AN UPPER BOUND OF A GENERALIZED UPPER HAMILTONIAN NUMBER OF A GRAPH

MARTIN DZÚRIK

ABSTRACT. In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph H we define the H-Hamiltonian number of a graph G. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs G and Husing H-Hamiltonian number of G. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper H-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph H only paths have maximal H-Hamiltonian number.

1. INTRODUCTION

In this article we study a part of graph theory based on an ordering of vertices. We define a generalization called a pseudoordering of a graph. We will show how to generalize a Hamiltonian number, for a graph H we define the H-Hamiltonian number of a graph G and we will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We get them by a special choice of graph H. Furthermore, we will study a maximalization of upper H-Hamiltonian number for a fixed number of vertices. We will show that, for a fixed number of vertices, each path has a maximal upper H-Hamiltonian number. From the definition it will be obvious that a lower bound of the H-Hamiltonian number is the number of edges |E(H)| and the graph G has a minimal lower H-Hamiltonian number if and only if H is a subgraph of G. Now we can say that G having a maximal upper H-Hamiltonian number is dual to H being a subgraph of G. Furthermore, by above for every two finite graphs G and H such that $G \cong H$ if and only if the lower H-Hamiltonian number of G is |E(H)|, we get that $G \cong H$ if and only if the lower H-Hamiltonian number of G is |E(H)|.

In [2] it is proved that G has a maximal upper traceable number if and only if G is a path. The same is proved for Hamiltonian number. We will show that for

²⁰²⁰ Mathematics Subject Classification: primary 05C12; secondary 05C45.

Key words and phrases: graph, vertices, ordering, pseudoordering, upper Hamiltonian number, upper traceable number, upper H-Hamiltonian number, Hamiltonian spectra.

Received March 23, 2021, revised June 2021. Editor J. Nešetřil.

DOI: 10.5817/AM2021-5-299

H connected G has a maximal H-Hamiltonian number if and only if G is a path. This shows that this generalization of ordering of vertices is natural.

This article is based on the bachelor thesis [1]. The author would like to thank Jiří Rosický for many helpful discussions.

In this article we will study a generalization of Hamiltonian spectra of undirected finite graphs. Recall that, a graph G is a pair

$$G = \left(V(G), E(G) \right),$$

where V(G) is a finite set of vertices of G and $E(G) \subseteq V(G) \times V(G)$, a symmetric Antireflexive relation, is a set of edges. We will denote an edge between v and u by $\{v, u\}$.

Recall that, an *ordering* on the graph G is a bijection

$$f: \{1, 2, \ldots, |V(G)|\} \to V(G),$$

we denote

$$s(f,G) = \sum_{i=1}^{|V(G)|} \rho_G(f(i), f(i+1)),$$

$$\bar{s}(f,G) = \sum_{i=1}^{|V(G)|-1} \rho_G(f(i), f(i+1)),$$

where $\rho_G(x, y)$ is the distance of x, y in the graph G and f(|V(G)| + 1) := f(1), for better notation. We will write only s(f), $\bar{s}(f)$ if the graph is clear from context. Then

$$\{s(f,G) \mid f \text{ ordering on } G\} \\ \{\bar{s}(f,G) \mid f \text{ ordering on } G\}$$

are the Hamiltonian spectrum of the graph G and the traceable spectrum of the graph G, respectively.

We want to generalize the notion of an ordering of a graph.

Definition 1.1. Let G, H be graphs such that |V(G)| = |V(H)| and $f: V(H) \to V(G)$ is a bijection, then we call f a *pseudoordering* on the graph G (by H), denote

$$s_H(f,G) = \sum_{\{x,y\}\in E(H)} \rho_G(f(x), f(y)),$$

where $\rho_G(x, y)$ is the distance of x, y in the graph G. We will call $s_H(f, G)$ the sum of the pseudoordering f. Then

 $\{s_H(f,G) \mid f \text{ pseudoordering on } G \text{ by } H\}$

is the H-Hamiltonian spectrum of the graph G.

The minimum and the maximum of a Hamiltonian spectrum and of a traceable spectrum are called the (*lower*) Hamiltonian number and the upper Hamiltonian number, respectively. Furthermore, the (lower) traceable number and the upper traceable number of a graph G are denoted by

 $h(G) = \min\{s(f,G) \mid f \text{ ordering on } G\},$ $h^+(G) = \max\{s(f,G) \mid f \text{ ordering on } G\},$ $t(G) = \min\{\bar{s}(f,G) \mid f \text{ ordering on } G\},$ $t^+(G) = \max\{\bar{s}(f,G) \mid f \text{ ordering on } G\}.$

Now we define generalized versions.

Definition 1.2.

$$h_H(G) = \min\{s_H(f, G) \mid f \text{ pseudoordering on } G\},\$$

 $h_H^+(G) = \max\{s_H(f,G) \mid f \text{ pseudoordering on } G\}.$

We will call them the lower H-Hamiltonian number and the upper H-Hamiltonian number of a graph G, respectively.

Now take $H = C_{|V(G)|}$, where C_n is the cycle with *n* vertices. When we denote the vertices of $C_{|V(G)|}$ by $\{1, 2, \ldots, |V(G)|\}$ we can see that

$$s(f,G) = s_{C_{|V(G)|}}(f,G)$$

Analogously for $H = P_{|V(G)|-1}$, where P_{n-1} is the path of length n-1, we get that

$$\bar{s}(f,G) = s_{P_{|V(G)|-1}}(f,G).$$

Remark 1.3. The $C_{|V(G)|}$ -Hamiltonian spectrum of a graph G is equal to the Hamiltonian spectrum of G for $|V(G)| \ge 3$, and the $P_{|V(G)|-1}$ -Hamiltonian spectrum of G is equal to the traceable spectrum of G for $|V(G)| \ge 2$.

Lemma 1.4. Let G be a connected finite graph and H be a graph such that |V(G)| = |V(H)|, then $h_H(G) = |E(H)|$ if and only if H is isomorphic to some subgraph of G.

Proof. Let $f: V(H) \to V(G)$ be a pseudoordering satisfying s(f, G) = |E(H)|, then f is an injective graph homomorphism. The opposite implication is obvious. \Box

Lemma 1.5. Let G be a connected finite graph and H be a graph such that |V(G)| = |V(H)| and |E(G)| = |E(H)|, then $h_H(G) = |E(H)|$ if and only if H is isomorphic to the graph G.

Proof. The graph H is isomorphic to a subgraph of G and furthermore |V(G)| = |V(H)|, |E(G)| = |E(H)|, hence $H \cong G$. The opposite implication is obvious. \Box

2. Maximalization of the upper H-Hamiltonian number of a graph G

In this section we will prove that for every pair of connected graphs H, G and each pseudoordering f there exists a pseudoordering

$$g\colon V(H)\to\{1,2,\ldots,|V(G)|\}$$

such that

$$s_H(f,G) \le s_H(g,P_{|V(G)|-1})$$

At first, let G be a tree. We will only work with graphs which have at least 2 vertices.

Definition 2.1. Let G and H be graphs such that G is connected, |V(G)| = |V(H)|and $f: V(H) \to V(G)$ is a pseudoordering. Furthermore, let $a, b \in V(G)$, we define $a \sim_{H,f} b$ if and only if $\{f^{-1}(a), f^{-1}(b)\} \in E(H)$.

Definition 2.2. Let G be a tree such that G is not a path. Denote three pairwise distinct leaves by $l, k, v \in V(G)$. Because G is not a path then G has at least 3 leaves, connect l, k with a path $l = x_1, x_2, \ldots, x_m = k$. Connect v, l with a path $l = v_1, y_2, \ldots, y_s = l$ and take the minimum of a set

$$i_m = \min\{i \mid \exists j \in \{1, \ldots, m\}, y_i = x_j\}.$$

Take j_m such that $y_{i_m} = x_{j_m}$. Now we define $u = y_{i_m}$, $w = y_{i_m-1}$, $u^+ = x_{j_m-1}$, $u^- = x_{j_m+1}$.

Example.

Remark 2.3. $l \neq u \neq k$.

Definition 2.4. Define a set $K(v, G) \subseteq V(G)$ as a set of vertices $z \in V(G)$ such the path between z and l uses the edge $\{w, u\}$.

Remark 2.5. K(v, G) is the connected component of $(V(G), E(G) \setminus \{w, u\})$, G without edge $\{w, u\}$, which contains v.

Lemma 2.6. (i) Paths between vertices from K(v, G) don't use the edge $\{w, u\}$.

- (ii) Paths between vertices from $V(G) \setminus K(v, G)$ don't use the edge $\{w, u\}$.
- (iii) Paths joining a vertex from $V(G) \setminus K(v, G)$ to a vertex from K(v, G) use the edge $\{w, u\}$.

Proof. Because G is a tree, there is a unique path between each pair of vertices, then it is obvious by remark 2.5. \Box

Definition 2.7. Define graphs

$$\begin{split} \bar{G} &= \left(V(G), E(G) \setminus \{\{w, u\}\} \cup \{\{w, l\}\} \right), \\ \tilde{G} &= \left(V(G), E(G) \setminus \{\{w, u\}\} \cup \{\{w, k\}\} \right). \end{split}$$

Lemma 2.8. \overline{G} and \widetilde{G} are trees.

Proof. At first we show connectivity, let $a, b \in V(G)$, connect them with a path. If both are in K(v, G) or in $V(G) \setminus K(v, G)$, then by Lemma 2.6, the path in G uses only edges which are also in $\overline{G}, \widetilde{G}$. Hence it is path also there.

Let $a \in K(v, G)$ and $b \in V(G) \setminus K(v, G)$. We can see $w \in K(v, G)$, by Lemma 2.6 a path between a and w, $a = a_1, a_2, \ldots, a_p = w$, doesn't use $\{w, u\}$ and all vertices of this path are in K(v, G). If not, there is a path between vertices from K(v, G) and $V(G) \setminus K(v, G)$ which doesn't use $\{w, u\}$, that is a contradiction with Lemma 2.6. Connect l and b with a path, $l = b_1, b_2, \ldots, b_q = b$. It doesn't use $\{w, u\}$ and all vertices are in $V(G) \setminus K(v, G)$. Then $a = a_1, a_2, \ldots, a_p = w$, $l = b_1, b_2, \ldots, b_q = b$ is a path between a, b in the graph \overline{G} , analogously for \widetilde{G} .

Now we show that they don't contain a cycle, for contradiction suppose that G contains a cycle $C \subseteq \overline{G}$. If C doesn't use the edge $\{w, l\}$, then $C \subseteq G$, but G is a tree, this is a contradiction. If C uses $\{w, l\}$, then there exists a path in G between w, l, which doesn't use the edge $\{w, l\}$. Then there exists a path in G between w, l, which doesn't use the edge $\{w, u\}$, but $w \in K(v, G)$ and $l \in V(G) \setminus K(v, G)$, that is contradiction with Lemma 2.6. Analogously for \tilde{G} .

We want to show that

$$s_H(G, f) \le s_H(G, f)$$

or

$$s_H(G, f) \le s_H(\tilde{G}, f)$$
.

Lemma 2.9.

$$a, b \in K(v, G), \qquad \text{then} \quad \rho_G(a, b) = \rho_{\bar{G}}(a, b) = \rho_{\bar{G}}(a, b),$$

$$a, b \in V(G) \setminus K(v, G), \quad \text{then} \quad \rho_G(a, b) = \rho_{\bar{G}}(a, b) = \rho_{\bar{G}}(a, b)$$

Proof. A path in G between a, b, by Lemma 2.6, doesn't use $\{u, w\}$, hence it is a path in \overline{G} and \widetilde{G} too, then the distance of a, b is the same in G, \overline{G} and \widetilde{G} .

Definition 2.10. Define subsets

$$F^+, F^-, F^0 \subseteq K(v,G) \times (V(G) \setminus K(v,G))$$

such that $(a,b) \in F^+$ if a path between a, b uses the edge $\{u, u^+\}$. $(a,b) \in F^-$ if a path between a, b uses the edge $\{u, u^-\}$ and $(a,b) \in F^0$ if a path between a, b doesn't use neither $\{u, u^-\}$ nor $\{u, u^+\}$.

Lemma 2.11. F^+ , F^- , F^0 are pairwise disjoint and

$$F^+ \cup F^- \cup F^0 = K(v,G) \times (V(G) \setminus K(v,G))$$

Proof. From the definition of F^+ , F^- , F^0 we have F^- and F^0 , F^+ and F^0 are disjoint. Let $(a, b) \in F^+ \cap F^-$, then the path between a, b uses edges $\{u, u^-\}, \{u, u^+\}$ and by lemma 2.6, it also uses the edge $\{w, u\}$. Hence it is a path which has a vertex of degree 3 and that is contradiction.

Lemma 2.12. Let $x, \bar{x} \in K(v, G)$ and $y, \bar{y} \in V(G) \setminus K(v, G)$ such that $(x, y) \in F^+$ and $(\bar{x}, \bar{y}) \in F^-$. Then

$$\rho_{\bar{G}}(x,y) + \rho_{\bar{G}}(\bar{x},\bar{y}) \ge \rho_G(x,y) + \rho_G(\bar{x},\bar{y}),$$

 $\rho_{\tilde{G}}(x,y) + \rho_{\tilde{G}}(\bar{x},\bar{y}) \ge \rho_G(x,y) + \rho_G(\bar{x},\bar{y}).$

Moreover, both sides are equal, in the first inequality, if and only if y = l and, in the second inequality, if and only if $\bar{y} = k$.

Proof. Let z denote the first common vertex of paths $Q: l = y_1, y_2, \ldots, y_s = k$ and $P: y = x_1, x_2, \ldots, x_m = x$. Consider

$$i_m = \min\{i \mid \exists j \in \{1, \dots, m\}, y_i = x_j\}$$

and therefore $z = y_{i_m}$, let T be the path from z to l, we will show that z is the only one common vertex of T and P, vertices from P split into the 4 subpaths, P_1 from y to z, P_2 from z to u, edge $\{u, w\}$ and P_3 from w to x. Vertices from P_1 are not in Q (except for z) from the definition of z. Vertices from P_2 are not in T (except for z) from the uniqueness of paths in trees and vertices from P_3 belong to K(v, G) and every vertex of T belongs to $V(G) \setminus K(v, G)$. By composition of paths P_1 , T, $\{l, w\}$, P_3 , we get a path from y to x in the graph \overline{G} .

Let \overline{P} denote the path from \overline{y} to \overline{x} , analogously define \overline{z} as the first common vertex of paths \overline{P} and Q (first in the direction from \overline{y} to \overline{x}). We split \overline{P} into the subpaths \overline{P}_1 from \overline{y} to \overline{z} , \overline{P}_2 from \overline{z} to u, edge $\{u, w\}$ and \overline{P}_3 from u to \overline{x} . Let \overline{T} be the path from u to l, analogously we get that u is the only one common vertex of \overline{P} and \overline{T} . Hence $\overline{P}_1, \overline{P}_2, \overline{T}, \{l, w\}, \overline{P}_3$ is a path between $\overline{y}, \overline{x}$ in the graph \overline{G} .

And for paths from u to z and from u to \overline{z} , u is the only one common vertex, by uniqueness of path in trees.

Now we can calculate

$$\begin{split} \rho_G(x,y) &= \rho_G(x,w) + 1 + \rho_G(u,z) + \rho_G(z,y) \,, \\ \rho_G(\bar{x},\bar{y}) &= \rho_G(\bar{x},w) + 1 + \rho_G(u,\bar{z}) + \rho_G(\bar{z},\bar{y}) \,, \\ \rho_{\bar{G}}(x,y) &= \rho_G(x,w) + 1 + \rho_G(l,z) + \rho_G(z,y) \,, \\ \rho_{\bar{G}}(\bar{x},\bar{y}) &= \rho_G(\bar{x},w) + 1 + \rho_G(l,z) + \rho_G(z,u) + \rho_G(u,\bar{z}) + \rho_G(\bar{z},\bar{y}) \,, \end{split}$$

hence

$$\rho_{\bar{G}}(\bar{x},\bar{y}) + \rho_{\bar{G}}(x,y) = \rho_G(\bar{x},\bar{y}) + \rho_G(x,y) + 2\rho_G(l,z).$$

Now we get our inequality and we see that both are equal if and only if l = z. But l is a leaf, hence z is a leaf, then y = z = l. For \tilde{G} analogously.

Example. Paths between x, y and $\overline{x}, \overline{y}$ in graphs G and \overline{G} .

Lemma 2.13. Let $(x, y) \in F^0$ then

$$\rho_{\bar{G}}(x,y) > \rho_{G}(x,y) \,,$$
$$\rho_{\bar{G}}(x,y) > \rho_{G}(x,y) \,.$$

Proof. Let P be a path from x to y and Q be a path from l to k in G, for P and Q, u is the only one common vertex because $(x, y) \in F^0$. Hence $x \to w - l \to u \to y$ is a path in \overline{G} , where paths of type $a \to b$ are subpaths of P and Q and – denotes an edge. Now we can calculate the following

$$\rho_{\bar{G}}(x,y) = \rho_G(x,u) + 1 + \rho_G(l,u) + \rho_G(u,y) = \rho_G(x,y) + \rho_G(l,u)$$

and from $l \neq u$ we have inequality.

For \tilde{G} analogously.

Lemma 2.14.

$$\begin{split} \rho_{\bar{G}}(x,y) &> \rho_{G}(x,y) \quad for \quad (x,y) \in F^{-} ,\\ \rho_{\bar{G}}(x,y) &> \rho_{G}(x,y) \quad for \quad (x,y) \in F^{+} . \end{split}$$

Proof. We will prove the first inequality. As well as in lemma 2.12 denote z the first common vertex of paths from y to x and from k to l, formally we can define it as well as in lemma 2.12. Now we consider a path $x \to w - l \to u \to z \to y$. Hence

$$\rho_{\bar{G}}(x,y) = \rho_G(x,w) + 1 + \rho_G(l,u) + \rho_G(u,z) + \rho_G(z,y)$$

= $\rho_G(x,y) + \rho_G(l,u)$

and from $l \neq u$ we have inequality.

For second inequality analogously.

Definition 2.15. Let G be a tree and H be a graph such that

$$|V(G)| = |V(H)|$$

and

$$f: V(H) \to V(G)$$

 \Box

is a pseudoordering, we define a set

$$L = \left\{ (x, y) \in K(v, G) \times \left(V(G) \setminus K(v, G) \right) \mid x \sim_{H, f} y \right\},\$$

where K(v, G) is the set from Definition 2.4.

Lemma 2.16. Let G be a tree and H be a graph such that, |V(G)| = |V(H)| and

 $f: V(H) \to V(G)$

is a pseudoordering. Then

$$s_H(f,\bar{G}) \ge s_H(f,G)$$

or

$$s_H(f, \tilde{G}) \ge s_H(f, G)$$
,

the first case occurs when

$$|L \cap F^+| \le |L \cap F^-|,$$

the second case occurs when

$$|L \cap F^+| \ge |L \cap F^-|.$$

Proof. Denote $n^+ = |L \cap F^+|$, $n^- = |L \cap F^-|$, $m = |L \cap F^0|$,

$$\bar{m} = \frac{\left|\left\{(x,y) \in \left(K(v,G)^2\right) \cup \left(\left(V(G) \setminus K(v,G)\right)^2\right) \mid x \sim_{H,f} y\right\}\right|}{2},$$

where square $K(v,G)^2$ means $K(v,G) \times K(v,G)$. \overline{m} is number of edges $\{x,y\} \in E(H)$, which satisfy that f(x) and f(y) lie in the same component of

 $(V(G), E(G) \setminus \{w, u\}).$

Let $n^+ \ge n^-$, the second case is analogous, we rearrange the sum $s_H(f, G)$ in this way

$$s_H(f,G) = \sum_{i=1}^{n^-} \left(\rho_G(x_i, y_i) + \rho_G(\bar{x}_i, \bar{y}_i) \right) + \sum_{i=n^-+1}^{n^+} \rho_G(x_i, y_i) + \sum_{i=1}^{m} \rho_G(a_i, b_i) + \sum_{i=1}^{\bar{m}} \rho_G(c_i, d_i),$$

where

 $(x_i, y_i) \in F^+, \quad (\bar{x}_i, \bar{y}_i) \in F^-, \quad (a_i, b_i) \in F^0,$

$$(c_i, d_i) \in \left\{ (x, y) \in \left(K(v, G)^2 \right) \cup \left(\left(V(G) \setminus K(v, G) \right)^2 \right) \mid x \sim_{H, f} y \right\}.$$

Now, by Lemma 2.12

$$\rho_G(x_i, y_i) + \rho_G(\bar{x}_i, \bar{y}_i) \le \rho_{\tilde{G}}(x_i, y_i) + \rho_{\tilde{G}}(\bar{x}_i, \bar{y}_i)$$

by Lemma 2.14

$$\rho_G(x_i, y_i) \le \rho_{\tilde{G}}(x_i, y_i) \,,$$

by Lemma 2.13

$$\rho_G(a_i, b_i) \le \rho_{\tilde{G}}(a_i, b_i)$$

and by Lemma 2.9

$$\rho_G(c_i, d_i) = \rho_{\tilde{G}}(c_i, d_i) \,.$$

Hence

$$s_{H}(f,G) \leq \sum_{i=1}^{n^{-}} (\rho_{\tilde{G}}(x_{i},y_{i}) + \rho_{\tilde{G}}(\bar{x}_{i},\bar{y}_{i})) + \sum_{i=1}^{m} \rho_{\tilde{G}}(a_{i},b_{i}) + \sum_{i=1}^{\bar{m}} \rho_{\tilde{G}}(c_{i},d_{i}) = s_{H}(f,\tilde{G}).$$

Lemma 2.17. Let G be a tree and H be a graph such that, |V(G)| = |V(H)|and $f: V(H) \to V(G)$ is a pseudoordering. Then there exists a pseudoordering

$$g: V(H) \to \{x_1, x_2, \dots, x_{|V(G)|}\} = V(P_{|V(G)|-1}) \quad such \ that$$
$$s_H(f, G) \le s_H(g, P_{|V(G)|-1}).$$

Proof. We denote

$$\alpha(G) = \sum_{\substack{v \in V(G) \\ \deg_G v \ge 3}} \deg_G v,$$

from the definition of u, l and k we know that $\deg_G u \ge 3$ and $\deg_G l = \deg_G k = 1$. From the construction of \overline{G} and \widetilde{G} we have $\deg_{\overline{G}} u = \deg_{\widetilde{G}} u \le \deg_G u$, $\deg_{\overline{G}} l = \deg_{\widetilde{G}} k = 2$ and all other vertices have the same degree as before. Hence

$$\alpha(G) < \alpha(G) ,$$

$$\alpha(\tilde{G}) < \alpha(G) .$$

Let S be a tree, which is not a path, we choose any three pairwise distinct leaves in V(S) and define S^* as one of graphs $\overline{S}, \widetilde{S}$, which satisfy $s_H(f, S^*) \geq s_H(f, S)$. Denote $G_0 = G$ and for $i \geq 0$ denote $G_{i+1} = G_i^*$ if G_i is not a path, otherwise define $G_{i+1} = G_i$. For contradiction we assume that the tree G_i is not a path for every $i \in \mathbb{N}_0$. We know $\alpha(G_i) \in \mathbb{N}_0$ for every i and

$$\alpha(G_{i+1}) \le \alpha(G_i) - 1,$$

hence

$$\alpha(G_{\alpha(G_0)+1}) \le \alpha(G_0) - \alpha(G_0) - 1 = -1$$

and this is contradiction. Therefore there exists some j such that G_j is a path, from Lemma 2.16 we get

$$s_H(f, G_{i+1}) \ge s_H(f, G_i)$$

and hence

$$s_H(f,G_j) \ge s_H(f,G)$$
.

Theorem 2.18. Let G and H be graphs such that G is connected, |V(G)| = |V(H)|and $f: V(H) \to V(G)$ is a pseudoordering, then there exists a pseudordering

$$g: V(H) \to \{x_1, x_2, \dots, x_{|V(G)|}\} = V(P_{|V(G)|-1}) \quad such \ that$$
$$s_H(f, G) \le s_H(g, P_{|V(G)|-1}).$$

Proof. Let K be any spanning tree of G, $x, y \in V(G)$, we connect x and y with a path in graph K, this path is also a path in G. Hence

$$\rho_G(x,y) \le \rho_K(x,y)$$

for every x, y, hence

$$s_H(f,G) \le s_H(f,K),$$

by Lemma 2.17 there exists a pseudoordering

$$g: V(H) \to \{x_1, x_2, \dots, x_{|V(G)|}\} = V(P_{|V(G)|-1})$$
 such that
 $s_H(f, G) \le s_H(f, K) \le s_H(g, P_{|V(G)|-1}).$

Corollary 2.19. Let G and H be graphs such that G is connected, |V(G)| = |V(H)|, then

$$h_H^+(G) \le h_H^+(P_{|V(G)|-1}).$$

3. Graphs with a maximal upper H-Hamiltonian number

In this section we will prove that if in Corollary 2.19 the graph H is connected, then in the inequality in Corollary 2.19 both sides are equal.

Remark 3.1. For easier writing, we will denote vertices of H the same as vertices of G, we will rename them in this way $v \in H \mapsto f(v)$. We can naturally see it as graph with two sets of edges.

In inequalities in Lemma 2.16 both sides are equal under specific conditions, if $L \cap F^0 \neq \emptyset$, then in Lemma 2.13 there is a strict inequality and then also the same happens in Theorem 2.18.

If $(L \setminus K(v, G) \times \{l\}) \cap F^+ \neq \emptyset$, then in Lemma 2.12 there is a strict inequality and then also the same happens in Theorem 2.18. Analogously if

$$(L \setminus K(v, G) \times \{k\}) \cap F^- \neq \emptyset.$$

Overall we get that the only nontrivial case is

(1)
$$L \subseteq K(v,G) \times \{k,l\}.$$

Remark 3.2. Remark 3.1 holds for every triple of distinct leaves k, l, v in G.

308

Lemma 3.3. Let G be a tree, H connected graph such that |V(G)| = |V(H)| and $f: V(H) \rightarrow V(G)$ is a pseudoordering, which satisfy

$$s_H(f,G) = h_H^+(P_{|V(G)|-1}),$$

then G is path.

Proof. For contradiction suppose that G is not a path, then there exist three pairwise distinct leaves k, l, v, we denote in the same way as before, vertex u and set of vertices K(v, G). Because graph H is connected there exists a vertex x such that $\{u, x\} \in E(H)$. Let $X \subseteq V(G)$ be a set of vertices of components of graph $G \setminus u$, containing x. $G \setminus u$ has, by definition of u, at least 3 components. Let now \overline{v} be an arbitrary leaf (leaf in G) in X. Choose $\overline{k}, \overline{l}$ as arbitrary leaves in pairwise distinct components of $G \setminus u$ and different from X.

Now $(x, u) \in \overline{L}$, where \overline{L} is alternative of L for \overline{k} , \overline{l} , \overline{v} and by Remark 3.1 for \overline{k} , \overline{l} , \overline{v} and by $k \neq u \neq l$ we get contradiction.

Example. We show the idea of the last proof in the following picture.

Remark 3.4. Let G be a graph with a maximal H-Hamiltonian number, then every spanning tree of G has a maximal H-Hamiltonian number, therefore every spanning tree is a path. We will show that the only graphs with this property are cycles and paths.

Lemma 3.5. Let G be a connected graph such that $|V(G)| \ge 2$, then there is a vertex, which is not an articulation point.

Proof. Consider a block-cut tree of G and a block B, which is a leaf of the block-cut tree or if this tree has only one vertex, then B = G. B is, by definition of a block, 2-connected. Because B is leaf we get that in B there is only one articulation and in B there are at least 2 vertices. Hence in B there is at least one vertex, which is not an articulation point.

Lemma 3.6. Let G be a finite connected graph such that $|V(G)| \ge 2$ and every spanning tree of G is a path, then G is a path or a cycle.

Proof. We will prove it by induction with respect to the number of vertices. Let n be the number of vertices, for n = 2 and n = 3 it is obviously true. Let it be true for $n \ge 3$, let G be a graph with n + 1 vertices such that every spanning tree of G is a path. Let $v \in V(G)$ be a vertex, which is not an articulation point, by lemma 3.5 it exists. We denote G' the subgraph induced by the set of vertices $V(G) \setminus \{v\}$. G' is connected, we will show that every spanning tree of G' is a path. Let there exist a spanning tree which is not a path, let $u \in V(G)$ be a vertex such that $\{v, u\} \in E(G)$. Now when we add this edge to the spanning tree, we get a spanning tree of G, which is not a path and it is a contradiction. By induction hypothesis G' is a path or a cycle, we denote $A = \{u \in V(G) | \{v, u\} \in E(G)\}$. For contradiction we assume G' is a cycle and let $u \in A$, in G' be an edge e such that u is not incident to e. Consider the subgraph B of G, $B = (V(G), E(G') \setminus e \cup \{v, u\})$, and this is a spanning tree of G which is not a path, contradiction.

Therefore G' is a path, let x, y be endpoints of this path, for contradiction we assume that there exists some another vertex $u \in A$. Hence G' together with $\{u, v\}$ form a spanning tree which is not a path. Hence $A \subseteq \{x, y\}$, because G is connected we get also $A \neq \emptyset$. Finally there are the two cases for G, if |A| = 1, then G will be a path and if |A| = 2, then G will be a cycle.

Theorem 3.7. Let G and H be connected finite graphs such that |V(G)| = |V(H)|, then

$$h_{H}^{+}(G) \leq h_{H}^{+}(P_{|V(G)|-1}),$$

moreover, both sides are equal if and only if G is a path.

Proof. The first part follows from Theorem 2.18, let G be a graph, f be a pseudoordering such that

$$s_H(f,G) = h_H^+(G) = h_H^+(P_{|V(G)|-1})$$

From the proof of Theorem 2.18 we know that every spanning tree also satisfies the equation above. Hence, by Lemma 3.3, every spanning tree of G is a path. By Lemma 3.6 G is a path or a cycle, for contradiction we assume, that it is a cycle. We denote n = |V(G)|, we will show that there are two vertices $v, u \in V(G)$ such that $v \sim_{H,f} u$ and $\rho_G(u, v) < \frac{n}{2}$.

Because G is cycle, $|V(H)| = n \ge 3$ and H is connected we see that there is a vertex of degree at least 2. Let v be a vertex such that $deg_H(v) \ge 2$, there exists at least two vertices u such that $v \sim_{H,f} u$. There exists at most one vertex such that $\rho_G(u, v) \ge \frac{n}{2}$, hence at least one of them satisfies $\rho_G(u, v) < \frac{n}{2}$.

Now we connect v and u with a shorter path in G. Let e be some edge on this path, we define a graph $\overline{G} = (V(G), E(G) \setminus e)$, it is a path, where every distance is greater or equal as in G. But $\rho_G(u, v) < \rho_{\overline{G}}(u, v)$ and then

$$s_H(f, \bar{G}) = s_H(f, \bar{G}) > h_H^+(P_{|V(G)|-1}),$$

and this is contradiction with Theorem 2.18.

4. CONCLUSION

When we use following equations which can be found for example in [2, Theorem 1.3] and [2, Corollary 2.2]

$$h^+(P_{|V(G)|-1}) = \left\lfloor \frac{|V(G)|^2}{2} \right\rfloor, \quad t^+(P_{|V(G)|-1}) = \left\lfloor \frac{|V(G)|^2}{2} \right\rfloor - 1.$$

This result is also calculated in [1] and when we use Theorem 3.7 for $H = P_{|V(G)|-1}$ and for $H = C_{|V(G)|}$ we get the following theorem.

Theorem 4.1 ([2]).

$$h^+(G) \le \left\lfloor \frac{|V(G)|^2}{2} \right\rfloor, \quad t^+(G) \le \left\lfloor \frac{|V(G)|^2}{2} \right\rfloor - 1$$

Moreover, both sides are equal if and only if G is a path.

First part is [2, Corollary 2.2] and second part is [2, Theorem 4.2]. Now we can see, that Theorem 3.7 is generalization of Theorem 4.1 which is from article [2].

References

- [1] Dzúrik, M., Metrické vlastnosti grafů, bachelor thesis (2018).
- [2] Okamoto, F., Zhang, P., On upper traceable numbers of graphs, Math. Bohem. 133 (2008), 389–405.

DEPARTMENT OF MATHEMATICS AND STATISTICS, FACULTY OF SCIENCE, MASARYK UNIVERSITY, KOTLÁŘSKÁ 2, 611 37 BRNO, CZECH REPUBLIC *E-mail*: 451859@mail.muni.cz