to see that the property is true for $k=1$. Assume that $k \geq 2$. We have

$$
\begin{equation*}
\sum_{j=1}^{k} B_{j}^{2}=\sum_{j=1}^{k}\left(\frac{P_{2 j}}{2}\right)^{2}=\frac{1}{4} \sum_{j=1}^{k} P_{2 j}^{2} \tag{2.1}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
\sum_{j=1}^{k} P_{2 j}^{2} & =4+\sum_{j=2}^{k}\left(2 P_{2 j-1}+P_{2 j-2}\right)^{2}=4+\sum_{j=2}^{k}\left(4 P_{2 j-1}^{2}+P_{2 j-2}^{2}+4 P_{2 j-1} P_{2 j-2}\right) \\
& =4+\sum_{j=2}^{k}\left(4 P_{2 j-1}^{2}-P_{2 j-2}^{2}+2 P_{2 j-2} P_{2 j}\right)=4+\sum_{j=2}^{k}\left(6 P_{2 j-1}^{2}-P_{2 j-2}^{2}-2\right) \\
& =4+\sum_{j=2}^{k}\left(6\left(6 P_{2 j-2}^{2}-P_{2 j-3}^{2}+2\right)-P_{2 j-2}^{2}-2\right) \\
& =4+\sum_{j=2}^{k}\left(35 P_{2 j-2}^{2}-6 P_{2 j-3}^{2}+10\right) \\
& =4+\sum_{j=2}^{k}\left(34 P_{2 j-2}^{2}+\left(P_{2 j-2}^{2}-6 P_{2 j-3}^{2}+2\right)+8\right) \\
& =4+\sum_{j=2}^{k}\left(34 P_{2 j-2}^{2}-P_{2 j-4}^{2}+8\right) \\
& =33 \sum_{j=1}^{k} P_{2 j}^{2}-33 P_{2 k}^{2}+P_{2 k-2}^{2}+8 k-4 .
\end{aligned}
$$

In the above chain, we used Lemma 2 (iv) to get $P_{2 j-2} P_{2 j}=P_{2 j-1}^{2}-1$. So

$$
\begin{equation*}
\sum_{j=1}^{k} P_{2 j}^{2}=\frac{33 P_{2 k}^{2}-P_{2 k-2}^{2}-8 k+4}{32} \tag{2.2}
\end{equation*}
$$

Now 2.1 and 2.2 imply that

$$
\sum_{j=1}^{k} B_{j}^{2}=\frac{33 P_{2 k}^{2}-P_{2 k-2}^{2}-8 k+4}{128}=\frac{33 B_{k}^{2}-B_{k-1}^{2}-2 k+1}{32}=\frac{B_{2 k+1}-2 k-1}{32}
$$

where we used (i) to get $33 B_{k}^{2}-B_{k-1}^{2}=B_{2 k+1}-2$. Then, property (ii) is proved.

- The next step is to prove (iii). We have

$$
\begin{aligned}
\sum_{j=1}^{k} j B_{j} & =13+\sum_{j=3}^{k} j B_{j}=13+\sum_{j=3}^{k}\left(6 j B_{j-1}-j B_{j-2}\right)=13+6 \sum_{j=3}^{k} j B_{j-1}-\sum_{j=3}^{k} j B_{j-2} \\
& =13+6 \sum_{j=3}^{k}\left[(j-1) B_{j-1}+B_{j-1}\right]-\sum_{j=3}^{k}\left[(j-2) B_{j-2}+2 B_{j-2}\right] \\
& =13+6 \sum_{j=2}^{k-1} j B_{j}+6 \sum_{j=2}^{k-1} B_{j}-\sum_{j=1}^{k-2} j B_{j}-2 \sum_{j=1}^{k-2} B_{j} \\
& =1+5 \sum_{j=1}^{k} j B_{j}+4 \sum_{j=1}^{k} B_{j}-(5 k+4) B_{k}+(k+1) B_{k-1}
\end{aligned}
$$

So, we get

$$
\begin{aligned}
\sum_{j=1}^{k} j B_{j} & =\frac{(5 k+4) B_{k}-(k+1) B_{k-1}-4 \sum_{j=1}^{k} B_{j}-1}{4} \\
& =\frac{(5 k+5) B_{k}-(k+1) B_{k-1}-B_{k+1}}{4} \\
& =\frac{(k+1)\left(B_{k+1}-B_{k}\right)-B_{k+1}}{4}=\frac{k\left(B_{k+1}-B_{k}\right)-B_{k}}{4}
\end{aligned}
$$

where we used Lemma 2 (ii). Then property (iii) is proved.

- Now, we will take care of (iv). One can easily see that the property is true for $k=1$. Assume that $k \geq 2$.

$$
\begin{aligned}
\sum_{j=1}^{k} j B_{j}^{2} & =B_{1}^{2}+2 B_{2}^{2}+\sum_{j=3}^{k} j\left(6 B_{j-1}-B_{j-2}\right)^{2} \\
& =73+\sum_{j=3}^{k} j\left(36 B_{j-1}^{2}-12 B_{j-1} B_{j-2}+B_{j-2}^{2}\right) \\
& =73+\sum_{j=3}^{k} j\left(34 B_{j-1}^{2}-B_{j-2}^{2}+2\right)=73+34 \sum_{j=3}^{k} j B_{j-1}^{2}-\sum_{j=3}^{k} j B_{j-2}^{2}+2 \sum_{j=3}^{k} j
\end{aligned}
$$

$$
\begin{aligned}
& =73+34 \sum_{j=3}^{k}\left[(j-1) B_{j-1}^{2}+B_{j-1}^{2}\right]-\sum_{j=3}^{k}\left[(j-2) B_{j-2}^{2}+2 B_{j-2}^{2}\right]+2 \sum_{j=3}^{k} j \\
& =67+34 \sum_{j=2}^{k-1} j B_{j}^{2}+34 \sum_{j=2}^{k-1} B_{j}^{2}-\sum_{j=1}^{k-2} j B_{j}^{2}-2 \sum_{j=1}^{k-2} B_{j}^{2}+2 \sum_{j=1}^{k} j \\
& =33 \sum_{j=1}^{k} j B_{j}^{2}+32 \sum_{j=1}^{k} B_{j}^{2}-33 k B_{k}^{2}+(k+1) B_{k-1}^{2}-32 B_{k}^{2}+k(k+1)-1,
\end{aligned}
$$

where we used Lemma 3 (i) to get that $12 B_{j-1} B_{j-2}=2 B_{j-2}^{2}+2 B_{j-1}^{2}-2$. Then,

$$
\begin{aligned}
32 \sum_{j=1}^{k} j B_{j}^{2} & =33 k B_{k}^{2}-(k+1) B_{k-1}^{2}+32 B_{k}^{2}-k(k+1)+1-32 \sum_{j=1}^{k} B_{j}^{2} \\
& =k\left(33 B_{k}^{2}-B_{k-1}^{2}\right)+33 B_{k}^{2}-B_{k-1}^{2}-B_{k}^{2}-k(k+1)+1-B_{2 k+1}+2 k+1 \\
(2.3) & =k B_{2 k+1}-B_{k}^{2}-k(k+1),
\end{aligned}
$$

where we used (ii) and (i). Finally, 2.3) implies that

$$
\sum_{j=1}^{k} j B_{j}^{2}=\frac{k B_{2 k+1}-B_{k}^{2}-k(k+1)}{32}
$$

as expected.

- Next, we will prove (v). Let n be an element of $\{1,2, \ldots, k\}$. We have

$$
\begin{align*}
\left(B_{k+1}-B_{k}\right)\left(P_{2 n-1}+P_{2 n-2}\right) & =\left(\frac{P_{2 k+2}-P_{2 k}}{2}\right)\left(P_{2 n-1}+P_{2 n-2}\right) \\
& =P_{2 k+1}\left(P_{2 n-1}+P_{2 n-2}\right) \tag{2.4}
\end{align*}
$$

On the other hand, using Lemma 2 (v), we obtain

$$
\begin{align*}
P_{2 n+2 k} & =P_{2 n} P_{2 k+1}+P_{2 n-1} P_{2 k} \\
& =2 P_{2 k+1}\left(P_{2 n-1}+P_{2 n-2}\right)-P_{2 n-2} P_{2 k+1}+P_{2 n-1} P_{2 k} . \tag{2.5}
\end{align*}
$$

Then, we get

$$
\begin{equation*}
P_{2 k+1}\left(P_{2 n-1}+P_{2 n-2}\right)=\frac{1}{2}\left(P_{2 n+2 k}+P_{2 n-2} P_{2 k+1}-P_{2 n-1} P_{2 k}\right) \tag{2.6}
\end{equation*}
$$

Equations 2.4 and 2.6 imply that

$$
\begin{equation*}
\left(B_{k+1}-B_{k}\right)\left(P_{2 n-1}+P_{2 n-2}\right)=\frac{1}{2}\left(P_{2 n+2 k}+P_{2 n-2} P_{2 k+1}-P_{2 n-1} P_{2 k}\right) \tag{2.7}
\end{equation*}
$$

Using again Lemma 2 (v), we have that

$$
\begin{align*}
P_{2 k+2-2 n} & =P_{2-2 n+2 k}=P_{2-2 n} P_{2 k+1}+P_{1-2 n} P_{2 k} \\
& =-P_{2 n-2} P_{2 k+1}+P_{2 n-1} P_{2 k}, \tag{2.8}
\end{align*}
$$

where we used formulas of the extension of the sequence of Pell numbers for negative subscripts. Equation 2.8 implies that

$$
\begin{equation*}
P_{2 n-2} P_{2 k+1}-P_{2 n-1} P_{2 k}=-P_{2 k+2-2 n} \tag{2.9}
\end{equation*}
$$

Now, equations (2.7) and 2.9 imply that

$$
\left(B_{k+1}-B_{k}\right)\left(P_{2 n-1}+P_{2 n-2}\right)=\frac{1}{2}\left(P_{2 n+2 k}-P_{2 k+2-2 n}\right)=B_{k+n}-B_{k+1-n}
$$

and property (v) is proved.

- Finally, we will deal with property (vi). Let n be an element of $\{1,2, \ldots, k\}$. Using the Binet's formula for $\left(P_{n}\right)_{n \geq 0}$, we obtain

$$
\begin{align*}
& P_{2 k-4 n+3}\left(B_{k+1}-B_{k}\right)=P_{2 k-4 n+3}\left(\frac{P_{2 k+2}-P_{2 k}}{2}\right)=P_{2 k-4 n+3} P_{2 k+1} \\
& \quad=\frac{1}{8}\left(\alpha^{4 k-4 n+4}+\beta^{4 k-4 n+4}-\alpha^{2 k-4 n+3} \beta^{2 k+1}-\alpha^{2 k+1} \beta^{2 k-4 n+3}\right) . \tag{2.10}
\end{align*}
$$

Observe that
$-\alpha^{2 k-4 n+3} \beta^{2 k+1}-\alpha^{2 k+1} \beta^{2 k-4 n+3}$

$$
\begin{align*}
& =-\alpha^{2 k+1} \beta^{2 k+1} \alpha^{2} \alpha^{-4 n}-\alpha^{2 k+1} \beta^{2 k+1} \beta^{2} \beta^{-4 n}=\alpha^{2} \alpha^{-4 n}+\beta^{2} \beta^{-4 n} \\
& =\alpha^{4 n-2}+\beta^{4 n-2} \tag{2.11}
\end{align*}
$$

where we used the fact that $\alpha^{2 k+1} \beta^{2 k+1}=(-1)^{2 k+1}=-1$. Then, equations (2.10) and (2.11) imply that

$$
\begin{equation*}
P_{2 k-4 n+3}\left(B_{k+1}-B_{k}\right)=\frac{1}{8}\left(\alpha^{4 k-4 n+4}+\beta^{4 k-4 n+4}+\alpha^{4 n-2}+\beta^{4 n-2}\right) \tag{2.12}
\end{equation*}
$$

On the other hand, again using the Binet's formula for $\left(P_{n}\right)_{n \geq 0}$, we get that

$$
4 B_{k+1-n}^{2}-4 B_{n}^{2}+P_{4 n-1}=P_{2 k+2-2 n}^{2}-P_{2 n}^{2}+P_{2 n-1}^{2}+P_{2 n}^{2}=P_{2 k+2-2 n}^{2}+P_{2 n-1}^{2}
$$

$$
\begin{equation*}
=\frac{1}{8}\left(\alpha^{4 k-4 n+4}+\beta^{4 k-4 n+4}+\alpha^{4 n-2}+\beta^{4 n-2}\right), \tag{2.13}
\end{equation*}
$$

where we used Lemma 2 (v) to get that $P_{4 n-1}=P_{2 n-1}^{2}+P_{2 n}^{2}$. From equations 2.12 and 2.13), we conclude that

$$
4 B_{k+1-n}^{2}-4 B_{n}^{2}+P_{4 n-1}=P_{2 k-4 n+3}\left(B_{k+1}-B_{k}\right)
$$

as expected.
Lemma 4. Let $\left(U_{n}\right)_{n \geq 1}$ be the sequence defined by $U_{n}=B_{2 n+1}-B_{2 n-1}$ and k be a positive integer.
(i) The sequence $\left(U_{n}\right)_{n \geq 1}$ satisfies $U_{1}=34, U_{2}=1154$ and $U_{n}=34 U_{n-1}$ -U_{n-2}, for $n \geq 3$.
(ii) $U_{k+n}-U_{k+1-n}=32 B_{2 n-1} B_{2 k+1}$, for $n \in\{1,2, \ldots, k\}$. In particular, $U_{k+n} \equiv U_{k+1-n}\left(\bmod B_{2 k+1}\right)$, for $n \in\{1,2, \ldots, k\}$.

Proof. One can check easily (i). We prove (ii). Let $n \in\{1,2, \ldots, k\}$. We have

$$
\begin{equation*}
U_{k+n}-U_{k+1-n}=B_{2 k+2 n+1}-B_{2 k+2 n-1}-\left(B_{2 k-2 n+3}-B_{2 k-2 n+1}\right) . \tag{2.14}
\end{equation*}
$$

By, Lemma 3 (i), $B_{2 k+2 n+1}=33 B_{k+n}^{2}-B_{k+n-1}^{2}+2$ and by Lemma 2 (i), $B_{2 k+2 n-1}=B_{k+n}^{2}-B_{k+n-1}^{2}$, so that $B_{2 k+2 n+1}-B_{2 k+2 n-1}=32 B_{k+n}^{2}+2$. Similarly, $B_{2 k-2 n+3}-B_{2 k-2 n+1}=32 B_{k-n+1}^{2}+2$. Then, equation 2.14 becomes

$$
U_{k+n}-U_{k+1-n}=32\left(B_{k+n}^{2}-B_{k-n+1}^{2}\right)=32 B_{2 n-1} B_{2 k+1},
$$

where we used Lemma 2 (i) to get that $B_{k+n}^{2}-B_{k-n+1}^{2}=B_{2 n-1} B_{2 k+1}$. Then, $U_{k+n}-U_{k+1-n}=32 B_{2 n-1} B_{2 k+1}$, as expected, completing the proof of (ii).

Lemma 5. Let k be a positive integer. Then, we have

$$
B_{k}^{\varphi\left(B_{2 k+1}\right)-1} \equiv B_{k}-B_{k+2} \quad\left(\bmod B_{2 k+1}\right)
$$

where φ is Euler's totient function.
Proof. We have

$$
\begin{equation*}
B_{k}\left(B_{k}-B_{k+2}\right)=B_{k}^{2}-B_{k} B_{k+2}=B_{k}^{2}-B_{k+1}^{2}+1 \equiv 1 \quad\left(\bmod B_{2 k+1}\right) \tag{2.15}
\end{equation*}
$$

since by Lemma 2 (i) to get that $B_{k} B_{k+2}=B_{k+1}^{2}-1$ and $B_{k}^{2}-B_{k+1}^{2}=-B_{2 k+1}$. Multiplying both sides of 2.15 by $B_{k}^{\varphi\left(B_{2 k+1}\right)-1}$, we get that

$$
\begin{equation*}
\left(B_{k}-B_{k+2}\right) B_{k}^{\varphi\left(B_{2 k+1}\right)} \equiv B_{k}^{\varphi\left(B_{2 k+1}\right)-1}\left(\bmod B_{2 k+1}\right) \tag{2.16}
\end{equation*}
$$

Since k and $2 k+1$ are coprime, B_{k} and $B_{2 k+1}$ are coprime (see Lemma 2 (iii)). Then, by Lemma $1 B_{k}^{\varphi\left(B_{2 k+1}\right)} \equiv 1\left(\bmod B_{2 k+1}\right)$, so that 2.16 leads to

$$
B_{k}^{\varphi\left(B_{2 k+1}\right)-1} \equiv B_{k}-B_{k+2} \quad\left(\bmod B_{2 k+1}\right)
$$

3. Proof of Theorem 1

For $k=1,2, \ldots, 5$, one can easily find the solutions mentioned in the statement of Theorem 1 . So, we assume from now that $k \geq 6$. Using Lemma 3 (iii), equation (1.6) leads to

$$
k=\frac{4 B_{n}+B_{k}}{B_{k+1}-B_{k}} \in \mathbb{N} .
$$

This last equation implies that $4 B_{n}+B_{k} \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. So, we study the sequence $\left(B_{m}\right)_{m>1}$ modulo $B_{k+1}-B_{k}$ if k is fixed. Note that we just indicate a suitable value congruent to B_{m} modulo $B_{k+1}-B_{k}$, not always the smallest non-negative remainders. Since $B_{k+i} \equiv B_{k+1-i}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$, for $i \in\{1,2, \ldots, k\}$ (see Lemma 3 (v)), the period having length $4 k+2$ can be given by

$$
\begin{gathered}
\overbrace{1,6,35, \ldots, B_{k}}^{k}, \overbrace{B_{k}, B_{k-1}, B_{k-2}, \ldots, 35,6,1}^{k}, \overbrace{0,-1,-6,-35, \ldots,-B_{k}}^{k+1}, \\
\overbrace{-B_{k},-B_{k-1},-B_{k-2}, \ldots,-35,-6,-1,0}^{k+1}
\end{gathered}
$$

So either $B_{n} \equiv 0$ or $\pm B_{i}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$, for some $i \in\{1,2, \ldots, k\}$. Hence,

$$
4 B_{n}+B_{k} \equiv B_{k} \text { or } \pm 4 B_{i}+B_{k} \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right)
$$

Assume that $4 B_{n}+B_{k} \equiv B_{k}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. We have

$$
0<B_{k}<B_{k+1}-B_{k}=6 B_{k}-B_{k-1}-B_{k}=5 B_{k}-B_{k-1}
$$

so that $B_{k} \not \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. Thus $4 B_{n}+B_{k} \not \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$.
Assume now that $4 B_{n}+B_{k} \equiv \pm 4 B_{i}+B_{k}\left(\bmod \left(B_{k+1}-B_{k}\right)\right), i \in\{1,2, \ldots, k\}$.

- If $1 \leq i \leq k-1$, then we get that
$0<-4 B_{k-1}+B_{k} \leq \pm 4 B_{i}+B_{k} \leq 4 B_{k-1}+B_{k}<5 B_{k}-B_{k-1}=B_{k+1}-B_{k}$.
So $\pm 4 B_{i}+B_{k} \not \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$.
- If $i=k$, then

$$
4 B_{i}+B_{k}=5 B_{k}=B_{k+1}-B_{k}+B_{k-1} \equiv B_{k-1} \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right)
$$

But, since $k \geq 6$, we have $0<B_{k-1}<5 B_{k}-B_{k-1}=B_{k+1}-B_{k}$, so that

$$
B_{k-1} \not \equiv 0 \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right)
$$

Then, $-4 B_{i}+B_{k} \not \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. Similarly, $-4 B_{i}+B_{k}=-3 B_{k}$. Since

$$
-5 B_{k}+B_{k-1}=-B_{k+1}+B_{k} \equiv 0 \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right)
$$

we get that $-3 B_{k} \equiv 2 B_{k}-B_{k-1}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. But $2 B_{k}-B_{k-1} \not \equiv 0$ $\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$ since $0<2 B_{k}-B_{k-1}<B_{k+1}-B_{k}$. Then, $-4 B_{i}+B_{k} \not \equiv 0$ $\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$.

In conclusion, we get that

$$
4 B_{n}+B_{k} \not \equiv 0 \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right)
$$

for $k \geq 6$. So equation (1.6) has no more solutions when $k \geq 6$. The proof of Theorem 1 is complete.

4. Proof of Theorem 2

When $k=1,2, \ldots, 5$, one can easily find the solution given in Theorem 2 So, we assume from now that $k \geq 6$. Using Lemma 3 (iv), equation (1.7) implies that

$$
\begin{equation*}
k=\frac{32 B_{n}^{2}+B_{k}^{2}+k(k+1)}{B_{2 k+1}} \tag{4.1}
\end{equation*}
$$

Observe that $32 B_{n}^{2}=33 B_{n}^{2}-B_{n-1}^{2}-\left(B_{n}^{2}-B_{n-1}^{2}\right)=B_{2 n+1}-2-B_{2 n-1}$ (see Lemma 3 (i) and Lemma 2 (i)), so that equation 4.1 becomes

$$
\begin{equation*}
k=\frac{U_{n}+B_{k}^{2}+k(k+1)-2}{B_{2 k+1}} \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

where $\left(U_{m}\right)_{m \geq 1}$ is the sequence defined by $U_{m}=B_{2 m+1}-B_{2 m-1}$. By Lemma 4 (i), $U_{1}=34, U_{2}=1154$ and $U_{m}=34 U_{m-1}-U_{m-2}$, for $m \geq 3$. Equation (4.2) implies that $U_{n}+B_{k}^{2}+k(k+1)-2 \equiv 0\left(\bmod B_{2 k+1}\right)$. So, we study the sequence $\left(U_{m}\right)_{m \geq 1}$ modulo $B_{2 k+1}$, if k is fixed. Since $U_{k+i} \equiv U_{k+1-i}\left(\bmod B_{2 k+1}\right)$,
for $i \in\{1,2, \ldots, k\}$ (see Lemma 4 (ii)), the period having length $2 k+1$ can be given by

$$
\overbrace{34,1154, \ldots, U_{k-1}, U_{k}}^{k} \overbrace{U_{k}, U_{k-1}, \ldots, 1154,34,2}^{k+1} .
$$

So either $U_{n} \equiv 2$ or $U_{j}\left(\bmod B_{2 k+1}\right)$, for some $j \in\{1,2, \ldots, k\}$. Hence, we have $U_{n}+B_{k}^{2}+k(k+1)-2 \equiv B_{k}^{2}+k(k+1)$ or $U_{j}+B_{k}^{2}+k(k+1)-2\left(\bmod B_{2 k+1}\right)$. Assume that $U_{n}+B_{k}^{2}+k(k+1)-2 \equiv B_{k}^{2}+k(k+1)\left(\bmod B_{2 k+1}\right)$. Using Lemma 3 (i), we have

$$
\begin{aligned}
B_{2 k+1} & =33 B_{k}^{2}-B_{k-1}^{2}+2>32 B_{k}^{2}=B_{k}^{2}+31 \frac{P_{2 k}^{2}}{4} \\
& >B_{k}^{2}+7 P_{2 k}^{2}>B_{k}^{2}+k(k+1)
\end{aligned}
$$

where we used the fact that $7 P_{2 k}^{2} \geq 7 \alpha^{4(k-1)}>k(k+1)$, for $k \geq 1$. Hence, $0<B_{k}^{2}+k(k+1)<B_{2 k+1}$, so that $B_{k}^{2}+k(k+1) \not \equiv 0\left(\bmod B_{2 k+1}\right)$. Then, we get

$$
U_{n}+B_{k}^{2}+k(k+1)-2 \not \equiv 0 \quad\left(\bmod B_{2 k+1}\right)
$$

Assume now that

$$
U_{n}+B_{k}^{2}+k(k+1)-2 \equiv U_{j}+B_{k}^{2}+k(k+1)-2 \quad\left(\bmod B_{2 k+1}\right),
$$

for some $j \in\{1,2, \ldots, k\}$.

- If $j=k$, then we get that

$$
\begin{align*}
U_{k}+B_{k}^{2}+k(k+1)-2 & =B_{2 k+1}-B_{2 k-1}+B_{k}^{2}+k(k+1)-2 \\
& =B_{2 k+1}+B_{k-1}^{2}+k(k+1)-2 \\
& \equiv B_{k-1}^{2}+k(k+1)-2 \quad\left(\bmod B_{2 k+1}\right) \tag{4.3}
\end{align*}
$$

where, we used Lemma $2(i)$ to get that $B_{2 k-1}=B_{k}^{2}-B_{k-1}^{2}$. Using the previous case, we have that

$$
0<B_{k-1}^{2}+k(k+1)-2<B_{k}^{2}+k(k+1)<B_{2 k+1}
$$

so that

$$
\begin{equation*}
B_{k-1}^{2}+k(k+1)-2 \not \equiv 0 \quad\left(\bmod B_{2 k+1}\right) . \tag{4.4}
\end{equation*}
$$

Congruences 4.3) and 4.4 imply that $U_{j}+B_{k}^{2}+k(k+1)-2 \not \equiv 0\left(\bmod B_{2 k+1}\right)$,

- If $1 \leq j \leq k-1$, then we get that

$$
\begin{align*}
U_{j}+B_{k}^{2}+k(k+1)-2 & \leq U_{k-1}+B_{k}^{2}+k(k+1)-2 \\
& =B_{2 k-1}-B_{2 k-3}+B_{k}^{2}+k(k+1)-2 \\
& =B_{2 k-1}+B_{k-2}^{2}+B_{2 k-1}+k(k+1)-2 \\
& =2 B_{2 k-1}+k(k+1)+B_{k-2}^{2}-2, \tag{4.5}
\end{align*}
$$

where, we used Lemma 2 (i) to get that $B_{2 k-3}=B_{k-1}^{2}-B_{k-2}^{2}$ and $B_{k}^{2}-B_{k-1}^{2}=$ $B_{2 k-1}$. On the other hand, we have

$$
\begin{align*}
& B_{2 k+1}-2 B_{2 k-1}-k(k+1)-B_{k-2}^{2}+2 \\
& \quad=B_{k+1}^{2}-B_{k}^{2}-2\left(B_{k}^{2}-B_{k-1}^{2}\right)-k(k+1)-B_{k-2}^{2}+2 \\
& \quad=36 B_{k}^{2}-12 B_{k} B_{k-1}+B_{k-1}^{2}-3 B_{k}^{2}+2 B_{k-1}^{2}-B_{k-2}^{2}-k(k+1)+2 \tag{4.6}\\
& \quad=31 B_{k}^{2}+B_{k-1}^{2}-B_{k-2}^{2}-k(k+1)+4 \\
& \quad>31 B_{k}^{2}-k(k+1)+4=\frac{31}{4} P_{2 k}^{2}-k(k+1)+4>0 .
\end{align*}
$$

In the above chain, we used Lemma 3 (i) to get that $12 B_{k} B_{k-1}=2 B_{k}^{2}+2 B_{k-1}^{2}-2$, as well as the fact that $\frac{31}{4} P_{2 k}^{2}>7 \alpha^{4(k-1)}>k(k+1)-4$, for $k \geq 1$. Inequality 4.6) implies that

$$
\begin{equation*}
2 B_{2 k-1}+k(k+1)+B_{k-2}^{2}-2<B_{2 k+1} . \tag{4.7}
\end{equation*}
$$

Now, inequalities (4.5) and 4.7) imply that $U_{j}+B_{k}^{2}+k(k+1)-2<B_{2 k+1}$. Finally, we have $0<U_{j}+\overline{B_{k}^{2}}+k(k+1)-2<B_{2 k+1}$, so that

$$
U_{j}+B_{k}^{2}+k(k+1)-2 \not \equiv 0 \quad\left(\bmod B_{2 k+1}\right) .
$$

In conclusion, we have

$$
U_{j}+B_{k}^{2}+k(k+1)-2 \not \equiv 0 \quad\left(\bmod B_{2 k+1}\right),
$$

for $j \in\{1,2, \ldots, k\}$. Therefore, equation (1.7) has no more solutions for $k \geq 6$. This completes the proof of Theorem 2

5. Proof of Theorem 3

The proof of this theorem is similar to the proof of Theorem 1 . For $k=1,2, \ldots, 5$, one can easily find the solution mentioned in the statement of Theorem 3. So, we assume from now that $k \geq 6$. By Lemma 3 (iii), equation 1.8 implies that

$$
k=\frac{4 B_{n}^{2}+B_{k}}{B_{k+1}-B_{k}} \in \mathbb{N}
$$

This last equation implies that $4 B_{n}^{2}+B_{k} \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. So, we study here the sequence $\left(B_{m}^{2}\right)_{m \geq 1}$ modulo $B_{k+1}-B_{k}$, if k is fixed. The period having length $2 k+1$ can be deduced from the range

$$
\overbrace{1^{2}, 6^{2}, 35^{2}, \ldots, B_{k}^{2}}^{k}, \overbrace{B_{k}^{2}, B_{k-1}^{2}, B_{k-2}^{2}, \ldots, 35^{2}, 6^{2}, 1^{2}, 0}^{k+1} .
$$

So we have $B_{n}^{2} \equiv 0$ or $B_{i}^{2}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$, for some $i \in\{1,2, \ldots, k\}$. Thus

$$
4 B_{n}^{2}+B_{k} \equiv B_{k} \quad \text { or } 4 B_{i}^{2}+B_{k} \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right) .
$$

- Assume that $4 B_{n}^{2}+B_{k} \equiv B_{k}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. We have $0<B_{k}<B_{k+1}-B_{k}$, so that $B_{k} \not \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. So $4 B_{n}^{2}+B_{k} \not \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$.
- Assume that $4 B_{n}^{2}+B_{k} \equiv 4 B_{i}^{2}+B_{k}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$, for some $i \in$ $\{1,2, \ldots, k\}$.

We put $m=\left\lfloor\frac{k}{2}\right\rfloor$. Suppose that $1 \leq i \leq m$. Then, we have

$$
\begin{equation*}
4 B_{i}^{2}+B_{k}=P_{2 i}^{2}+B_{k} \leq P_{2 m}^{2}+B_{k} \leq P_{k}^{2}+B_{k} \tag{5.1}
\end{equation*}
$$

On the other hand, we get

$$
\begin{align*}
B_{k+1}-B_{k} & =4 B_{k}-B_{k-1}+B_{k}=\frac{4 P_{2 k}-P_{2 k-2}}{2}+B_{k} \\
& =\frac{8 P_{2 k-1}+3 P_{2 k-2}}{2}+B_{k}=\frac{8 P_{k-1}^{2}+8 P_{k}^{2}+3 P_{2 k-2}}{2}+B_{k} \tag{5.2}\\
& =4 P_{k-1}^{2}+4 P_{k}^{2}+3 \frac{P_{2 k-2}}{2}+B_{k}>P_{k}^{2}+B_{k}
\end{align*}
$$

From (5.1) and 5.2, one can see that $4 B_{i}^{2}+B_{k}<B_{k+1}-B_{k}$. Thus we obtain

$$
0<4 B_{i}^{2}+B_{k}<B_{k+1}-B_{k}
$$

so that $4 B_{i}^{2}+B_{k} \not \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$, for $i \in\{1,2, \ldots, m\}$.
It remains to prove that for $i \in\{1,2, \ldots, m+1\}$,

$$
4 B_{k+1-i}^{2}+B_{k} \not \equiv 0 \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right)
$$

By Lemma 3 (vi), we have $4 B_{k+1-i}^{2}+B_{k} \equiv 4 B_{i}^{2}+B_{k}-P_{4 i-1}\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$, for $i \in\{1,2, \ldots, m+1\}$. So, it suffices to prove that for $i \in\{1,2, \ldots, m+1\}$,

$$
4 B_{i}^{2}+B_{k}-P_{4 i-1} \not \equiv 0 \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right) .
$$

Let i be an element of the set $\{1,2, \ldots, m+1\}$. From the previous argument, we get $4 B_{i}^{2}+B_{k}<B_{k+1}-B_{k}$. Then, we deduce that

$$
\begin{equation*}
4 B_{i}^{2}+B_{k}-P_{4 i-1}<B_{k+1}-B_{k} \tag{5.3}
\end{equation*}
$$

We will prove that $4 B_{i}^{2}+B_{k}-P_{4 i-1}>0$. We have

$$
\begin{align*}
4 B_{i}^{2}+B_{k}-P_{4 i-1} & =P_{2 i}^{2}+\frac{P_{2 k}}{2}-P_{2 i-1}^{2}-P_{2 i}^{2}=\frac{2 P_{2 k-1}+P_{2 k-2}}{2}-P_{2 i-1}^{2} \\
& \geq \frac{2 P_{k-1}^{2}+2 P_{k}^{2}+P_{2 k-2}}{2}-P_{2 m+1}^{2} \\
& \geq P_{k-1}^{2}+P_{k}^{2}-P_{k+1}^{2}+\frac{P_{2 k-2}}{2}>0 \tag{5.4}
\end{align*}
$$

Now, from 5.3) and (5.4, we have $0<4 B_{i}^{2}+B_{k}-P_{4 i-1}<B_{k+1}-B_{k}$, so that $4 B_{i}^{2}+B_{k}-P_{4 i-1} \not \equiv 0\left(\bmod \left(B_{k+1}-B_{k}\right)\right)$. Hence, we obtain

$$
4 B_{k+1-i}^{2}+B_{k} \not \equiv 0 \quad\left(\bmod \left(B_{k+1}-B_{k}\right)\right)
$$

for $i \in\{1,2, \ldots, m+1\}$. This completes the proof of Theorem 3 .

6. Proof of Theorem 4

For $k=1,2, \ldots, 5$, one can easily find the solution mentioned in the statement of Theorem 4 So, we assume that $k \geq 6$. By Lemma 2 (i), one can see that
$B_{2 k}^{2}=B_{2 k-1} B_{2 k+1}+1 \equiv 1\left(\bmod B_{2 k+1}\right)$. Using Lemma 3 (iv), equation 1.9 implies that

$$
\begin{equation*}
k=\frac{32 B_{n}+B_{k}^{2}+k(k+1)}{B_{2 k+1}} . \tag{6.1}
\end{equation*}
$$

Equation (6.1) implies particularly that $32 B_{n}+B_{k}^{2}+k(k+1) \equiv 0\left(\bmod B_{2 k+1}\right)$. So, here we study the sequence $\left(B_{m}\right)_{m \geq 1}$ modulo $B_{2 k+1}$ if k is fixed. The period can be deduced from the range

$$
\overbrace{1,6,35, \ldots, B_{2 k}, 0}^{2 k+1} \overbrace{-B_{2 k},-6 B_{2 k},-35 B_{2 k}, \ldots,-B_{2 k-1} B_{2 k},-B_{2 k}^{2}, 0}^{2 k+1}
$$

of length $4 k+2$ since $B_{2 k}^{2} \equiv 1\left(\bmod B_{2 k+1}\right)$. So either $B_{n} \equiv 0\left(\bmod B_{2 k+1}\right)$ or $B_{n} \equiv B_{j}$ or $-B_{j} B_{2 k}\left(\bmod B_{2 k+1}\right)$, for some $j \in\{1,2, \ldots, 2 k\}$. Hence, we have

$$
32 B_{n}+B_{k}^{2}+k(k+1) \equiv B_{k}^{2}+k(k+1) \quad\left(\bmod B_{2 k+1}\right)
$$

or

$$
32 B_{i}+B_{k}^{2}+k(k+1) \equiv 32 B_{j}+B_{k}^{2}+k(k+1) \quad\left(\bmod B_{2 k+1}\right)
$$

or

$$
32 B_{i}+B_{k}^{2}+k(k+1) \equiv-32 B_{j} B_{2 k}+B_{k}^{2}+k(k+1) \quad\left(\bmod B_{2 k+1}\right)
$$

for some $j \in\{1,2, \ldots, 2 k\}$. Therefore, we will distinguish three cases.
Case 1: $32 B_{n}+B_{k}^{2}+k(k+1) \equiv B_{k}^{2}+k(k+1)\left(\bmod B_{2 k+1}\right)$. Using Lemma 3 (i), we have

$$
B_{2 k+1}=33 B_{k}^{2}-B_{k-1}^{2}+2>32 B_{k}^{2}=B_{k}^{2}+31 \frac{P_{2 k}^{2}}{4}>B_{k}^{2}+k(k+1),
$$

since $31 \frac{P_{2 k}^{2}}{4}>7 P_{2 k}^{2}>7 \alpha^{4(k-1)}>k(k+1)$. Hence, we obtain, $0<B_{k}^{2}+k(k+1)<$ $B_{2 k+1}$, so that $B_{k}^{2}+k(k+1) \not \equiv 0\left(\bmod B_{2 k+1}\right)$. Then, we deduce that

$$
32 B_{n}+B_{k}^{2}+k(k+1) \not \equiv 0 \quad\left(\bmod B_{2 k+1}\right) .
$$

Case 2: $32 B_{n}+B_{k}^{2}+k(k+1) \equiv 32 B_{j}+B_{k}^{2}+k(k+1)\left(\bmod B_{2 k+1}\right)$, for some $j \in\{1,2, \ldots, 2 k\}$.

- If $j=2 k$, then we get that

$$
\begin{align*}
32 B_{2 k}+B_{k}^{2}+k(k+1) & =5 B_{2 k+1}+2 B_{2 k}+5 B_{2 k-1}+B_{k}^{2}+k(k+1) \\
& \equiv 2 B_{2 k}+5 B_{2 k-1}+B_{k}^{2}+k(k+1) \quad\left(\bmod B_{2 k+1}\right) . \tag{6.2}
\end{align*}
$$

We will check that

$$
\begin{equation*}
2 B_{2 k}+5 B_{2 k-1}+B_{k}^{2}+k(k+1)<B_{2 k+1} \tag{6.3}
\end{equation*}
$$

Indeed, one can see that

$$
5 B_{2 k-1}=B_{2 k}+B_{2 k-2}-B_{2 k-1}<B_{2 k}
$$

so that

$$
\begin{equation*}
2 B_{2 k}+5 B_{2 k-1}+B_{k}^{2}+k(k+1)<3 B_{2 k}+B_{k}^{2}+k(k+1) . \tag{6.4}
\end{equation*}
$$

On the other hand, using $B_{2 k}=\frac{B_{2 k+1}+B_{2 k-1}}{6}$ and Lemma2 (i), we get that

$$
\begin{align*}
& B_{2 k+1}-3 B_{2 k}-B_{k}^{2}-k(k+1) \\
& \quad=16 B_{k}^{2}+B_{k-1}^{2}-6 B_{k} B_{k-1}-k(k+1) \tag{6.5}\\
& \quad=15 B_{k}^{2}+1-k(k+1)=15 \frac{P_{2 k}^{2}}{4}+1-k(k+1)>0
\end{align*}
$$

where we used Lemma 3 (i) to get that $6 B_{k} B_{k-1}=B_{k}^{2}+B_{k-1}^{2}-1$ and the fact that $15 \frac{P_{2 k}^{2}}{4}>3 \alpha^{4(k-1)}>k(k+1)$, for $k \geq 1$. Inequality 6.5 implies that

$$
\begin{equation*}
3 B_{2 k}+B_{k}^{2}+k(k+1)<B_{2 k+1} \tag{6.6}
\end{equation*}
$$

From (6.4) and 6.6), we get $2 B_{2 k}+5 B_{2 k-1}+B_{k}^{2}+k(k+1)<B_{2 k+1}$. So inequality (6.3) is proved and finally

$$
\begin{equation*}
0<2 B_{2 k}+5 B_{2 k-1}+B_{k}^{2}+k(k+1)<B_{2 k+1} \tag{6.7}
\end{equation*}
$$

Now, (6.2) and (6.7) imply that

$$
32 B_{j}+B_{k}^{2}+k(k+1) \not \equiv 0 \quad\left(\bmod B_{2 k+1}\right)
$$

- If $1 \leq j \leq 2 k-1$, then we have

$$
\begin{equation*}
32 B_{j}+B_{k}^{2}+k(k+1) \leq 32 B_{2 k-1}+B_{k}^{2}+k(k+1) \tag{6.8}
\end{equation*}
$$

Furthermore, using Lemma 2(i) and the recurrence formula, we get

$$
\begin{align*}
& B_{2 k+1}-32 B_{2 k-1}-B_{k}^{2}-k(k+1) \\
& \quad=2 B_{k}^{2}+33 B_{k-1}^{2}-12 B_{k} B_{k-1}-k(k+1) \tag{6.9}\\
& \quad=31 B_{k-1}^{2}+2-k(k+1)>0
\end{align*}
$$

where we used again Lemma 3 (i), as well as the fact that $31 B_{k-1}^{2}>7 P_{2 k-2}^{2}>$ $7 \alpha^{4(k-2)}>k(k+1)$, for $k \geq 1$. Inequality (6.9) implies that

$$
\begin{equation*}
32 B_{2 k-1}+B_{k}^{2}+k(k+1)<B_{2 k+1} \tag{6.10}
\end{equation*}
$$

Now, 6.8 and 6.10 imply that $32 B_{j}+B_{k}^{2}+k(k+1)<B_{2 k+1}$. Finally, we have $0<32 B_{j}+B_{k}^{2}+k(k+1)<B_{2 k+1}$, so that $32 B_{j}+B_{k}^{2}+k(k+1) \not \equiv 0\left(\bmod B_{2 k+1}\right)$. In all subcases, we have $32 B_{j}+B_{k}^{2}+k(k+1) \not \equiv 0\left(\bmod B_{2 k+1}\right)$. So, we obtain

$$
32 B_{n}+B_{k}^{2}+k(k+1) \not \equiv 0 \quad\left(\bmod B_{2 k+1}\right)
$$

Case 3: $32 B_{n}+B_{k}^{2}+k(k+1) \equiv-32 B_{j} B_{2 k}+B_{k}^{2}+k(k+1)\left(\bmod B_{2 k+1}\right)$, for some $j \in\{1,2, \ldots, 2 k\}$. We will prove that $-32 B_{j} B_{2 k}+B_{k}^{2}+k(k+1) \not \equiv 0\left(\bmod B_{2 k+1}\right)$. Assume that $-32 B_{j} B_{2 k}+B_{k}^{2}+k(k+1) \equiv 0\left(\bmod B_{2 k+1}\right)$ in order to get a contradiction. Then, one can see that

$$
B_{k}^{2}+k(k+1) \equiv 32 B_{j} B_{2 k} \quad\left(\bmod B_{2 k+1}\right)
$$

Since $B_{2 k}^{\varphi\left(B_{2 k+1}\right)} \equiv 1\left(\bmod B_{2 k+1}\right)$, multiplying both sides by $B_{2 k}^{\varphi\left(B_{2 k+1}\right)-1}$, we get

$$
\begin{equation*}
\left[B_{k}^{2}+k(k+1)\right] B_{2 k}^{\varphi\left(B_{2 k+1}\right)-1} \equiv 32 B_{j} \quad\left(\bmod B_{2 k+1}\right) . \tag{6.11}
\end{equation*}
$$

By Lemma 5. $B_{2 k}^{\varphi\left(B_{2 k+1}\right)-1} \equiv B_{k}-B_{k+2}\left(\bmod B_{2 k+1}\right)$. Then, 6.11) implies that

$$
\left[B_{k}^{2}+k(k+1)\right]\left(B_{k}-B_{k+2}\right) \equiv 32 B_{j} \quad\left(\bmod B_{2 k+1}\right),
$$

i.e.

$$
32 B_{j}+\left[B_{k}^{2}+k(k+1)\right]\left(B_{k+2}-B_{k}\right) \equiv 0 \quad\left(\bmod B_{2 k+1}\right)
$$

This leads to
(6.12) $32 B_{j}+\left[B_{k}^{2}+k(k+1)\right]\left(B_{k+2}-B_{k}\right)-B_{k} B_{2 k+1} \equiv 0 \quad\left(\bmod B_{2 k+1}\right)$, since $B_{k} B_{2 k+1} \equiv 0\left(\bmod B_{2 k+1}\right)$. Observe that

$$
\begin{align*}
& \left.B_{k}^{2}+k(k+1)\right]\left(B_{k+2}-B_{k}\right)-B_{k} B_{2 k+1} \\
& =\left[B_{k}^{2}+k(k+1)\right]\left(6 B_{k+1}-2 B_{k}\right)-B_{k}\left(B_{k+1}^{2}-B_{k}^{2}\right) \\
& =B_{k} B_{k+1}\left(6 B_{k}-B_{k+1}\right)-B_{k}^{3}+6 k(k+1) B_{k+1}-2 k(k+1) B_{k} \tag{6.13}\\
& =B_{k} B_{k+1} B_{k-1}-B_{k}^{3}+6 k(k+1) B_{k+1}-2 k(k+1) B_{k} \\
& =6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k},
\end{align*}
$$

where we used Lemma 2 (i) to get that $B_{2 k+1}=B_{k+1}^{2}-B_{k}^{2}, B_{k+1} B_{k-1}=B_{k}^{2}-1$. Then, 6.12 and 6.13 imply that

$$
\begin{equation*}
32 B_{j}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k} \equiv 0 \quad\left(\bmod B_{2 k+1}\right), \tag{6.14}
\end{equation*}
$$

- Suppose that $1 \leq j \leq 2 k-2$. We will prove that

$$
0<32 B_{j}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1} .
$$

We have

$$
\begin{align*}
& 32 B_{j}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k} \\
& \quad \geq 32+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}>0 . \tag{6.15}
\end{align*}
$$

On the other hand, since $j \leq 2 k-2$, we have

$$
\begin{align*}
B_{2 k+1} & -32 B_{j}-6 k(k+1) B_{k+1}+[2 k(k+1)+1] B_{k} \\
\geq & B_{2 k+1}-32 B_{2 k-2}-6 k(k+1) B_{k+1}+[2 k(k+1)+1] B_{k} \\
= & B_{2 k+1}-32 \frac{B_{2 k-1}+B_{2 k-3}}{6}-6 k(k+1) B_{k+1}+[2 k(k+1)+1] B_{k} \\
= & B_{k+1}^{2}-B_{k}^{2}-\frac{16}{3}\left(B_{k}^{2}-B_{k-1}^{2}+B_{k-1}^{2}-B_{k-2}^{2}\right)-6 k(k+1) B_{k+1} \\
& +[2 k(k+1)+1] B_{k} \\
\geq & B_{k+1}^{2}-B_{k}^{2}-6\left(B_{k}^{2}-B_{k-2}^{2}\right)-6 k(k+1) B_{k+1}+[2 k(k+1)+1] B_{k} \tag{6.16}\\
= & B_{k}\left[36 B_{k}-6 B_{k-1}-36 k(k+1)\right]-B_{k-1}\left[6 B_{k}-B_{k-1}-6 k(k+1)\right] \\
& -B_{k}\left[7 B_{k}-2 k(k+1)-1\right]+6 B_{k-2}^{2} \\
> & B_{k}\left[29 B_{k}-6 B_{k-1}-34 k(k+1)+1\right] \\
& -B_{k-1}\left[6 B_{k}-B_{k-1}-6 k(k+1)\right] .
\end{align*}
$$

Observe that

$$
\begin{align*}
& 29 B_{k}-6 B_{k-1}-34 k(k+1)+1-6 B_{k}+B_{k-1}+6 k(k+1) \\
& \quad=23 B_{k}-5 B_{k-1}-28 k(k+1)+1>18 B_{k}-28 k(k+1)+1>0 \tag{6.17}
\end{align*}
$$

since $18 B_{k}=9 P_{2 k} \geq 9 \alpha^{2 k-2}>28 k(k+1)$, for $k \geq 4$. Now, 6.17) implies that

$$
29 B_{k}-6 B_{k-1}-34 k(k+1)+1>6 B_{k}-B_{k-1}-6 k(k+1)
$$

Then, one obtains

$$
\begin{equation*}
B_{k}\left[29 B_{k}-6 B_{k-1}-34 k(k+1)+1\right]-B_{k-1}\left[6 B_{k}-B_{k-1}-6 k(k+1)\right]>0 \tag{6.18}
\end{equation*}
$$

Inequalities 6.16 and 6.18 finally imply that

$$
\begin{equation*}
32 B_{j}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1} \tag{6.19}
\end{equation*}
$$

From 6.15 and 6.19, we deduce that

$$
0<32 B_{j}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1},
$$

which contradicts 6.14. Then, $j \in\{2 k-1,2 k\}$.

- Suppose that $j=2 k-1$. Then, (6.14) becomes

$$
\begin{equation*}
32 B_{2 k-1}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k} \equiv 0 \quad\left(\bmod B_{2 k+1}\right) \tag{6.20}
\end{equation*}
$$

Using the recurrence formula, we check that $32 B_{2 k-1}=B_{2 k+1}+B_{2 k-3}-2 B_{2 k-1}$. Then, 6.20 becomes
$B_{2 k+1}+B_{2 k-3}-2 B_{2 k-1}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k} \equiv 0\left(\bmod B_{2 k+1}\right)$.
We will prove that

$$
0<B_{2 k+1}+B_{2 k-3}-2 B_{2 k-1}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1}
$$

It is obvious that

$$
\begin{equation*}
B_{2 k+1}+B_{2 k-3}-2 B_{2 k-1}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}>0 \tag{6.22}
\end{equation*}
$$

Furthermore, one sees that

$$
\begin{aligned}
& B_{2 k+1}-B_{2 k+1}-B_{2 k-3}+2 B_{2 k-1}-6 k(k+1) B_{k+1}+[2 k(k+1)+1] B_{k} \\
& \quad=2 B_{k}^{2}-3 B_{k-1}^{2}+B_{k-2}^{2}-36 k(k+1) B_{k}+6 k(k+1) B_{k-1}+[2 k(k+1)+1] B_{k} \\
& \quad>B_{k}^{2}+B_{k-2}^{2}-36 k(k+1) B_{k}+6 k(k+1) B_{k-1}+[2 k(k+1)+1] B_{k} \\
& \quad=B_{k}\left[B_{k}-34 k(k+1)+1\right]+B_{k-2}^{2}+6 k(k+1) B_{k-1}>0,
\end{aligned}
$$

where we used Lemma $2(i)$, the fact that $B_{k}^{2}-3 B_{k-1}^{2}>0$ and at the end the fact that $B_{k}=\frac{P_{2 k}}{2} \geq \frac{1}{2} \alpha^{2 k-2}>34 k(k+1)-1$, for $k \geq 6$, which is the case for us. The above inequality implies that
(6.23) $B_{2 k+1}+B_{2 k-3}-2 B_{2 k-1}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1}$.

From inequalities 6.22 and 6.23, we have

$$
0<B_{2 k+1}+B_{2 k-3}-2 B_{2 k-1}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1}
$$

which contradicts 6.21.

- Suppose that $j=2 k$. Then, 6.14 becomes

$$
\begin{equation*}
32 B_{2 k}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k} \equiv 0 \quad\left(\bmod B_{2 k+1}\right) \tag{6.24}
\end{equation*}
$$

Observe that

$$
32 B_{2 k}=5 B_{2 k+1}+5 B_{2 k-1}+2 B_{2 k} \equiv 5 B_{2 k-1}+2 B_{2 k} \quad\left(\bmod B_{2 k+1}\right)
$$

Then, (6.24 implies
(6.25) $5 B_{2 k-1}+2 B_{2 k}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k} \equiv 0 \quad\left(\bmod B_{2 k+1}\right)$.

We prove that $0<5 B_{2 k-1}+2 B_{2 k}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1}$.
It is obvious that

$$
\begin{equation*}
5 B_{2 k-1}+2 B_{2 k}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}>0 \tag{6.26}
\end{equation*}
$$

On the other hand, using Lemma 2 (i), we get that

$$
\begin{align*}
B_{2 k+1} & -5 B_{2 k-1}-2 B_{2 k}-6 k(k+1) B_{k+1}+[2 k(k+1)+1] B_{k} \\
= & B_{2 k+1}-5 B_{2 k-1}-2 \frac{B_{2 k+1}+B_{2 k-1}}{6} \\
= & \frac{1}{3}\left[72 B_{k}^{2}-24 B_{k} B_{k-1}+2 B_{k-1}^{2}-18 B_{k}^{2}+16 B_{k-1}^{2}\right] \tag{6.27}\\
& +\frac{1}{3}\left[-108 k(k+1) B_{k}+18 k(k+1) B_{k-1}+[6 k(k+1)+3] B_{k}\right] \\
= & \frac{1}{3}\left[B_{k}\left[50 B_{k}-102 k(k+1)+3\right]+B_{k-1}\left[14 B_{k-1}+18 k(k+1)\right]\right]
\end{align*}
$$

where we used Lemma 3 (i) to get $24 B_{k} B_{k-1}=4 B_{k}^{2}+4 B_{k-1}^{2}-4$. Moreover,

$$
\begin{gather*}
B_{k}\left[50 B_{k}-102 k(k+1)+3\right]+B_{k-1}\left[14 B_{k-1}+18 k(k+1)\right] \\
>B_{k}\left[50 B_{k}-102 k(k+1)+3\right]>0, \tag{6.28}
\end{gather*}
$$

since $50 B_{k}=25 P_{2 k} \geq 25 \alpha^{2 k-2}>102 k(k+1)$, for $k \geq 4$. Now, 6.27 and 6.28 imply that $B_{2 k+1}-5 B_{2 k-1}-2 B_{2 k}-6 k(k+1) B_{k+1}+[2 k(k+1)+1] B_{k}>0$, i.e.

$$
\begin{equation*}
5 B_{2 k-1}+2 B_{2 k}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1} \tag{6.29}
\end{equation*}
$$

From inequalities (6.26) and 6.29 , we deduce that

$$
0<5 B_{2 k-1}+2 B_{2 k}+6 k(k+1) B_{k+1}-[2 k(k+1)+1] B_{k}<B_{2 k+1}
$$

which contradicts 6.25). Then, the proof of Theorem 4 is complete.

References

[1] Altassan, A., Luca, F., On the Diophantine equation $\sum_{j=1}^{k} j F_{j}^{p}=F_{n}^{q}$, J. Number Theory 217 (2020), 256-277.
[2] Behera, A., Panda, G.K., On the square roots of triangular numbers, Fibonacci Quart. 37 (2) (1999), 98-105.
[3] Catarino, P., Campos, H., Vasco, P., On some identities for balancing and cobalancing numbers, Ann. Math. Inform. 45 (2015), 11-24.
[4] Gueth, K., Luca, F., Szalay, L., Solutions to $F_{1}^{p}+2 F_{2}^{p}+\cdots+k F_{k}^{p}=F_{n}^{q}$ with small given exponents, Proc. Japan Acad. Ser. A, Math. Sci. 96 (4) (2020), 33-37.
[5] Horadam, A.F., Pell identities, Fibonacci Quart. 9 (3) (1971), 245-263.
[6] Niven, I., Zuckerman, H.S., Montgomery, H.L., An Introduction to the Theory of Numbers, fifth edition ed., John Wiley \& Sons, Inc., New York, 1991.
[7] Olajos, P., Properties of Balancing, Cobalancing and Generalized Balancing Numbers, Ann. Math. Inform. 37 (2010), 125-138.
[8] Panda, G.K., Some Fascinating Properties of Balancing Numbers, Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer., vol. 194, 2009, pp. 185-189.
[9] Panda, G.K., Ray, P.K., Some links of balancing and cobalancing numbers with Pell and associated Pell numbers, Bul. Inst. Math. Acad. Sinica 6 (2011), 41-72.
[10] Ray, P.K., Balancing and cobalancing numbers, Ph.D. thesis, National Institute of Technology, Rourkela, India, 2009.
[11] Soydan, G., Németh, L., Szalay, L., On the diophantine equation $\sum_{j=1}^{k} j F_{j}^{p}=F_{n}^{q}$, Arch. Math. (Brno) 54 (2008), 177-188.
[12] Tchammou, E., Togbé, A., On the diophantine equation $\sum_{j=1}^{k} j P_{j}^{p}=P_{n}^{q}$, Acta Math. Hungar. 162 (2) (2020), 647-676.

Institut de Mathématiques et de Sciences Physiques,
Dangbo, Bénin
E-mail: euloge.tchammou@imsp-uac.org

Department of Mathematics and Statistics,
Purdue University Northwest, 1401 S, U.S. 421, Westville IN 46391 USA
E-mail: atogbe@pnw.edu

