AN UPPER BOUND OF A GENERALIZED UPPER HAMILTONIAN NUMBER OF A GRAPH

Martin Dzúrik

Abstract

In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph H we define the H-Hamiltonian number of a graph G. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs G and H using H-Hamiltonian number of G. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper H-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph H only paths have maximal H-Hamiltonian number.

1. Introduction

In this article we study a part of graph theory based on an ordering of vertices. We define a generalization called a pseudoordering of a graph. We will show how to generalize a Hamiltonian number, for a graph H we define the H-Hamiltonian number of a graph G and we will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We get them by a special choice of graph H. Furthermore, we will study a maximalization of upper H-Hamiltonian number for a fixed number of vertices. We will show that, for a fixed number of vertices, each path has a maximal upper H-Hamiltonian number. From the definition it will be obvious that a lower bound of the H-Hamiltonian number is the number of edges $|E(H)|$ and the graph G has a minimal lower H-Hamiltonian number if and only if H is a subgraph of G. Now we can say that G having a maximal upper H-Hamiltonian number is dual to H being a subgraph of G. Furthermore, by above for every two finite graphs G and H such that G is connected satisfying $|V(G)|=|V(H)|$ and $|E(G)|=|E(H)|$, we get that $G \cong H$ if and only if the lower H-Hamiltonian number of G is $|E(H)|$.

In [2] it is proved that G has a maximal upper traceable number if and only if G is a path. The same is proved for Hamiltonian number. We will show that for

[^0]H connected G has a maximal H-Hamiltonian number if and only if G is a path. This shows that this generalization of ordering of vertices is natural.

This article is based on the bachelor thesis [1]. The author would like to thank Jiří Rosický for many helpful discussions.

In this article we will study a generalization of Hamiltonian spectra of undirected finite graphs. Recall that, a graph G is a pair

$$
G=(V(G), E(G)),
$$

where $V(G)$ is a finite set of vertices of G and $E(G) \subseteq V(G) \times V(G)$, a symmetric Antireflexive relation, is a set of edges. We will denote an edge between v and u by $\{v, u\}$.

Recall that, an ordering on the graph G is a bijection

$$
f:\{1,2, \ldots,|V(G)|\} \rightarrow V(G),
$$

we denote

$$
\begin{aligned}
s(f, G) & =\sum_{i=1}^{|V(G)|} \rho_{G}(f(i), f(i+1)) \\
\bar{s}(f, G) & =\sum_{i=1}^{|V(G)|-1} \rho_{G}(f(i), f(i+1))
\end{aligned}
$$

where $\rho_{G}(x, y)$ is the distance of x, y in the graph G and $f(|V(G)|+1):=f(1)$, for better notation. We will write only $s(f), \bar{s}(f)$ if the graph is clear from context. Then

$$
\begin{aligned}
& \{s(f, G) \mid f \text { ordering on } G\} \\
& \{\bar{s}(f, G) \mid f \text { ordering on } G\}
\end{aligned}
$$

are the Hamiltonian spectrum of the graph G and the traceable spectrum of the graph G, respectively.

We want to generalize the notion of an ordering of a graph.
Definition 1.1. Let G, H be graphs such that $|V(G)|=|V(H)|$ and $f: V(H) \rightarrow V(G)$ is a bijection, then we call f a pseudoordering on the graph G (by H), denote

$$
s_{H}(f, G)=\sum_{\{x, y\} \in E(H)} \rho_{G}(f(x), f(y)),
$$

where $\rho_{G}(x, y)$ is the distance of x, y in the graph G. We will call $s_{H}(f, G)$ the sum of the pseudoordering f. Then

$$
\left\{s_{H}(f, G) \mid f \text { pseudoordering on } G \text { by } H\right\}
$$

is the H-Hamiltonian spectrum of the graph G.
The minimum and the maximum of a Hamiltonian spectrum and of a traceable spectrum are called the (lower) Hamiltonian number and the upper Hamiltonian number, respectively. Furthermore, the (lower) traceable number and the upper traceable number of a graph G are denoted by

$$
\begin{aligned}
h(G) & =\min \{s(f, G) \mid f \text { ordering on } G\} \\
h^{+}(G) & =\max \{s(f, G) \mid f \text { ordering on } G\}, \\
t(G) & =\min \{\bar{s}(f, G) \mid f \text { ordering on } G\} \\
t^{+}(G) & =\max \{\bar{s}(f, G) \mid f \text { ordering on } G\} .
\end{aligned}
$$

Now we define generalized versions.

Definition 1.2.

$$
\begin{aligned}
h_{H}(G) & =\min \left\{s_{H}(f, G) \mid f \text { pseudoordering on } G\right\} \\
h_{H}^{+}(G) & =\max \left\{s_{H}(f, G) \mid f \text { pseudoordering on } G\right\}
\end{aligned}
$$

We will call them the lower H-Hamiltonian number and the upper H-Hamiltonian number of a graph G, respectively.

Now take $H=C_{|V(G)|}$, where C_{n} is the cycle with n vertices. When we denote the vertices of $C_{|V(G)|}$ by $\{1,2, \ldots,|V(G)|\}$ we can see that

$$
s(f, G)=s_{C_{|V(G)|}}(f, G)
$$

Analogously for $H=P_{|V(G)|-1}$, where P_{n-1} is the path of length $n-1$, we get that

$$
\bar{s}(f, G)=s_{P_{|V(G)|-1}}(f, G)
$$

Remark 1.3. The $C_{|V(G)|}$-Hamiltonian spectrum of a graph G is equal to the Hamiltonian spectrum of G for $|V(G)| \geq 3$, and the $P_{|V(G)|-1}$-Hamiltonian spectrum of G is equal to the traceable spectrum of G for $|V(G)| \geq 2$.
Lemma 1.4. Let G be a connected finite graph and H be a graph such that $|V(G)|=|V(H)|$, then $h_{H}(G)=|E(H)|$ if and only if H is isomorphic to some subgraph of G.
Proof. Let $f: V(H) \rightarrow V(G)$ be a pseudoordering satisfying $s(f, G)=|E(H)|$, then f is an injective graph homomorphism. The opposite implication is obvious.
Lemma 1.5. Let G be a connected finite graph and H be a graph such that $|V(G)|=|V(H)|$ and $|E(G)|=|E(H)|$, then $h_{H}(G)=|E(H)|$ if and only if H is isomorphic to the graph G.
Proof. The graph H is isomorphic to a subgraph of G and furthermore $|V(G)|=$ $|V(H)|,|E(G)|=|E(H)|$, hence $H \cong G$. The opposite implication is obvious.
2. Maximalization of the upper H-Hamiltonian number of a graph G

In this section we will prove that for every pair of connected graphs H, G and each pseudoordering f there exists a pseudoordering

$$
g: V(H) \rightarrow\{1,2, \ldots,|V(G)|\}
$$

such that

$$
s_{H}(f, G) \leq s_{H}\left(g, P_{|V(G)|-1}\right)
$$

At first, let G be a tree. We will only work with graphs which have at least 2 vertices.
Definition 2.1. Let G and H be graphs such that G is connected, $|V(G)|=|V(H)|$ and $f: V(H) \rightarrow V(G)$ is a pseudoordering. Furthermore, let $a, b \in V(G)$, we define $a \sim_{H, f} b$ if and only if $\left\{f^{-1}(a), f^{-1}(b)\right\} \in E(H)$.
Definition 2.2. Let G be a tree such that G is not a path. Denote three pairwise distinct leaves by $l, k, v \in V(G)$. Because G is not a path then G has at least 3 leaves, connect l, k with a path $l=x_{1}, x_{2}, \ldots, x_{m}=k$. Connect v, l with a path l $v=y_{1}, y_{2}, \ldots, y_{s}=l$ and take the minimum of a set

$$
i_{m}=\min \left\{i \mid \exists j \in\{1, \ldots, m\}, y_{i}=x_{j}\right\}
$$

Take j_{m} such that $y_{i_{m}}=x_{j_{m}}$. Now we define $u=y_{i_{m}}, w=y_{i_{m}-1}, u^{+}=x_{j_{m}-1}$, $u^{-}=x_{j_{m}+1}$.

Example.

Remark 2.3. $l \neq u \neq k$.
Definition 2.4. Define a set $K(v, G) \subseteq V(G)$ as a set of vertices $z \in V(G)$ such the path between z and l uses the edge $\{w, u\}$.

Remark 2.5. $K(v, G)$ is the connected component of $(V(G), E(G) \backslash\{w, u\}), G$ without edge $\{w, u\}$, which contains v.

Lemma 2.6. (i) Paths between vertices from $K(v, G)$ don't use the edge $\{w, u\}$.
(ii) Paths between vertices from $V(G) \backslash K(v, G)$ don't use the edge $\{w, u\}$.
(iii) Paths joining a vertex from $V(G) \backslash K(v, G)$ to a vertex from $K(v, G)$ use the edge $\{w, u\}$.

Proof. Because G is a tree, there is a unique path between each pair of vertices, then it is obvious by remark 2.5

Definition 2.7. Define graphs

$$
\begin{aligned}
& \bar{G}=(V(G), E(G) \backslash\{\{w, u\}\} \cup\{\{w, l\}\}), \\
& \tilde{G}=(V(G), E(G) \backslash\{\{w, u\}\} \cup\{\{w, k\}\}) .
\end{aligned}
$$

Lemma 2.8. \bar{G} and \tilde{G} are trees.
Proof. At first we show connectivity, let $a, b \in V(G)$, connect them with a path. If both are in $K(v, G)$ or in $V(G) \backslash K(v, G)$, then by Lemma 2.6 , the path in G uses only edges which are also in \bar{G}, \tilde{G}. Hence it is path also there.

Let $a \in K(v, G)$ and $b \in V(G) \backslash K(v, G)$. We can see $w \in K(v, G)$, by Lemma 2.6 a path between a and $w, \quad a=a_{1}, a_{2}, \ldots, a_{p}=w$, doesn't use $\{w, u\}$ and all vertices of this path are in $K(v, G)$. If not, there is a path between vertices from $K(v, G)$ and $V(G) \backslash K(v, G)$ which doesn't use $\{w, u\}$, that is a contradiction with Lemma 2.6 Connect l and b with a path, $l=b_{1}, b_{2}, \ldots, b_{q}=b$. It doesn't use $\{w, u\}$ and all vertices are in $V(G) \backslash K(v, G)$. Then $a=a_{1}, a_{2}, \ldots, a_{p}=w, l=b_{1}, b_{2}, \ldots, b_{q}=b$ is a path between a, b in the graph \bar{G}, analogously for \tilde{G}.

Now we show that they don't contain a cycle, for contradiction suppose that \bar{G} contains a cycle $C \subseteq \bar{G}$. If C doesn't use the edge $\{w, l\}$, then $C \subseteq G$, but G is a tree, this is a contradiction. If C uses $\{w, l\}$, then there exists a path in G between w, l, which doesn't use the edge $\{w, l\}$. Then there exists a path in G between w, l, which doesn't use the edge $\{w, u\}$, but $w \in K(v, G)$ and $l \in V(G) \backslash K(v, G)$, that is contradiction with Lemma 2.6 Analogously for \tilde{G}.

We want to show that

$$
s_{H}(G, f) \leq s_{H}(\bar{G}, f)
$$

or

$$
s_{H}(G, f) \leq s_{H}(\tilde{G}, f)
$$

Lemma 2.9.

$$
\begin{array}{lll}
a, b \in K(v, G), & \text { then } \quad \rho_{G}(a, b)=\rho_{\bar{G}}(a, b)=\rho_{\tilde{G}}(a, b), \\
a, b \in V(G) \backslash K(v, G), & \text { then } \quad \rho_{G}(a, b)=\rho_{\bar{G}}(a, b)=\rho_{\tilde{G}}(a, b) .
\end{array}
$$

Proof. A path in G between a, b, by Lemma 2.6 doesn't use $\{u, w\}$, hence it is a path in \bar{G} and \tilde{G} too, then the distance of a, b is the same in G, \bar{G} and \tilde{G}.

Definition 2.10. Define subsets

$$
F^{+}, F^{-}, F^{0} \subseteq K(v, G) \times(V(G) \backslash K(v, G))
$$

such that $(a, b) \in F^{+}$if a path between a, b uses the edge $\left\{u, u^{+}\right\} .(a, b) \in F^{-}$if a path between a, b uses the edge $\left\{u, u^{-}\right\}$and $(a, b) \in F^{0}$ if a path between a, b doesn't use neither $\left\{u, u^{-}\right\}$nor $\left\{u, u^{+}\right\}$.
Lemma 2.11. F^{+}, F^{-}, F^{0} are pairwise disjoint and

$$
F^{+} \cup F^{-} \cup F^{0}=K(v, G) \times(V(G) \backslash K(v, G))
$$

Proof. From the definition of F^{+}, F^{-}, F^{0} we have F^{-}and F^{0}, F^{+}and F^{0} are disjoint. Let $(a, b) \in F^{+} \cap F^{-}$, then the path between a, b uses edges $\left\{u, u^{-}\right\},\left\{u, u^{+}\right\}$ and by lemma 2.6. it also uses the edge $\{w, u\}$. Hence it is a path which has a vertex of degree 3 and that is contradiction.

Lemma 2.12. Let $x, \bar{x} \in K(v, G)$ and $y, \bar{y} \in V(G) \backslash K(v, G)$ such that $(x, y) \in F^{+}$ and $(\bar{x}, \bar{y}) \in F^{-}$. Then

$$
\begin{aligned}
\rho_{\bar{G}}(x, y)+\rho_{\bar{G}}(\bar{x}, \bar{y}) & \geq \rho_{G}(x, y)+\rho_{G}(\bar{x}, \bar{y}), \\
\rho_{\tilde{G}}(x, y)+\rho_{\tilde{G}}(\bar{x}, \bar{y}) & \geq \rho_{G}(x, y)+\rho_{G}(\bar{x}, \bar{y})
\end{aligned}
$$

Moreover, both sides are equal, in the first inequality, if and only if $y=l$ and, in the second inequality, if and only if $\bar{y}=k$.

Proof. Let z denote the first common vertex of paths $Q: l=y_{1}, y_{2}, \ldots, y_{s}=k$ and $P: y=x_{1}, x_{2}, \ldots, x_{m}=x$. Consider

$$
i_{m}=\min \left\{i \mid \exists j \in\{1, \ldots, m\}, y_{i}=x_{j}\right\}
$$

and therefore $z=y_{i_{m}}$, let T be the path from z to l, we will show that z is the only one common vertex of T and P, vertices from P split into the 4 subpaths, P_{1} from y to z, P_{2} from z to u, edge $\{u, w\}$ and P_{3} from w to x. Vertices from P_{1} are not in Q (except for z) from the definition of z. Vertices from P_{2} are not in T (except for z) from the uniqueness of paths in trees and vertices from P_{3} belong to $K(v, G)$ and every vertex of T belongs to $V(G) \backslash K(v, G)$. By composition of paths $P_{1}, T,\{l, w\}, P_{3}$, we get a path from y to x in the graph \bar{G}.

Let \bar{P} denote the path from \bar{y} to \bar{x}, analogously define \bar{z} as the first common vertex of paths \bar{P} and Q (first in the direction from \bar{y} to \bar{x}). We split \bar{P} into the subpaths \bar{P}_{1} from \bar{y} to \bar{z}, \bar{P}_{2} from \bar{z} to u, edge $\{u, w\}$ and \bar{P}_{3} from u to \bar{x}. Let \bar{T} be the path from u to l, analogously we get that u is the only one common vertex of \bar{P} and \bar{T}. Hence $\bar{P}_{1}, \bar{P}_{2}, \bar{T},\{l, w\}, \bar{P}_{3}$ is a path between \bar{y}, \bar{x} in the graph \bar{G}.

And for paths from u to z and from u to \bar{z}, u is the only one common vertex, by uniqueness of path in trees.

Now we can calculate

$$
\begin{aligned}
\rho_{G}(x, y) & =\rho_{G}(x, w)+1+\rho_{G}(u, z)+\rho_{G}(z, y) \\
\rho_{G}(\bar{x}, \bar{y}) & =\rho_{G}(\bar{x}, w)+1+\rho_{G}(u, \bar{z})+\rho_{G}(\bar{z}, \bar{y}) \\
\rho_{\bar{G}}(x, y) & =\rho_{G}(x, w)+1+\rho_{G}(l, z)+\rho_{G}(z, y) \\
\rho_{\bar{G}}(\bar{x}, \bar{y}) & =\rho_{G}(\bar{x}, w)+1+\rho_{G}(l, z)+\rho_{G}(z, u)+\rho_{G}(u, \bar{z})+\rho_{G}(\bar{z}, \bar{y})
\end{aligned}
$$

hence

$$
\rho_{\bar{G}}(\bar{x}, \bar{y})+\rho_{\bar{G}}(x, y)=\rho_{G}(\bar{x}, \bar{y})+\rho_{G}(x, y)+2 \rho_{G}(l, z)
$$

Now we get our inequality and we see that both are equal if and only if $l=z$. But l is a leaf, hence z is a leaf, then $y=z=l$. For \tilde{G} analogously.

Example. Paths between x, y and \bar{x}, \bar{y} in graphs G and \bar{G}.

Lemma 2.13. Let $(x, y) \in F^{0}$ then

$$
\begin{aligned}
& \rho_{\bar{G}}(x, y)>\rho_{G}(x, y), \\
& \rho_{\tilde{G}}(x, y)>\rho_{G}(x, y) .
\end{aligned}
$$

Proof. Let P be a path from x to y and Q be a path from l to k in G, for P and Q, u is the only one common vertex because $(x, y) \in F^{0}$. Hence $x \rightarrow w-l \rightarrow u \rightarrow y$ is a path in \bar{G}, where paths of type $a \rightarrow b$ are subpaths of P and Q and - denotes an edge. Now we can calculate the following

$$
\rho_{\bar{G}}(x, y)=\rho_{G}(x, u)+1+\rho_{G}(l, u)+\rho_{G}(u, y)=\rho_{G}(x, y)+\rho_{G}(l, u)
$$

and from $l \neq u$ we have inequality.
For \tilde{G} analogously.

Lemma 2.14.

$$
\begin{array}{lll}
\rho_{\bar{G}}(x, y)>\rho_{G}(x, y) & \text { for } & (x, y) \in F^{-} \\
\rho_{\tilde{G}}(x, y)>\rho_{G}(x, y) & \text { for } & (x, y) \in F^{+} .
\end{array}
$$

Proof. We will prove the first inequality. As well as in lemma 2.12 denote z the first common vertex of paths from y to x and from k to l, formally we can define it as well as in lemma 2.12 Now we consider a path $x \rightarrow w-l \rightarrow u \rightarrow z \rightarrow y$. Hence

$$
\begin{aligned}
\rho_{\bar{G}}(x, y) & =\rho_{G}(x, w)+1+\rho_{G}(l, u)+\rho_{G}(u, z)+\rho_{G}(z, y) \\
& =\rho_{G}(x, y)+\rho_{G}(l, u)
\end{aligned}
$$

and from $l \neq u$ we have inequality.
For second inequality analogously.
Definition 2.15. Let G be a tree and H be a graph such that

$$
|V(G)|=|V(H)|
$$

and

$$
f: V(H) \rightarrow V(G)
$$

is a pseudoordering, we define a set

$$
L=\left\{(x, y) \in K(v, G) \times(V(G) \backslash K(v, G)) \mid x \sim_{H, f} y\right\},
$$

where $K(v, G)$ is the set from Definition 2.4
Lemma 2.16. Let G be a tree and H be a graph such that, $|V(G)|=|V(H)|$ and

$$
f: V(H) \rightarrow V(G)
$$

is a pseudoordering. Then

$$
s_{H}(f, \bar{G}) \geq s_{H}(f, G)
$$

or

$$
s_{H}(f, \tilde{G}) \geq s_{H}(f, G)
$$

the first case occurs when

$$
\left|L \cap F^{+}\right| \leq\left|L \cap F^{-}\right|
$$

the second case occurs when

$$
\left|L \cap F^{+}\right| \geq\left|L \cap F^{-}\right|
$$

Proof. Denote $n^{+}=\left|L \cap F^{+}\right|, n^{-}=\left|L \cap F^{-}\right|, m=\left|L \cap F^{0}\right|$,

$$
\bar{m}=\frac{\left|\left\{(x, y) \in\left(K(v, G)^{2}\right) \cup\left((V(G) \backslash K(v, G))^{2}\right) \mid x \sim_{H, f} y\right\}\right|}{2}
$$

where square $K(v, G)^{2}$ means $K(v, G) \times K(v, G) . \bar{m}$ is number of edges $\{x, y\} \in$ $E(H)$, which satisfy that $f(x)$ and $f(y)$ lie in the same component of

$$
(V(G), E(G) \backslash\{w, u\})
$$

Let $n^{+} \geq n^{-}$, the second case is analogous, we rearrange the sum $s_{H}(f, G)$ in this way

$$
\begin{aligned}
s_{H}(f, G)= & \sum_{i=1}^{n^{-}}\left(\rho_{G}\left(x_{i}, y_{i}\right)+\rho_{G}\left(\bar{x}_{i}, \bar{y}_{i}\right)\right)+\sum_{i=n^{-}+1}^{n^{+}} \rho_{G}\left(x_{i}, y_{i}\right) \\
& +\sum_{i=1}^{m} \rho_{G}\left(a_{i}, b_{i}\right)+\sum_{i=1}^{\bar{m}} \rho_{G}\left(c_{i}, d_{i}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \left(x_{i}, y_{i}\right) \in F^{+}, \quad\left(\bar{x}_{i}, \bar{y}_{i}\right) \in F^{-}, \quad\left(a_{i}, b_{i}\right) \in F^{0} \\
& \left(c_{i}, d_{i}\right) \in\left\{(x, y) \in\left(K(v, G)^{2}\right) \cup\left((V(G) \backslash K(v, G))^{2}\right) \mid x \sim_{H, f} y\right\}
\end{aligned}
$$

Now, by Lemma 2.12

$$
\rho_{G}\left(x_{i}, y_{i}\right)+\rho_{G}\left(\bar{x}_{i}, \bar{y}_{i}\right) \leq \rho_{\tilde{G}}\left(x_{i}, y_{i}\right)+\rho_{\tilde{G}}\left(\bar{x}_{i}, \bar{y}_{i}\right),
$$

by Lemma 2.14

$$
\rho_{G}\left(x_{i}, y_{i}\right) \leq \rho_{\tilde{G}}\left(x_{i}, y_{i}\right),
$$

by Lemma 2.13

$$
\rho_{G}\left(a_{i}, b_{i}\right) \leq \rho_{\tilde{G}}\left(a_{i}, b_{i}\right)
$$

and by Lemma 2.9

$$
\rho_{G}\left(c_{i}, d_{i}\right)=\rho_{\tilde{G}}\left(c_{i}, d_{i}\right) .
$$

Hence

$$
\begin{aligned}
s_{H}(f, G) \leq & \sum_{i=1}^{n^{-}}\left(\rho_{\tilde{G}}\left(x_{i}, y_{i}\right)+\rho_{\tilde{G}}\left(\bar{x}_{i}, \bar{y}_{i}\right)\right) \\
& +\sum_{i=n^{-}+1}^{n^{+}} \rho_{\tilde{G}}\left(x_{i}, y_{i}\right)+\sum_{i=1}^{m} \rho_{\tilde{G}}\left(a_{i}, b_{i}\right)+\sum_{i=1}^{\bar{m}} \rho_{\tilde{G}}\left(c_{i}, d_{i}\right) \\
= & s_{H}(f, \tilde{G}) .
\end{aligned}
$$

Lemma 2.17. Let G be a tree and H be a graph such that, $|V(G)|=|V(H)|$ and $f: V(H) \rightarrow V(G)$ is a pseudoordering. Then there exists a pseudoordering

$$
\begin{aligned}
g: V(H) \rightarrow\left\{x_{1}, x_{2}, \ldots, x_{|V(G)|}\right\} & =V\left(P_{|V(G)|-1}\right) \text { such that } \\
s_{H}(f, G) & \leq s_{H}\left(g, P_{|V(G)|-1}\right) .
\end{aligned}
$$

Proof. We denote

$$
\alpha(G)=\sum_{\substack{v \in V(G) \\ \operatorname{deg}_{G} v \geq 3}} \operatorname{deg}_{G} v
$$

from the definition of u, l and k we know that $\operatorname{deg}_{G} u \geq 3$ and $\operatorname{deg}_{G} l=\operatorname{deg}_{G} k=1$. From the construction of \bar{G} and \tilde{G} we have $\operatorname{deg}_{\bar{G}} u=\operatorname{deg}_{\tilde{G}} u \leq \operatorname{deg}_{G} u, \operatorname{deg}_{\bar{G}} l=$ $\operatorname{deg}_{\tilde{G}} k=2$ and all other vertices have the same degree as before. Hence

$$
\begin{aligned}
& \alpha(\bar{G})<\alpha(G), \\
& \alpha(\tilde{G})<\alpha(G) .
\end{aligned}
$$

Let S be a tree, which is not a path, we choose any three pairwise distinct leaves in $V(S)$ and define S^{*} as one of graphs \bar{S}, \tilde{S}, which satisfy $s_{H}\left(f, S^{*}\right) \geq s_{H}(f, S)$. Denote $G_{0}=G$ and for $i \geq 0$ denote $G_{i+1}=G_{i}^{*}$ if G_{i} is not a path, otherwise define $G_{i+1}=G_{i}$. For contradiction we assume that the tree G_{i} is not a path for every $i \in \mathbb{N}_{0}$. We know $\alpha\left(G_{i}\right) \in \mathbb{N}_{0}$ for every i and

$$
\alpha\left(G_{i+1}\right) \leq \alpha\left(G_{i}\right)-1
$$

hence

$$
\alpha\left(G_{\alpha\left(G_{0}\right)+1}\right) \leq \alpha\left(G_{0}\right)-\alpha\left(G_{0}\right)-1=-1
$$

and this is contradiction. Therefore there exists some j such that G_{j} is a path, from Lemma 2.16 we get

$$
s_{H}\left(f, G_{i+1}\right) \geq s_{H}\left(f, G_{i}\right)
$$

and hence

$$
s_{H}\left(f, G_{j}\right) \geq s_{H}(f, G)
$$

Theorem 2.18. Let G and H be graphs such that G is connected, $|V(G)|=|V(H)|$ and $f: V(H) \rightarrow V(G)$ is a pseudoordering, then there exists a pseudordering

$$
\begin{aligned}
g: V(H) \rightarrow\left\{x_{1}, x_{2}, \ldots, x_{|V(G)|}\right\} & =V\left(P_{|V(G)|-1}\right) \text { such that } \\
s_{H}(f, G) & \leq s_{H}\left(g, P_{|V(G)|-1}\right) .
\end{aligned}
$$

Proof. Let K be any spanning tree of $G, x, y \in V(G)$, we connect x and y with a path in graph K, this path is also a path in G. Hence

$$
\rho_{G}(x, y) \leq \rho_{K}(x, y)
$$

for every x, y, hence

$$
s_{H}(f, G) \leq s_{H}(f, K)
$$

by Lemma 2.17 there exists a pseudoordering

$$
\begin{aligned}
g: V(H) \rightarrow\left\{x_{1}, x_{2}, \ldots, x_{|V(G)|}\right\} & =V\left(P_{|V(G)|-1}\right) \quad \text { such that } \\
s_{H}(f, G) & \leq s_{H}(f, K) \leq s_{H}\left(g, P_{|V(G)|-1}\right)
\end{aligned}
$$

Corollary 2.19. Let G and H be graphs such that G is connected, $|V(G)|=|V(H)|$, then

$$
h_{H}^{+}(G) \leq h_{H}^{+}\left(P_{|V(G)|-1}\right) .
$$

3. Graphs with a maximal upper H-Hamiltonian number

In this section we will prove that if in Corollary 2.19 the graph H is connected, then in the inequality in Corollary 2.19 both sides are equal.

Remark 3.1. For easier writing, we will denote vertices of H the same as vertices of G, we will rename them in this way $v \in H \mapsto f(v)$. We can naturally see it as graph with two sets of edges.

In inequalities in Lemma 2.16 both sides are equal under specific conditions, if $L \cap F^{0} \neq \emptyset$, then in Lemma 2.13 there is a strict inequality and then also the same happens in Theorem 2.18

If $(L \backslash K(v, G) \times\{l\}) \cap F^{+} \neq \emptyset$, then in Lemma 2.12 there is a strict inequality and then also the same happens in Theorem 2.18 Analogously if

$$
(L \backslash K(v, G) \times\{k\}) \cap F^{-} \neq \emptyset
$$

Overall we get that the only nontrivial case is

$$
\begin{equation*}
L \subseteq K(v, G) \times\{k, l\} \tag{1}
\end{equation*}
$$

Remark 3.2. Remark 3.1 holds for every triple of distinct leaves k, l, v in G.

Lemma 3.3. Let G be a tree, H connected graph such that $|V(G)|=|V(H)|$ and $f: V(H) \rightarrow V(G)$ is a pseudoordering, which satisfy

$$
s_{H}(f, G)=h_{H}^{+}\left(P_{|V(G)|-1}\right),
$$

then G is path.
Proof. For contradiction suppose that G is not a path, then there exist three pairwise distinct leaves k, l, v, we denote in the same way as before, vertex u and set of vertices $K(v, G)$. Because graph H is connected there exists a vertex x such that $\{u, x\} \in E(H)$. Let $X \subseteq V(G)$ be a set of vertices of components of graph $G \backslash u$, containing x. $G \backslash u$ has, by definition of u, at least 3 components. Let now \bar{v} be an arbitrary leaf (leaf in G) in X. Choose \bar{k}, \bar{l} as arbitrary leaves in pairwise distinct components of $G \backslash u$ and different from X.

Now $(x, u) \in \bar{L}$, where \bar{L} is alternative of L for $\bar{k}, \bar{l}, \bar{v}$ and by Remark 3.1 for \bar{k}, \bar{l}, \bar{v} and by $k \neq u \neq l$ we get contradiction.

Example. We show the idea of the last proof in the following picture.

Remark 3.4. Let G be a graph with a maximal H-Hamiltonian number, then every spanning tree of G has a maximal H-Hamiltonian number, therefore every spanning tree is a path. We will show that the only graphs with this property are cycles and paths.

Lemma 3.5. Let G be a connected graph such that $|V(G)| \geq 2$, then there is a vertex, which is not an articulation point.

Proof. Consider a block-cut tree of G and a block B, which is a leaf of the block-cut tree or if this tree has only one vertex, then $B=G$. B is, by definition of a block, 2 -connected. Because B is leaf we get that in B there is only one articulation and in B there are at least 2 vertices. Hence in B there is at least one vertex, which is not an articulation point.

Lemma 3.6. Let G be a finite connected graph such that $|V(G)| \geq 2$ and every spanning tree of G is a path, then G is a path or a cycle.

Proof. We will prove it by induction with respect to the number of vertices. Let n be the number of vertices, for $n=2$ and $n=3$ it is obviously true. Let it be true for $n \geq 3$, let G be a graph with $n+1$ vertices such that every spanning tree of G is a path. Let $v \in V(G)$ be a vertex, which is not an articulation point, by lemma 3.5 it exists. We denote G^{\prime} the subgraph induced by the set of vertices $V(G) \backslash\{v\} . G^{\prime}$ is connected, we will show that every spanning tree of G^{\prime} is a path. Let there exist a spanning tree which is not a path, let $u \in V(G)$ be a vertex such that $\{v, u\} \in E(G)$. Now when we add this edge to the spanning tree, we get a spanning tree of G, which is not a path and it is a contradiction. By induction hypothesis G^{\prime} is a path or a cycle, we denote $A=\{u \in V(G) \mid\{v, u\} \in E(G)\}$. For contradiction we assume G^{\prime} is a cycle and let $u \in A$, in G^{\prime} be an edge e such that u is not incident to e. Consider the subgraph B of $G, B=\left(V(G), E\left(G^{\prime}\right) \backslash e \cup\{v, u\}\right)$, and this is a spanning tree of G which is not a path, contradiction.

Therefore G^{\prime} is a path, let x, y be endpoints of this path, for contradiction we assume that there exists some another vertex $u \in A$. Hence G^{\prime} together with $\{u, v\}$ form a spanning tree which is not a path. Hence $A \subseteq\{x, y\}$, because G is connected we get also $A \neq \emptyset$. Finally there are the two cases for G, if $|A|=1$, then G will be a path and if $|A|=2$, then G will be a cycle.

Theorem 3.7. Let G and H be connected finite graphs such that $|V(G)|=|V(H)|$, then

$$
h_{H}^{+}(G) \leq h_{H}^{+}\left(P_{|V(G)|-1}\right),
$$

moreover, both sides are equal if and only if G is a path.
Proof. The first part follows from Theorem 2.18, let G be a graph, f be a pseudoordering such that

$$
s_{H}(f, G)=h_{H}^{+}(G)=h_{H}^{+}\left(P_{|V(G)|-1}\right) .
$$

From the proof of Theorem 2.18 we know that every spanning tree also satisfies the equation above. Hence, by Lemma [3.3, every spanning tree of G is a path. By Lemma 3.6 G is a path or a cycle, for contradiction we assume, that it is a cycle. We denote $n=|V(G)|$, we will show that there are two vertices $v, u \in V(G)$ such that $v \sim_{H, f} u$ and $\rho_{G}(u, v)<\frac{n}{2}$.

Because G is cycle, $|V(H)|=n \geq 3$ and H is connected we see that there is a vertex of degree at least 2 . Let v be a vertex such that $\operatorname{deg}_{H}(v) \geq 2$, there exists at least two vertices u such that $v \sim_{H, f} u$. There exists at most one vertex such that $\rho_{G}(u, v) \geq \frac{n}{2}$, hence at least one of them satisfies $\rho_{G}(u, v)<\frac{n}{2}$.

Now we connect v and u with a shorter path in G. Let e be some edge on this path, we define a graph $\bar{G}=(V(G), E(G) \backslash e)$, it is a path, where every distance is greater or equal as in G. But $\rho_{G}(u, v)<\rho_{\bar{G}}(u, v)$ and then

$$
s_{H}(f, \bar{G})=s_{H}(f, \bar{G})>h_{H}^{+}\left(P_{|V(G)|-1}\right),
$$

and this is contradiction with Theorem 2.18

4. Conclusion

When we use following equations which can be found for example in [2, Theorem 1.3] and [2, Corollary 2.2]

$$
h^{+}\left(P_{|V(G)|-1}\right)=\left\lfloor\frac{|V(G)|^{2}}{2}\right\rfloor, \quad t^{+}\left(P_{|V(G)|-1}\right)=\left\lfloor\frac{|V(G)|^{2}}{2}\right\rfloor-1 .
$$

This result is also calculated in [1] and when we use Theorem 3.7 for $H=P_{|V(G)|-1}$ and for $H=C_{|V(G)|}$ we get the following theorem.
Theorem 4.1 ([2]).

$$
h^{+}(G) \leq\left\lfloor\frac{|V(G)|^{2}}{2}\right\rfloor, \quad t^{+}(G) \leq\left\lfloor\frac{|V(G)|^{2}}{2}\right\rfloor-1
$$

Moreover, both sides are equal if and only if G is a path.
First part is [2, Corollary 2.2] and second part is [2, Theorem 4.2]. Now we can see, that Theorem 3.7 is generalization of Theorem 4.1] which is from article [2].

References

[1] Dzúrik, M., Metrické vlastnosti grafů, bachelor thesis (2018).
[2] Okamoto, F., Zhang, P., On upper traceable numbers of graphs, Math. Bohem. 133 (2008), 389-405.

Department of Mathematics and Statistics,
Faculty of Science, Masaryk University,
Kotlářská 2, 61137 Brno, Czech Republic
E-mail: 451859@mail.muni.cz

[^0]: 2020 Mathematics Subject Classification: primary 05C12; secondary 05C45.
 Key words and phrases: graph, vertices, ordering, pseudoordering, upper Hamiltonian number, upper traceable number, upper H-Hamiltonian number, Hamiltonian spectra.

 Received March 23, 2021, revised June 2021. Editor J. Nešetřil.
 DOI: 10.5817/AM2021-5-299

