THE RIBES-ZALESSKII PROPERTY OF SOME ONE RELATOR GROUPS

Gilbert Mantika, Narcisse Temate-Tangang, and Daniel Tieudjo

Abstract

The profinite topology on any abstract group G, is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k, or is RZ_{k} with k a natural number, if any product $H_{1} H_{2} \cdots H_{k}$ of finitely generated subgroups $H_{1}, H_{2}, \cdots, H_{k}$ is closed in the profinite topology on G. And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ_{k} for any natural number k. In this paper we characterize groups which are RZ_{2}. Consequently, we obtain condition under which a free product with amalgamation of two $R Z_{2}$ groups is $R Z_{2}$. After observing that the Baumslag-Solitar groups $B S(m, n)$ are RZ_{2} and clearly RZ if $m=n$, we establish some suitable properties on the RZ_{2} property for the case when $m=-n$. Finally, since any group $B S(m, n)$ can be viewed as a HNN-extension, then we point out the Ribes-Zalesskii property of rank two on some HNN-extensions.

1. Introduction and Results

Properties of the profinite topology were studied by M. Hall in [10]. A finitely generated subgroup H of a free group F is closed in the profinite topology of F if H is the intersection of subgroups of finite index that contain H. This is equivalent to the statement that for any finitely generated subgroup H of a free group F, and any element $g \in F \backslash H$, there exist a normal subgroup N of finite index in F such that $g \notin H N$. In connection with the result of Hall, some authors introduced the Ribes-Zalesskii property of rank k on an abstract group. An abstract group G satisfies the Ribes-Zalesskii property of rank k, or is $R Z_{k}$ with k a natural number, if for any finitely generated subgroups $H_{1}, H_{2}, \cdots, H_{k}$ and any element $g \in G \backslash H_{1} H_{2} \cdots H_{k}$, there exist a normal subgroup N of finite index in G such that $g \notin H_{1} H_{2} \cdots H_{k} N$. A group is said to have the Ribes-Zalesskii property or is $R Z$ if it is RZ_{k} for any natural number k. It is clear that finite groups and finitely generated abelian groups are RZ. See [6]. Also, a direct product of groups which are RZ is RZ. See [7]. Using the link between the profinite topology and finitely

[^0]approximable groups, C. Rosendal characterized countable discrete groups which are RZ. See [25].
RZ_{0} means residually finite. Conditions under which a group G is RZ_{0} or RZ_{1} were established and some examples of groups RZ_{0} and RZ_{1} were given. See [9, 12, 13, 15]. It is easy to see that for any natural number k, RZ_{k+1} implies RZ_{k}. But the inverse is not true. For example $F_{2} \times F_{2}$ cited by C. Rosendal in [26] is RZ_{0} but not RZ_{1}, where F_{2} is the free group of rank 2.
The original motivation for the study of the property RZ goes back to a problem posed by J. Rhodes on the existence of an algorithm to compute the closure of subset of finite semigroup. See [20]. Recently, M. Doucha and M. Malicki in [8] showed that the $R Z_{2}$ and $R Z_{3}$ properties form the lower and upper group theoretic bounds for finite appoximability of actions on triangle-free graphs and K_{n}-free graphs, $n \geq 3$.
Other authors have investigated on finding conditions under which the free constructions of groups inherit the RZ_{k} property of all the group factors. N.S. Romanovskii [24] has proved that the free product of groups which are $R Z_{1}$ is also $R Z_{1}$. Further, T. Coulbois [7] has proved that the free product of RZ groups is also RZ. Also, Ribes and Zalesskii have proved that, when \mathcal{C} is a variety of finite groups closed under extensions, the free product of groups which are $R Z_{2}$ is also RZ_{2} relatively to \mathcal{C}. See [22].
But for a free product with amalgamation $G=\left(G_{1} * G_{2} ; A=B, \varphi\right)$ (denoted also $G=G_{1} \underset{A=B}{*} G_{2}$) of groups G_{1} and G_{2} with amalgamated isomorphic subgroups $A \leq G_{1}$ and $B \leq G_{2}$, a similar statement is not always true. Examples of free product with amalgamation of two RZ_{1} groups which is not RZ_{1} were given in the works of E. Rips [23] and R. Allenby and D. Doniz [1].
Moldavanskii and Uskova [18] proved that under some conditions, free products with amalgamation of two RZ_{1} groups is $R Z_{1}$. Specifically, they proved

Proposition 1.1 ([18, Theorem 3]). The group $G=\left(G_{1} * G_{2} ; A=B, \varphi\right)$ where A is a normal subgroup of G_{1}, B is a normal subgroup of G_{2} and groups A and B satisfy the maximum conditions for subgroups, is $R Z_{1}$ if the groups G_{1} and G_{2} are $R Z_{1}$.

In this paper we characterize groups which are RZ_{2}. We prove
Theorem 1.1. Let G be a group and let U be a finitely generated subgroup contained in the center $Z(G)$ of $G . G$ is $R Z_{2}$ if and only if the factor group G / U^{n} is $R Z_{2}$ for any nonzero natural number n.

From this result, we obtain a result similar to that of Moldavanskii and Uskova for the property RZ_{2} of groups with amalgamation. The case where the free factors in a free product amalgamated by a finite subgroup are RZ was studied by T. Coulbois in his thesis. See [6]. In this paper, we investigate the case where the amalgamated subgroup can be infinite. That is

Corollary 1.1. Let $G=G_{1} \underset{A=B}{*} G_{2}$ be a free product of groups G_{1} and G_{2} with amalgamated subgroups $A \leq G_{1}$ and $B \leq G_{2}$. If A and B are finitely generated
subgroups contained in the centers $Z\left(G_{1}\right)$ and $Z\left(G_{2}\right)$ of G_{1} and G_{2} respectively, and groups G_{1} and G_{2} are $R Z_{2}$, then G is $R Z_{2}$.

It is then easy to see that if G_{1} and G_{2} are two RZ_{2} groups, and a and b are elements in G_{1} and G_{2} respectively with $a \in Z(A)$ and $b \in Z(B)$, then the group $G=G_{1} \underset{a=b}{*} G_{2}$ is also RZ_{2}.
Also, we recall the class of two-generator one-relator groups, called the Baumslag-Solitar groups, given by the presentation $B S(m, n)=\left\langle a, b \mid a^{-1} b^{m} a=b^{n}\right\rangle$ where m and n are nonzero integers. This class of groups deeply studied by G. Baumslag and Solitar [4], were introduced to point out a class of finitely generated non-hopfian groups. Some residual properties of $B S(m, n)$ were studied [2, 3.

It is easily seen using the results of [21, 27]
Proposition 1.2. For any nonzero integer n, group $B S(n, n)$ is $R Z$.
Since for $|m|=n$ the group $B S(m, n)$ is RZ_{0} and RZ_{1} (see [16]), then the case where $m=-n$ is also for interest. Thus we investigate this case. We obtain

Theorem 1.2. Let n be a nonzero natural number. If H_{1} and H_{2} are two finitely generated subgroups of $B S(n,-n)$ contained in the free factors of $B S(n,-n)$, then the product $H_{1} H_{2}$ is closed in the profinite topology on $B S(n,-n)$.

Also, any Baumslag-Solitar group $B S(m, n)=\left\langle a, b \mid a^{-1} b^{m} a=b^{n}\right\rangle$ can be seen as an HNN-extension with associated subgroups $\left\langle b^{m}\right\rangle$ and $\left\langle b^{n}\right\rangle$. So, we also focus on Ribes-Zalesskii's property of rank k of some HNN-extensions. Let K be a finitely generated abelian group and let A, B be finitely generated isomorphic subgroups of K. Since finitely generated abelian groups are RZ, it follows immediately that if $A=B=K$, then the HNN-extension $G=\left\langle K, t \mid t^{-1} A t=B\right\rangle$ is RZ as a finitely generated abelian group.
But if $A \neq B$ in the HNN-extension $G=\left\langle K, t \mid t^{-1} A t=B\right\rangle$, then G is not RZ_{1}. See [17] Lemma 1]. Thus, G is not RZ_{k} for any natural number $k \geq 1$.

Using the result of G. Baumslag and M. Tretkoff that can be reformulated as
Proposition 1.3 ([2] Theorem 3.1]). Let A be $R Z_{0}$ and let H, K be isomorphic finite subgroups of A. Then the $H N N$-extension $G=\left\langle A, t \mid t^{-1} H t=K\right\rangle$ is $R Z_{0}$.

It comes that if a group K is RZ and particularly RZ_{0}, A and B isomorphic finite normal subgroups of K, then the HNN-extension $G=\left\langle K, t \mid t^{-1} A t=B\right\rangle$ is RZ_{0}. As in the proof of ([17, Lemma 2]), it can be pointed out a free product of RZ groups as a finite subgroup of finite index of G. Now, since any virtually RZ group is also RZ (see [7]), we obtain easily

Proposition 1.4. Let K be $R Z$, and let A and B be isomorphic finite normal subgroups of K. Then, the HNN-extension $G=\left\langle K, t \mid t^{-1} A t=B\right\rangle$ is $R Z$.

From which we get by adding Theorem 1.1
Corollary 1.2. Let K be a group and let A and B be isomorphic finitely generated subgroups of $Z(K)$, the center of K. Let $G=\left\langle K, t \mid t^{-1} A t=B, \varphi\right\rangle$ be an $H N N$-extension with $\varphi(a)=t^{-1}$ at for any $a \in A$. If K is $R Z_{2}$ and contains a
finitely generated subgroup of finite index U in both A and B such that $\varphi(u)=u$ for any $u \in U$, then G is $R Z_{2}$.

2. Preliminaries

In this section we collect some notions, basic properties and facts about free products of groups with amalgamation, HNN-extensions and finitely generated groups. For more details see [14].
Let us recall some notions concerned with the construction of a free product $G=$ $\left(G_{1} * G_{2}, A=B, \varphi\right)$ of groups G_{1} and G_{2} with amalgamated subgroups $A \leq G_{1}$ and $B \leq G_{2}$ where $\varphi: A \rightarrow B$ is an isomorphism. The group $G=\left(G_{1} * G_{2}, A=B, \varphi\right)$ can also be written as $G=G_{1} \underset{\substack{\varphi \\ *}}{*} G_{2}$ or simply as $G=G_{1} \underset{A=B}{*} G_{2}$ when there is no confusion. An element g in G can be written in a form $g=g_{1} g_{2} \cdots g_{r}(r \geqslant 1)$ where for any $i=1,2, \ldots, r$ element g_{i} belongs to one of the free factor G_{1} or G_{2}, and if $r>1$ any successive g_{i} and g_{i+1} do not belong to the same factor G_{1} or G_{2} (nor to the amalgamated subgroups A and B). We say that g is written in a reduced form. In general, an element of the group $G=G_{1} \underset{A=B}{*} G_{2}$ can have more than one reduced form. But any two reduced forms of an element g have the same number of components, which we will call the length of the element g and denote by $l(g)$.
About HNN-extensions, let G be a group and let A and B be its subgroups with $\varphi: A \rightarrow B$ an isomorphism. Let $\langle t\rangle$ be the infinite cyclic group generated by a new element t. The HNN-extension G^{\star} of G relative to A, B and φ is the factor group $G *\langle t\rangle / N$, where N is the normal closure of the set $\left\{t^{-1} a t(\varphi(a))^{-1}, a \in A\right\}$. The group G is called the basis of G^{\star}, t is its stable letter, and A and B are the associated subgroups. The notation $G^{\star}=\left\langle G, t ; t^{-1} a t=\varphi(a), a \in A\right\rangle$ is used.
Concerning finitely generated groups, it is not hard to obtain the following results.
Proposition 2.1. Let G be a group and let N be a normal subgroup of G.
(1) If H is a finitely generated subgroup, then the subgroup $\bar{H}=H N / N$ of G / N is. Particularly, if G is a finitely generated, then G / N is.
(2) If N and G / N are finitely generated, then the group G is.

Proof. Consider the canonical epimorphism $\pi: G \longrightarrow G / N$.
(1) Let H be subgroup and let X be its finitely generated subset. Then $\bar{H}=H N / N=\pi(H)=\pi(\langle X\rangle)=\langle\pi(X)\rangle$. Thus the subgroup $H N / N$ is finitely generated.
(2) Since G / N is finitely generated, there exist elements $g_{1}, g_{2}, \ldots, g_{r}$ in G such that $G / N=\left\langle\overline{g_{1}}, \overline{g_{2}}, \ldots, \overline{g_{r}}\right\rangle$, where each $\overline{g_{i}}(1 \leq i \leq r)$ represents the image by π of element g_{i} in G / N. Consider $g \in G$ such that $\bar{g}={\overline{g_{1}}}^{s_{1}}{\overline{g_{2}}}^{s_{2}} \cdots \bar{g}_{r}^{s_{r}}$ where the s_{k} are integers. Then $\bar{g}=\overline{g_{1}^{s_{1}} g_{2}^{s_{2}} \cdots g_{r}^{s_{r}}}$, and there exists $n \in N$ with $g=g_{1}^{s_{1}} g_{2}^{s_{2}} \cdots g_{r}^{s_{r}} n$; that is $g \in\left\langle g_{1}, g_{2}, \ldots, g_{r}\right\rangle N$. Finally $G=\left\langle g_{1}, g_{2}, \ldots, g_{r}\right\rangle N$ is finitely generated since N is.

Proposition 2.2. Any quotient of a $R Z_{2}$ group by a finitely generated normal subgroup is also $R Z_{2}$.

Proof. Let G be a RZ_{2} group and let N be a finitely generated normal subgroup of the group G. We shall prove that the factor group G / N is RZ_{2}.
Consider two finitely generated subgroups $\overline{H_{1}}=H_{1} / N$ and $\overline{H_{2}}=H_{2} / N$ of G / N, where H_{1} and H_{2} are subgroups containing N. Let g be an element of G such that $\bar{g} \in G / N$ and $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$. It is clear that $g \notin H_{1} H_{2}$. Using Proposition 2.1 it is also clear that subgroups H_{1} and H_{2} are finitely generated. Therefore, since G is RZ_{2}, there exists a normal subgroup M of finite index in G such that $g \notin H_{1} H_{2} M$. Consequently we have $\bar{g} \notin \overline{H_{1}} \overline{H_{2}} \bar{M}$ where $\bar{M}=M N / N$. If, on contrary $\bar{g} \in \overline{H_{1}}$ $\overline{H_{2}} \bar{M}$, then $\bar{g}=\overline{h_{1}} \overline{h_{2}} \bar{t}$ with $h_{1} \in H_{1}, h_{2} \in H_{2}$ and $t \in M N$. And then there exist $m \in M$ and $n \in N$ such that $g=h_{1} h_{2} m n=h_{1} h_{2}\left(m n m^{-1}\right) m$. Now, since $N \triangleleft G$ and $N \leq H_{2}$, it is obvious that $h=h_{2}\left(\mathrm{mnm}^{-1}\right) \in H_{2}$. But this implies $\underline{\text { that } g}=h_{1} h m \in H_{1} H_{2} M$ which contradicts the fact that $g \notin H_{1} H_{2} M$. So $\bar{g} \notin \overline{H_{1}}$ $\overline{H_{2}} \bar{M}$, with \bar{M} a normal subgroup of finite index in G / N. Thus, the factor group G / N is RZ_{2} as required.

Proposition 2.3. Let G be a group and let A be a finitely generated subgroup in G. If A is contained in $Z(G)$ the center of G, then for any nonzero natural number t, the subset $A^{t}=\left\{a^{t}, a \in A\right\}$ of G is a normal subgroup of finite index in A.

Proof. Assume that the subgroup A is contained in $Z(G)$. Then A is a finitely generated abelian group. Therefore A is equal to a direct sum $\bigoplus_{i \leq l} A_{i}$, where each A_{i} is cyclic. For $i \leq l$, let a_{i} be a generator of A_{i}. So,

$$
A=\left\langle a_{1}, a_{2}, \ldots, a_{l}\right\rangle
$$

is generated by the elements $a_{1}, a_{2}, \ldots, a_{l}$. Let t be a nonzero natural number.
On one hand, since $Z(G)$ is commutative, it is obvious that $A^{t}=\left\{a^{t}, a \in A\right\}$ is a normal subgroup of A.
On the other hand the factor group

$$
A / A^{t}=\left\langle\overline{a_{1}}, \overline{a_{2}}, \ldots, \overline{a_{l}} \mid{\overline{a_{1}}}^{t}=1,{\overline{a_{2}}}^{t}=1, \ldots,{\overline{a_{l}}}^{t}=1\right\rangle
$$

is finitely generated where $\overline{a_{i}}=a_{i} A^{t}$ for any $i \in\{1,2, \cdots, l\}$. Also, the group A / A^{t} is commutative, so it can be written as $\overline{A_{t}}=\left\langle\overline{a_{1}} \mid{\overline{a_{1}}}^{t}=1\right\rangle \times\left\langle\overline{a_{2}} \mid{\overline{a_{2}}}^{t}=1\right\rangle \times \cdots \times$ $\left\langle\overline{a_{l}} \mid \bar{a}_{l}^{t}=1\right\rangle$. Finally, since the order of each group $\left\langle\overline{a_{i}} \mid{\overline{a_{i}}}^{t}=1\right\rangle, i \in\{1,2, \cdots, l\}$ is at most t, it follows that the order of A / A^{t} is finite.

3. Proof of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1. Since the subgroup $U \leq Z(G)$ is finitely generated, it comes that for any nonzero natural number t, the subgroup $U^{t} \leq G$ is normal and finitely generated. Thus, if G is RZ_{2}, then using Proposition 2.2 the factor group $G / U^{t}(t \geq 1)$ is.

Conversely, suppose that any factor group $G / U^{t}(t \geq 1)$ is RZ_{2}. Let prove that G is RZ_{2}. To do it, let H_{1} and H_{2} be two finitely generated subgroups of G, and let g be an element in G such that $g \notin H_{1} H_{2}$.
We need to determine a normal subgroup N of finite index in $G\left(N \triangleleft_{f} G\right)$ such
that $g \notin H_{1} H_{2} N$. Consider for any nonzero natural number t, the factor group G / U^{t} and the canonical epimorphism

$$
\vartheta_{t}: \quad G \longrightarrow G / U^{t}
$$

Case 1. Assume that there exist a nonzero natural number t_{0} such that $\vartheta_{t_{0}}(g) \notin$ $\vartheta_{t_{0}}\left(H_{1}\right) \vartheta_{t_{0}}\left(H_{2}\right)$ in $G / U^{t_{0}}$. Since H_{1} and H_{2} are finitely generated, it follows using Proposition 2.1 that $\vartheta_{t_{0}}\left(H_{1}\right)$ and $\vartheta_{t_{0}}\left(H_{2}\right)$ are finitely generated. Now the group $G / U^{t_{0}}$ is $\mathrm{R} \mathrm{Z}_{2}$. Therefore there exists $\bar{N} \triangleleft_{f} G / U^{t_{0}}$ such that $\vartheta_{t_{0}}(g) \notin \vartheta_{t_{0}}\left(H_{1}\right)$ $\vartheta_{t_{0}}\left(H_{2}\right) \bar{N}$. Let N be the preimage of \bar{N} by $\vartheta_{t_{0}}$. Clearly, $g \notin H_{1} H_{2} N$. Thus G is RZ_{2}.
Case 2. Assume now that for any nonzero natural number t we have $\vartheta_{t}(g) \in \vartheta_{t}\left(H_{1}\right)$ $\vartheta_{t}\left(H_{2}\right)$ in G / U^{t}. We need to prove that this case is not possible.
For $t=1, \vartheta_{1}(g)=\vartheta_{1}(a) \vartheta_{1}(b)$ with $a \in H_{1}$ and $b \in H_{2}$. That is $g U=a b U$ and then $g=a b u$ with $u \in U$. Let $y=a b$. Then, we have $g=y u$.
For any $t \geq 2, \vartheta_{t}(g)=\vartheta_{t}\left(a_{t}\right) \vartheta_{t}\left(b_{t}\right)$, where $a_{t} \in H_{1}$ and $b_{t} \in H_{2}$; that is $g=a_{t} b_{t} u_{t}$ with the elements a_{t}, b_{t} and u_{t} fixed respectively in H_{1}, H_{2} and U^{t}. Therefore for any $t \geq 2$ we have $g=a_{t} a^{-1} a b b^{-1} b_{t} u_{t}=h_{t} y k_{t} u_{t}$, where $h_{t}=a_{t} a^{-1} \in H_{1}$ and $k_{t}=b^{-1} b_{t} \in H_{2}$. Thus,

$$
\begin{equation*}
u=y^{-1} h_{t} y k_{t} u_{t} \tag{3.1}
\end{equation*}
$$

Set $S=\left\langle\left\{y^{-1} h_{t} y k_{t} \mid h_{t} \in H_{1}, k_{t} \in H_{2}, t \geq 2\right\}\right\rangle$ be the subgroup generated by the elements of the form $y^{-1} h_{t} y k_{t}$, with $h_{t} \in H_{1}$ and $k_{t} \in H_{2},(t \geq 2)$. Since $y^{-1} h_{t} y k_{t}=u u_{t}^{-1} \in U$, then S is a subgroup of U. Also, for $s=y^{-1} h_{t} y k_{t}(t \geq 2)$, we have $s^{-1}=k_{t}^{-1} y^{-1} h_{t}^{-1} y \in S$; and it follows that $k_{t} s^{-1}=y^{-1} h_{t}^{-1} y$. From $U \leq Z(G)$ and $s^{-1} \in U$, we obtain $k_{t} s^{-1}=s^{-1} k_{t}=y^{-1} h_{t}^{-1} y$. The equality $s^{-1}=y^{-1} h_{t}^{-1} y k_{t}^{-1}$ then arises. Finally, $y^{-1} h_{t}^{\epsilon_{t}} y k_{t}^{\epsilon_{t}} \in S$ with $\epsilon_{t}= \pm 1$. Thus:

$$
\begin{aligned}
\left(y^{-1} h_{t_{1}}^{\epsilon_{t_{1}}} y k_{t_{1}}^{\epsilon_{t_{1}}}\right)\left(y^{-1} h_{t_{2}}^{\epsilon_{t_{2}}} y k_{t_{2}}^{\epsilon_{t_{2}}}\right) & =\left(y^{-1} h_{t_{1}}^{\epsilon_{t_{1}}} y\right)\left(k_{t_{1}}^{\epsilon_{t_{1}}} \times y^{-1} h_{t_{2}}^{\epsilon_{t_{2}}} y k_{t_{2}}^{\epsilon_{t_{2}}}\right) \\
& =\left(y^{-1} h_{t_{1}}^{\epsilon_{t_{1}}} y\right)\left(y^{-1} h_{t_{2}}^{\epsilon_{t_{2}}} y k_{t_{2}}^{\epsilon_{2}} \times k_{t_{1}}^{\epsilon_{t_{1}}}\right), \quad \text { since } \\
y^{-1} h_{t_{2}}^{\epsilon_{t_{2}}} y k_{t_{2}}^{\epsilon_{t_{2}}} \in Z(G) & =y^{-1} h_{t_{1}}^{\epsilon_{t_{1}}} y y^{-1} h_{t_{2}}^{\epsilon_{t_{2}}} y k_{t_{2}}^{\epsilon_{2}} k_{t_{1}}^{\epsilon_{t_{1}}} \\
& =y^{-1} h_{t_{1}}^{\epsilon_{t_{1}}} h_{t_{2}}^{\epsilon_{t_{2}}} y k_{t_{2}}^{\epsilon_{t_{2}}} k_{t_{1}}^{\epsilon_{t_{1}}}, \quad \epsilon_{t_{i}}= \pm 1
\end{aligned}
$$

It comes then that the elements of S have the form:

$$
\begin{equation*}
y^{-1} h_{t_{1}}^{\epsilon_{t_{1}}} \ldots h_{t_{n}}^{\epsilon_{t_{n}}} y k_{t_{n}}^{\epsilon_{t_{n}}} \ldots k_{t_{1}}^{{\epsilon t_{1}}}, \quad \epsilon_{t_{i}}= \pm 1, \ldots, n \tag{3.2}
\end{equation*}
$$

Subcase (a) Suppose that u belongs to subgroup S. So, from (3.2), we have $u=y^{-1} h_{t_{1}}^{\epsilon_{t_{1}}} \ldots h_{t_{n}}^{\epsilon_{t_{n}}} y k_{t_{n}}^{\epsilon_{t_{n}}} \ldots k_{t_{1}}^{\epsilon_{t_{1}}}$; that is $y u=h_{t_{1}}^{\epsilon_{t_{1}}} \ldots h_{t_{n}}^{\epsilon_{t_{n}}} y k_{t_{n}}^{\epsilon_{t_{n}}} \ldots k_{t_{1}}^{\epsilon_{t_{1}}}=h_{t_{1}}^{\epsilon_{t_{1}}} \ldots$ $h_{t_{n}}^{\epsilon_{t_{n}}} a b k_{t_{n}}^{\epsilon_{t_{n}}} \ldots k_{t_{1}}^{\epsilon_{t_{1}}}$.
Then, since $h_{t_{1}}^{\epsilon_{t_{1}}} \ldots h_{t_{n}}^{\epsilon_{t_{n}}} a \in H_{1}$ and $b k_{t_{n}}^{\epsilon_{t_{n}}} \ldots k_{t_{1}}^{\epsilon_{t_{1}}} \in H_{2}$, it follows that $g=y u \in$ $H_{1} H_{2}$, and this result contradicts the assertion $g \notin H_{1} H_{2}$.
Subcase (b) Now $u \notin S$. On one hand, since the group U is commutative and finitely generated, it possesses the maximal property for groups, that is, each of its subgroups is finitely generated. Thus, S is finitely generated. On the other hand, U as a commutative and finitely generated group is RZ_{1}. Therefore, U possesses a normal subgroup M of finite index such that $u \notin S M$.

Also, since $M \triangleleft_{f} U$, all the elements of the factor group U / M have finite order. Let U_{0} be the finite set of representative classes modulo M in U. For any $g \in U_{0}$, there exists a natural number r_{g} such that $g^{r_{g}} \in M$. Also, for any $g \in U$, there exist $g_{0} \in U_{0}$ such that $g g_{0}^{-1} \in M$. Thus, $\left(g g_{0}^{-1}\right)^{r_{g_{0}}}=g^{r_{g_{0}}}\left(g_{0}^{r_{g_{0}}}\right)^{-1}$ belongs to M, and it follows that $g^{r_{g_{0}}}$ also belongs to M. Let t^{\prime} be the least common multiple of the r_{g}, with $g \in U_{0}$. We have $g^{t^{\prime}} \in M$ for any $g \in U$, and then $U^{t^{\prime}} \subseteq M$. If $t^{\prime}=1$, then any $g \in U$ belongs to M. Particularly, $u \in M$, and it contradicts the fact that $u \notin M$ since $u \notin S M$. So $t^{\prime} \geq 2$, and $u=y^{-1} h_{t^{\prime}} y k_{t^{\prime}} u_{t^{\prime}}$. Now, $y^{-1} h_{t^{\prime}} y k_{t^{\prime}} \in S$ and $u_{t^{\prime}} \in U^{t^{\prime}} \subseteq M$, thus $u \in S M$, which is again not possible.
Finally, Case 2 is not possible as required, and we get only Case 1. Thus, the group G is RZ_{2}, and the theorem is completely demonstrated.

We are now ready to prove Corollary 1.1
Proof of Corollary 1.1. Suppose that all the assumptions of the corollary are satisfied. Since $A=B$ coincides with the center of the amalgamated group G (see [14, Corollary 4.5]), to prove that G is RZ_{2}, we prove that G / A^{t} is RZ_{2} for any nonzero natural number t and conclude using Theorem 1.1 To do it, let t be a nonzero natural number and let $\overline{H_{1}}$ and $\overline{H_{2}}$ be two finitely generated subgroups of G / A^{t}. Let \bar{g} be an element of G / A^{t} such that $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$.
We need to determine $\bar{N} \triangleleft_{f} G / A^{t}$ such that $\bar{g} \notin \overline{H_{1}} \overline{H_{2}} \bar{N}$. We recall by Proposition 2.3 that the subgroups A^{t} and B^{t} are normal with finite index in A and B in respectively. Since A / A^{t} and B / B^{t} are finite and isomorphic, the canonical homomorphisms $G_{1} \longrightarrow G_{1} / A^{t}$ and $G_{2} \longrightarrow G_{2} / B^{t}$ can be extented to the epimorphism $G \longrightarrow G_{1} / A_{A / A^{t}=B / B^{t}}^{*} G_{2} / B^{t}$ with kernel $A^{t}=B^{t}$. See ([19, Theorem 1.1]). This situation can be illustrated by the following diagram

Let $G(t)=G_{1} / A^{t} \underset{A / A^{t}=B / B^{t}}{*} G_{2} / B^{t}$. It is clear that the groups G / A^{t} and $G(t)$ are isomorphic.
Now, using the fact that the subgroups A^{t} and B^{t} have finite index respectively in A and B which are finitely generated, it follows by ([6, Proposition 1.1]) that A^{t} and B^{t} are finitely generated. Thus, by Proposition 2.2 the groups G_{1} / A^{t} and G_{2} / B^{t} are RZ_{2}. Also, the groups A / A^{t} and B / B^{t} are finite; thus, the group $G(t)$ is RZ_{2} (see [6] Theorem 5.2]), and G / A^{t} is. Since G / A^{t} is RZ_{2} for any arbitrary nonzero natural number t, we conclude by Theorem 1.1 that G is RZ_{2}. Hence Corollary 1.1 is demonstrated.

4. Proof of Theorem 1.2

We recall a result of P . Stebe which will be used in some statement of the proof of the Theorem 1.2. It states that for any element h of a free group F and for any nonzero integer n, there exists a normal subgroup N of finite index in F such that $N \cap\langle h\rangle=\left\langle h^{n}\right\rangle$ (see [28]). We establish
Lemma 4.1. Let n be a nonzero natural number. For any finitely generated subgroups H_{1} and H_{2} of $B S(n,-n)=\left\langle a, b \mid a^{-1} b^{n} a=b^{-n}\right\rangle$, and any normal subgroup U of finite index in $\left\langle b^{n}\right\rangle$ such that $\left(\left\langle b^{n}\right\rangle \cap H_{1}\right) U \neq\left\langle b^{n}\right\rangle$ and $\left(\left\langle b^{n}\right\rangle \cap H_{2}\right) U \neq$ $\left\langle b^{n}\right\rangle$, there exists a normal subgroup N of finite index in $B S(n,-n)$ satisfying $N \cap\left\langle b^{n}\right\rangle=U,\left(N\left\langle b^{n}\right\rangle\right) \cap N H_{1}=N\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)$ and $\left(N\left\langle b^{n}\right\rangle\right) \cap N H_{2}=N\left(\left\langle b^{n}\right\rangle \cap H_{2}\right)$.

Proof. Let H_{1} and H_{2} be two finitely generated subgroups of $B S(n,-n)$, and let U be a normal subgroup of finite index t in $\left\langle b^{n}\right\rangle$ satisfying all the assumptions in the lemma. Consider c_{1}, \cdots, c_{t} a system of left cosets representatives of U in $\left\langle b^{n}\right\rangle$ where $c_{1}=1$.
Since $\operatorname{BS}(n,-n)$ is RZ_{1} and U is finitely generated as a finite index subgroup of the finitely generated group $\left\langle b^{n}\right\rangle$, there exists $N_{1} \triangleleft_{f} B S(n,-n)$ such that $c_{i} \notin N_{1} U$ for any $i=2, \ldots, t$. Also, there exists $i \in\{2,3, \ldots, t\}$ such that $c_{i} \notin H_{1} U$. Indeed: assume in contrary that for any $i \in\{2,3, \ldots, t\} c_{i} \in H_{1} U$; that is $c_{i}=h_{i} u_{i}$ with $h_{i} \in H_{1}$ and $u_{i} \in U$. Therefore $h_{i}=c_{i} u_{i}^{-1} \in H_{1} \cap\left\langle b^{n}\right\rangle$ for any $i \in\{2,3, \ldots, t\}$. Thus, c_{i} belongs to the subgroup $\left(H_{1} \cap\left\langle b^{n}\right\rangle\right) U$ of $\left\langle b^{n}\right\rangle$ for any $i \in\{1,2, \ldots, t\}$. Consequently, it follows that $\left(H_{1} \cap\left\langle b^{n}\right\rangle\right) U=\left\langle b^{n}\right\rangle$ and this contradicts the hypothesis $\left\langle b^{n}\right\rangle \neq\left(H_{1} \cap\left\langle b^{n}\right\rangle\right) U$. So, there exists $i \in\{2,3, \ldots, t\}$ such that $c_{i} \notin H_{1} U$. Similarly, there exists $j \in\{2,3$, dots, $t\}$ such that $c_{j} \notin H_{2} U$.

It is easy to see that the groups $H_{1} U$ and $H_{2} U$ are finitely generated in $\operatorname{BS}(n,-n)$ and so, again using the fact that $\mathrm{BS}(n,-n)$ is RZ_{1}, there exist normal subgroups $N_{2 i}$ and $N_{3 j}$ of finite index in $\operatorname{BS}(n,-n)$ such that $c_{i} \notin N_{2 i} H_{1} U$ and $c_{j} \notin N_{3 j} H_{2} U$. Set $I=\left\{i \in\{2, \ldots, t\}, c_{i} \notin H_{1} U\right\}$ and $J=\left\{i \in\{2, \ldots, t\}, c_{i} \notin H_{2} U\right\}$. Thus, $N_{2}=\bigcap_{i \in I} N_{2 i}$ and $N_{3}=\bigcap_{i \in J} N_{3 i}$ are normal subgroups of finite index in $\operatorname{BS}(n,-n)$ as finite intersections of normal subgroups of finite index in $\operatorname{BS}(n,-n)$. Therefore, $c_{i} \notin N_{2} H_{1} U$ for any $i \in I$ and $c_{j} \notin N_{3} H_{2} U$ for any $j \in J$. Let:

$$
N=N_{1} U \cap N_{2} U \cap N_{3} U
$$

For any $l \in\{1,2,3\}, N_{l}$ is a normal subgroup of finite index in $\operatorname{BS}(n,-n)$, and $N_{l} U$ is. Consequently, N is also a normal subgroup of finite index in $\operatorname{BS}(n,-n)$.

It is obvious that $U \subseteq N \cap\left\langle b^{n}\right\rangle$. Conversely, let $g \in N \cap\left\langle b^{n}\right\rangle$. There exist $n_{1} \in N_{1}$ and $u \in U$ such that $g=n_{1} u$. If $g \notin U$, then there exist $i \in\{2,3, \ldots, t\}$ and c_{i} in $\left\langle b^{n}\right\rangle$ such that $g U=c_{i} U$. Thus $c_{i} \in g U=n_{1} u U=n_{1} U$, and this implies that $c_{i} \in N_{1} U$, but it contradicts the assumption that $c_{i} \notin N_{1} U$ for any $i \in\{2,3, \ldots, t\}$. So $g \in U$ and $U=N \cap\left\langle b^{n}\right\rangle$.

Let us now prove that $\left(N\left\langle b^{n}\right\rangle\right) \cap N H_{1}=N\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)$. On one hand, it is easy to see that $\left(N\left\langle b^{n}\right\rangle\right) \cap N H_{1} \supseteq N\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)$. On the other hand, let $g \in\left(N\left\langle b^{n}\right\rangle\right) \cap N H_{1}$. Then $g=k b_{1}=k^{\prime} h_{1}$, where $k, k^{\prime} \in N, b_{1} \in\left\langle b^{n}\right\rangle$ and $h_{1} \in H_{1}$. Since $\left\langle b^{n}\right\rangle=\bigcup_{i=1}^{t} c_{i} U$
$\left(c_{i} \in\left\langle b^{n}\right\rangle\right)$, there exist $j \in\{1,2, \ldots, t\}$ and $u \in U$ such that $b_{1}=c_{j} u$. Thus $c_{j}=k^{-1} k^{\prime} h_{1} u^{-1} \in N H_{1} U$. Since $U \subseteq H_{1} U$ implies $U H_{1} U=H_{1} U$, we have $N H_{1} U \subseteq N_{2} U H_{1} U \subseteq N_{2} H_{1} U$. Recalling that $c_{i} \notin N_{2} H_{1} U$ for any $c_{i} \notin H_{1} U$, we obtain $c_{j} \in H_{1} U$ since $c_{j} \in N_{2} H_{1} U$. Therefore, there exist $h_{1}^{\prime} \in H_{1}$ and $u^{\prime} \in U$ satisfying $c_{j}=h_{1}^{\prime} u^{\prime}$. From $U \leq\left\langle b^{n}\right\rangle$, we have $h_{1}^{\prime}=c_{j} u^{\prime-1} \in\left\langle b^{n}\right\rangle$. Consequently, $h_{1}^{\prime} \in\left\langle b^{n}\right\rangle \cap H_{1}$ and then

$$
g=k b_{1}=k c_{j} u=k h_{1}^{\prime} u^{\prime} u=k\left(h_{1}^{\prime} u^{\prime} u h_{1}^{\prime-1}\right) h_{1}^{\prime} .
$$

Furthermore $U \leq N$ and $N \triangleleft B S(n,-n)$, so that $h_{1}^{\prime} u^{\prime} u h_{1}^{\prime-1} \in N$. Therefore $k h_{1}^{\prime} u^{\prime} u h_{1}^{\prime-1} \in N$ and then $g \in N\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)$. Thus, $\left(N\left\langle b^{n}\right\rangle\right) \cap N H_{1} \subseteq N\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)$ and we get the equality $\left(N\left\langle b^{n}\right\rangle\right) \cap N H_{1}=N\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)$.
We prove similarly that $\left(N\left\langle b^{n}\right\rangle\right) \cap N H_{2}=N\left(\left\langle b^{n}\right\rangle \cap H_{2}\right)$. Hence, the lemma is proven.
Proof of Theorem 1.2, Let us recall that in the group $\operatorname{BS}(n,-n)=\langle b\rangle{ }_{b^{n}=c}^{*}$ $B S(1,-1)$, the subgroups $\langle b\rangle$ and $B S(1,-1)=\left\langle a, c \mid a^{-1} c a=c^{-1}\right\rangle$ are the free factors. Let H_{1} and H_{2} be two finitely generated subgroups of $B S(n,-n)$ contained in the free factors, and let $g \in B S(n,-n) \backslash H_{1} H_{2}$. In order to prove that the product $H_{1} H_{2}$ is closed in the profinite topology of $B S(n,-n)$, we need to determine a normal subgroup N of finite index in $\operatorname{BS}(n,-n)$ such that $g \notin H_{1} H_{2} N$.
Case 1. Assume that H_{1} and H_{2} are subgroups of $\langle b\rangle$.
Since the group $\langle b\rangle$ is commutative, it comes that $H_{1} H_{2}$ is an infinite cyclic group. Also, $\mathrm{BS}(n,-n)$ is RZ_{1} and $g \in B S(n,-n) \backslash H_{1} H_{2}$. Thus, there exists $M \triangleleft_{f} B S(n,-n)$ such that $g \notin H_{1} H_{2} M$. That is, the set $H_{1} H_{2}$ is closed in the profinite topology of $B S(n,-n)$.
Case 2. Next, consider that H_{1} and H_{2} are subgroups of $B S(1,-1)$.
Subcase (a) Suppose that $g \in B S(1,-1)$. Since the group $\mathrm{BS}(1,-1)$ is polycyclic, it is RZ_{2}. Thus, there exists a subgroup $M \triangleleft_{f} B S(1,-1)$ such that $g \notin H_{1} H_{2} M$. Let the factor groups $\overline{H_{1}}=H_{1} / H_{1} \cap M, \overline{H_{2}}=H_{2} / H_{2} \cap M$ and $\overline{B S(1,-1)}=$ $B S(1,-1) / M$ be considered modulo M. By Proposition 2.1 (1), $\overline{H_{1}}$ and $\overline{H_{2}}$ are finitely generated subgroups of $\overline{B S(1,-1)}$. Let \bar{g} be the class of g modulo M in $\overline{B S(1,-1)}$; then $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$ in $\overline{B S(1,-1)}$. Also, since $M \cap\langle c\rangle$ is generated by one element as a subgroup of a one generated group, there exists a natural number t such that $M \cap\langle c\rangle=\left\langle c^{t}\right\rangle=\left\langle b^{n t}\right\rangle$. Therefore, by the result of P. Stebe cited previously, there exists $L \triangleleft_{f}\langle b\rangle$ satisfying $L \cap\left\langle b^{n}\right\rangle=\left\langle b^{n t}\right\rangle=M \cap\langle c\rangle$.
Set $\overline{\left\langle b^{n}\right\rangle}=\left\langle b^{n}\right\rangle /\left(L \cap\left\langle b^{n}\right\rangle\right)$ and $\overline{\langle c\rangle}=\langle c\rangle /(M \cap\langle c\rangle)$ respectively subgroups of $\overline{\langle b\rangle}=\langle b\rangle / L$ and $\overline{B S(1,-1)}$. Clearly, the canonical epimorphisms $\langle b\rangle \longrightarrow \overline{\langle b\rangle}$ and $B S(1,-1) \longrightarrow \overline{B S(1,-1)}$ induce an epimorphism $\pi: B S(n,-n) \longrightarrow \overline{B S(n,-n)}=$ $\overline{\langle b\rangle} \underset{\overline{b^{n}}=\bar{c}}{*} \overline{B S(1,-1)}$. Since the groups $\overline{\langle b\rangle}$ and $\overline{B S(1,-1)}$ are finite, it comes that the group $\overline{B S(n,-n)}$ is a free product of finite groups amalgamated by finite subgroups. Now, using the fact that Since $\overline{\langle b\rangle}$ and $\overline{B S(1,-1)}$ are finite, they are RZ_{2}. Thus $\overline{B S(n,-n)}$ is RZ_{2} as a free product of RZ_{2} groups amalgamated by finite subgroups. See [6, Theorem 5.3]. Also in $\overline{B S(n,-n)}$, we have $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$. Consequently, there exists a normal subgroup \bar{N} of finite index in $\overline{B S(n,-n)}$ such
that $\bar{g} \notin \overline{H_{1}} \overline{H_{2}} \bar{N}$. Taking N to be the preimage of \bar{N} via π, we have $g \notin H_{1} H_{2} N$ as desired. Again the set $H_{1} H_{2}$ is closed in the profinite topology of $B S(n,-n)$.
Subcase (b) Suppose that $g \notin B S(1,-1)$. Let $g=g_{1} g_{2} \cdots g_{r}(r \geqslant 1)$ be a reduced form of g in the amalgamated free product of groups $\mathrm{BS}(n,-n)=\langle b\rangle_{b^{n}=c}^{*} B S(1,-1)$.
Suppose that $r=1$. That is $g \in\langle b\rangle \backslash\left\langle b^{n}\right\rangle$, since $g \notin B S(1,-1)$. Recall once again that $\mathrm{BS}(n,-n)$ is RZ_{1}. Then there exists $M \triangleleft_{f} B S(n,-n)$ such that $g \notin\left\langle b^{n}\right\rangle M$, and the factor group $B S(n,-n) / M$ is finite. Set $\overline{B S(n,-n)}=B S(n,-n) / M$, $\overline{\langle b\rangle}=\langle b\rangle /(\langle b\rangle \cap M), \overline{B S(1,-1)} /(B S(1,-1) \cap M), \overline{\left\langle b^{n}\right\rangle}=\left\langle b^{n}\right\rangle /\left(\left\langle b^{n}\right\rangle \cap M\right)$ and $\overline{\langle c\rangle}=\langle c\rangle /(\langle c\rangle \cap M)$. Let \bar{g} be the class of g modulo M. It is clear that in $\overline{B S(n,-n)}$ we have $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$, where $\overline{H_{1}}=H_{1} / H_{1} \cap M, \overline{H_{2}}=H_{2} / H_{2} \cap M$. Since $\overline{B S(n,-n)}$ is finite, it is trivially RZ_{2}. Thus, there exists a normal subgroup N which is also trivial of finite index in $\overline{B S(n,-n)}$ and such that $\bar{g} \notin \overline{H_{1}} \overline{H_{2}} \bar{N}$. Taking $N=M$ to be the preimage of \bar{N} via π, we have $g \notin H_{1} H_{2} N$ as desired. Therefore, $H_{1} H_{2}$ is closed in the profinite topology of $B S(n,-n)$.
Suppose that $r>1$. Let I and J be the subsets of $\{1,2, \cdots r\}$ consisting of indices of components of g which belong to $\langle b\rangle \backslash\left\langle b^{n}\right\rangle$ and $B S(1,-1) \backslash\langle c\rangle$ respectively. Since $B S(n,-n)$ is RZ_{1}, there exists a subgroup $M \triangleleft_{f} B S(n,-n)$ such that $g_{i} \notin\left\langle b^{n}\right\rangle M$ and $g_{j} \notin\langle c\rangle M$ for any $i \in I$ and any $j \in J$. Considering $\overline{B S(n,-n)}=B S(n,-n) / M, \overline{\langle b\rangle}=\langle b\rangle /(\langle b\rangle \cap M), \overline{B S(1,-1)} /(B S(1,-1) \cap M)$, $\overline{\left\langle b^{n}\right\rangle}=\left\langle b^{n}\right\rangle /\left(\left\langle b^{n}\right\rangle \cap M\right)$ and $\overline{\langle c\rangle}=\langle c\rangle /(\langle c\rangle \cap M)$, we have $\bar{g} \notin \overline{B S(1,-1)}$ and $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$.
Using again the fact that $\overline{B S(n,-n)}$ is finite, and then trivially RZ_{2}, we obtain that there exists a normal subgroup \bar{N} the trivial subgroup of finite index in $\overline{B S(n,-n)}$ such that $\bar{g} \notin \overline{H_{1}} \overline{H_{2}} \bar{N}$. Thus, as in the previous case the desired result is obtained.
Case 3. Finally, suppose that $H_{1} \leq\langle b\rangle$ and $H_{2} \leq B S(1,-1)$. Let us recall that $g=g_{1} g_{2} \cdots g_{r}(r \geqslant 1)$ is a reduced form of g in $\operatorname{BS}(n,-n)=\langle b\rangle \underset{b^{n}=c}{*} B S(1,-1)$.
Subcase (a) Suppose that $l(g)=0$. That is $g \in\left\langle b^{n}\right\rangle=\langle c\rangle$. It is obvious that $g \notin\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)\left(\langle c\rangle \cap H_{2}\right)$ since $g \notin H_{1} H_{2}$. Also, $\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)\left(\langle c\rangle \cap H_{2}\right)$ can be viewed as a finitely generated subgroup of $\langle c\rangle$, and $\langle c\rangle$ is RZ_{1}. Therefore, there exists $U \triangleleft_{f}\langle c\rangle$ such that $g \notin\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)\left(\langle c\rangle \cap H_{2}\right) U$; and it comes that $\left(\left\langle b^{n}\right\rangle \cap H_{1}\right) U \neq\left\langle b^{n}\right\rangle$ and $\left(\left\langle b^{n}\right\rangle \cap H_{2}\right) U \neq\left\langle b^{n}\right\rangle$. Thus, by Lemma 4.1 there exists a subgroup $M \triangleleft_{f} B S(n,-n)$ verifying $M \cap\langle c\rangle=U,\left(M\left\langle b^{n}\right\rangle\right) \cap\left(M \overline{H_{1}}\right)=M\left(\left\langle b^{n}\right\rangle \cap H_{1}\right)$ and $(M\langle c\rangle) \cap\left(M H_{2}\right)=$ $M\left(\langle c\rangle \cap H_{2}\right)$. Define the factor group $\overline{B S(n,-n)}==B S(n,-n) / M$, where $\overline{\langle b\rangle}=$ $\langle b\rangle /(M \cap\langle b\rangle), \overline{B S(1,-1)}=B S(1,-1) /(M \cap B S(1,-1)), \overline{\left\langle b^{n}\right\rangle}=\left\langle b^{n}\right\rangle /\left(M \cap\left\langle b^{n}\right\rangle\right)$ and $\overline{\langle c\rangle}=\langle c\rangle /(M \cap\langle c\rangle)$.

Since,

$$
\begin{aligned}
\left(M H_{1} / M\right) \cap\left(M\left\langle b^{n}\right\rangle / M\right) & =\left\{g M \mid g \in M H_{1} \text { and } g \in M\left\langle b^{n}\right\rangle\right\} \\
& =\left\{g M \mid g \in M H_{1} \cap M\left\langle b^{n}\right\rangle\right\} \\
& =\left(M H_{1} \cap M\left\langle b^{n}\right\rangle\right) / M \\
& =M\left(H_{1} \cap\left\langle b^{n}\right\rangle\right) / M,
\end{aligned}
$$

we have $\overline{H_{1}} \cap \overline{\left\langle b^{n}\right\rangle}=\overline{H_{1} \cap\left\langle b^{n}\right\rangle}$ with $\overline{H_{1}}=H_{1} /\left(M \cap H_{1}=M H_{1} / M\right.$. Similarly, we obtain also $\overline{H_{2}} \cap \overline{\langle c\rangle}=\overline{H_{2} \cap\langle c\rangle}$, with $\overline{H_{2}}=H_{2} /\left(M \cap H_{2}=M H_{2} / M\right.$.
We claim that $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$. Indeed: if $\bar{g} \in \overline{H_{1}} \overline{H_{2}}$, then $\bar{g}=\overline{h_{1}} \overline{h_{2}}$ with $\overline{h_{1}} \in \overline{H_{1}}$ and $\overline{h_{2}} \in \overline{H_{2}}$. Since $g \in\langle c\rangle, H_{1} \leq\langle b\rangle$ and $H_{2} \leq B S(1,-1)$, then $\overline{h_{1}}=\bar{g} \overline{h_{2}^{-1}} \in$ $\overline{B S(1,-1)}$. Consequently, $\overline{h_{1}} \in \overline{H_{1}} \cap \overline{B S(1,-1)} \subseteq \overline{\langle b\rangle} \cap \overline{B S(1,-1)}=\overline{\left\langle b^{n}\right\rangle}$. Thus $\overline{h_{1}} \in \overline{H_{1}} \cap \overline{\left\langle b^{n}\right\rangle}$. Similarly, $\overline{h_{2}} \in \overline{H_{2}} \cap \overline{\langle c\rangle}$, so that $\bar{g} \in\left(\overline{H_{1}} \cap \overline{\left\langle b^{n}\right\rangle}\right)\left(\overline{H_{2}} \cap \overline{\langle c\rangle}\right)=$ $\overline{\left(H_{1} \cap\left\langle b^{n}\right\rangle\right)\left(H_{2} \cap\langle c\rangle\right)}$. Thus $g=h_{1} h_{2} m \in\left(H_{1} \cap\left\langle b^{n}\right\rangle\right)\left(H_{2} \cap\langle c\rangle\right) M$, where $m \in M$, and it follows that $m=h_{2}^{-1} h_{1}^{-1} g \in\langle c\rangle$. Therefore, $m \in M \cap\langle c\rangle=U$ so that $g \in\left(H_{1} \cap\left\langle b^{n}\right\rangle\right)\left(H_{2} \cap\langle c\rangle\right) U$. But this contradicts the assumption that $g \notin\left(\left\langle b^{n}\right\rangle \cap\right.$ $\left.H_{1}\right)\left(\langle c\rangle \cap H_{2}\right) U$. Thus $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$ in $\overline{B S(n,-n)}$. Since $\overline{B S(n,-n)}$ is RZ_{2} as a finite group, there exists a subgroup $\bar{N} \triangleleft_{f} \overline{B S(n,-n)}$ such that $\bar{g} \notin \overline{H_{1}} \overline{H_{2}} \bar{N}$. And like in the previous cases, it comes that there exists a subgroup $N \triangleleft_{f} B S(n,-n)$ satisfying $g \notin H_{1} H_{2} N$. And the set $H_{1} H_{2}$ is closed in the profinite topology of $B S(n,-n)$ as desired.
Subcase (b) Suppose that $l(g)=1$. That is $g \in B S(1,-1) \backslash\langle c\rangle$ (or $\left.g \in\langle b\rangle \backslash\left\langle b^{n}\right\rangle\right)$. - Suppose in addition that $g \notin\langle c\rangle H_{2}$. Since $\langle c\rangle H_{2}$ is a finitely generated subgroup of $\mathrm{BS}(1,-1)$ which is RZ_{2} as a polycylic group, there exists a subgroup $M \triangleleft_{f}$ $B S(1,-1)$ such that $g \notin\langle c\rangle H_{2} M$. Thus $\bar{g} \notin \overline{\langle c\rangle} \overline{H_{2}}$ in $\overline{B S(1,-1)}=B S(1,-1) / M$, where $\overline{\langle c\rangle}=\langle c\rangle /(\langle c\rangle \cap M)$ and $\overline{H_{2}}=H_{2} / H_{2} \cap M$. Since $M \cap\langle c\rangle$ can be viewed as a subgroup of $\langle b\rangle$, then using the P . Stebe's result cited previously, there exists $L \triangleleft_{f}\langle b\rangle$ satisfying $L \cap\left\langle b^{n}\right\rangle=M \cap\langle c\rangle$. Now, consider $\overline{\langle b\rangle}=\underline{\langle b\rangle / L, \overline{\left\langle b^{n}\right\rangle}}=$ $\left\langle b^{n}\right\rangle / L \cap\left\langle b^{n}\right\rangle=\langle c\rangle / M \cap\langle c\rangle=\overline{\langle c\rangle}$, and then $\overline{B S(n,-n)}=\overline{\langle b\rangle} \frac{*}{\overline{b^{n}}=\bar{c}} \overline{B S(1,-1)}$. In $\overline{B S(n,-n)}$, we have $\overline{H_{1}}=H_{1} / L \cap H_{1}, \overline{H_{2}}=H_{2} / M \cap H_{2}$ and $\bar{g}=g M \notin \overline{\langle c\rangle} \overline{H_{2}}$. Also, $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$. Indeed: if $\bar{g} \in \overline{H_{1}} \overline{H_{2}}$, then $\bar{g}=\overline{h_{1}} \overline{h_{2}}$ with $\overline{h_{1}} \in \overline{H_{1}}$ and $\overline{h_{2}} \in \overline{H_{2}}$. Thus $\overline{h_{1}}=\bar{g} \overline{h_{2}^{-1}} \in \overline{B S(1,-1)}$, and then $\overline{h_{1}} \in \overline{H_{1}} \cap \overline{B S(1,-1)} \subseteq \overline{\langle c\rangle}$. It comes that $\bar{g}=\overline{h_{1} h_{2}} \in \overline{\langle c\rangle} \overline{H_{2}}$, which contradicts the assumption that $\bar{g} \notin \overline{\langle c\rangle} \overline{H_{2}}$. Then $\bar{g} \notin \overline{H_{1}} \overline{H_{2}}$ in $\overline{B S(n,-n)}$. Using the fact that groups $\overline{\langle b\rangle}$ and $\overline{B S(1,-1)}$ are RZ_{2} as finite groups, we obtain that $\overline{B S(n,-n)}$ is RZ_{2} as a free product of RZ_{2} groups amalgamated by finite subgroups. And the desired result is obtained like in Case 2 (b).

- Suppose now that $g \in\langle c\rangle H_{2}$. Hence $g=c^{t} h_{2}$, with $t \in \mathbb{Z}$ and $h_{2} \in H_{2}$. From $g \notin H_{1} H_{2}$ we have $c^{t} \notin H_{1} H_{2}$. Since $l\left(c^{t}\right)=0$, so using Case 3 Subcase (a) there exists $N \triangleleft_{f} B S(n,-n)$ such that $c^{t} \notin H_{1} H_{2} N$. Thus $g \notin H_{1} H_{2} N$ and the set $H_{1} H_{2}$ is closed in the profinite topology of $B S(n,-n)$.
The subcase $g \in\langle b\rangle \backslash\left\langle b^{n}\right\rangle$ is treated similarly, since $\langle b\rangle$ as a finitely generated abelian group is RZ and particularly RZ_{2}.
Subcase (c) Let finally examine the case $l(g) \geq 2$, with $g=g_{1} g_{2} \ldots g_{r}(r \geqslant 2)$. Denote again by I and J the set of indices in $\{1,2, \cdots, r\}$ of components of g belonging in $\langle b\rangle \backslash\left\langle b^{n}\right\rangle$ and $B S(1,-1) \backslash\langle c\rangle$ respectively. Since $\mathrm{BS}(n,-n)$ is RZ_{1}, the desired result is obtained like in Case 2 (b) $r>1$. That is, the set $H_{1} H_{2}$ is closed in the profinite topology of $B S(n,-n)$. And the theorem is demonstrated.

5. Proof of Corollary 1.2

Assume that K is RZ_{2} and contains a finitely generated subgroup U of finite index in both A and B such that $\varphi(u)=u$ for any $u \in U$. Since $U \leq Z(K)$ and $t^{-1} u t=u$ for any $u \in U$, it comes that $U \leq Z(G)$. By Proposition 2.3 . we have $U^{n} \leq_{f} U$ and consequently $U^{n} \leq_{f} A$ and $U^{n} \leq_{f} B$, for any nonzero natural number n. It is then obvious that U^{n}, for any nonzero natural number n, is finitely generated. Thus, K / U^{n} is RZ_{2}, by Proposition 2.2 Also, since A and B are isomorphic, so are the finite groups A / U^{n} and B / U^{n} for any nonzero natural number n. Thus, for any nonzero natural number n the HNN-extension $G_{n}=G / U^{n}=\left\langle K / U^{n}, \tau \mid \tau^{-1} A / U^{n} \tau=B / U^{n}\right\rangle$ is RZ by Proposition 1.4 and particularly RZ_{2}. Consequently G is RZ_{2} by Theorem 1.1. So, the corollary is demonstrated.
Acknowledgement. The authors thank the anonymous referee for the throughout and carefull reading of the paper and for the very helpfull comments and suggestions that lead to the improvement of the paper.

References

[1] Allenby, R., Doniz, D., A free product of finitely generated nilpotent groups amalgamating a cycle that is not subgroup separable, Proc. Amer. Math. Soc. 124 (4) (1996), 1003-1005.
[2] Baumslag, B., Tretkoff, M., Residually finite HNN extensions, Comm. Algebra 6 (1978), 179-194.
[3] Baumslag, G., On the residual finiteness of generalised free products of nilpotent groups, Trans. Amer. Math. Soc. 106 (1963), 193-209.
[4] Baumslag, G., Solitar, D., Some two-generator one-relator non-Hopfien groups, Bull. Amer. Math. Soc. 38 (1962), 199-201.
[5] Cohen, D., Combinatorial groups theory: a topological approach, London Math. Soc. Stud. Texts, 1989, ISBN: 0-521-34133-7; 0-521-34936-2.
[6] Coulbois, T., Propriètés de Ribes-Zalesskii, topologie profinie, produit libre et généralisations, Ph.D. thesis, Universite Paris vii-Denis Diderot, 2000.
[7] Coulbois, T., Free products, profinite topology and finitely generated subgroups, Internat. J. Algebra Comput. 14 (2001), 171-184.
[8] Doucha, M., Malicki, M., Generic representations of countable groups, Trans. Amer. Math. Soc. 164 (2019), 105-114.
[9] Hall, M., Cosets representations in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432.
[10] Hall, M., A topology for free groups and related groups, Ann. of Math. 52 (1950), 127-139.
[11] Hall, P., On the finiteness on certain soluble groups, Proc. London Math. Soc. 164 (1959), 595-622.
[12] Hirsch, K., On infinite soluble groups. III, Proc. London Math. Soc. 49 (1946), 184-194.
[13] Lennox, J.C., Wilson, J.S., On products of subgroups in polycyclic groups, Arch. Math. (Basel) 33 (1979), 305-309.
[14] Magnus, W., Karass, A., Solitar, D., Combinatorial Group Theory: Presentations of Groups in Term of Generators and Relations, Interscience Publishers (John Wiley and Sons), New York, 1966.
[15] Mal'cev, A., On homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Ucen. Zap. 18 (1958), 49-60.
[16] Meskin, S., Nonresidually finite one relator groups, Trans. Amer. Math. Soc. 164 (1972), 105-114.
[17] Metaftsis, V., Raptis, E., Subgroups Separability of HNN-Extensions with Abelian Base Groups, J. Algebra 245 (2001), 42-49.
[18] Moldavanskii, D., Uskova, A., On the finitely separability of subgroups of generalized free products, Arxiv: 1308.3955.[mathGR], (2013).
[19] Neumann, B.H., An essay of free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503-554.
[20] Pin, J.-E., Reutenaeur, C., A conjecture on the Hall topology for free groups, Bull. London Math. Soc. 23 (1991), 356-362.
[21] Ribes, L., Profinite graphs and groups, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, Springer, Cham, 2017, ISBN: 978-3-319-61041-2; 978-3-319-61199-0.
[22] Ribes, L., Zalesskii, P.A., Profinite topologies in free products of group, Internat. J. Algebra Comput. 14 (2004), 751-772.
[23] Rips, E., An example of a NON-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup, Israel J. Math. Vol. 70 (1) (1990), 104-110.
[24] Romanovskii, N.S., On the residual finiteness of free products with respect to subgroups, Izv. Akad. Nauk SSSR Ser. Math. 33 (1969), 1324-1329.
[25] Rosendal, C., Finitely approximable groups and actions Part I: The Ribes-Zalesskii property, J. Symbolic Logic 76 (4) (2011), 1297-1306.
[26] Rosendal, C., Finitely approximable groups and actions Part II: Generic representations, J. Symbolic Logic 76 (4) (2011), 1307-1321.
[27] Shihong, You, The product separability of the generalized free products of cyclic groups, J. London Math. Soc.(2) 56 (1997), 91-103.
[28] Stebe, P., Conjugacy separability of certain free products with amalgamation, Trans. Amer. Math. Soc. 156 (1971), 119-129.

Department of Mathematics,
Higher Teacher's Training College, The University of Maroua,
P.O. Box 55 Maroua - Cameroon

E-mail: gilbertmantika@yahoo.fr

Department of Mathematics and Computer Science, Faculty of Sciences, The University of Maroua, P.O. Box 814 Maroua - Cameroon

E-mail: tematen@yahoo.fr

Department of Mathematics and Computer Science, The University of Ngaoundere and AIMS Cameroon, P.O. Box 454 Ngaoundere - Cameroon

E-mail: tieudjo@yahoo.com

[^0]: 2020 Mathematics Subject Classification: primary 20E06; secondary 20E26, 20F05, 22 A 05.
 Key words and phrases: profinite topology, HNN-extension, Ribes-Zalesskii property of rank k, Baumslag-Solitar groups.

 Received June 4, 2021, revised November 2021. Editor J. Rosický.
 DOI: 10.5817/AM2022-1-35

