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BOUNDARY VALUE PROBLEMS
FOR CAPUTO-HADAMARD FRACTIONAL DIFFERENTIAL

INCLUSIONS IN BANACH SPACES

Amouria Hammou1, Samira Hamani1, and Johnny Henderson2

Abstract. In this article, we study the existence of solutions in a Banach
space of boundary value problems for Caputo-Hadamard fractional differential
inclusions of order r ∈ (0, 1].

1. Introduction

This article deals the existence of solutions for boundary value problems for
fractional order differential inclusions. We consider the boundary-value problem

(1) c
HD

ry(t) ∈ F (t, y(t)) , for a.e. t ∈ J = [1, T ], 0 < r ≤ 1 ,

(2) ay(1) + by(T ) = c ,

where T > 1, cHDr is the Caputo-Hadamard fractional derivative of order 0 < r ≤ 1,
F : [1, T ]× E → P(E) is a multivalued map, P(E) is the family of all nonempty
subsets of E, E is a Banach space, and a, b and c are real constants such that
a+ b 6= 0.

For boundary value problems for differential inclusions with nolocal boundary
conditions and comments on their importance, we refer the reader to the papers
by Gallardo [24], Karakostas and Tsamatos [31], Lomtatidze and Malaguti [37]
and the references therein. Moreover, boundary value problems with integral
boundary conditions have been studied by a number of authors, for instance,
Brykalov [17], Denche and Marhoune [22] and Krall [36]. Recently Ahmad, Khan
and Sivasundaram [3, 32] have applied the generalized method of quasilinearization
to a class of second order boundary value problem with integral boundary conditions.
Some results on the existence of solutions for a class of boundary value problems for
fractional order differential inclusions with integral conditions have been obtained
by Benchohra et al. [9, 10, 11].
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Differential equations of fractional order have recently proved to be valuable
tools in the modeling of many phenomena in various fields of science and enginee-
ring. Indeed, we can find numerous applications in viscoelasticity, electrochemistry,
control, porous media, electromagnetism, and so on (see [23, 26, 27, 29, 38, 39, 41]).
However, the literature on Hadamard-type fractional differential equations has not
undergone as much development; see [4, 43]. Hadamard’s fractional derivative [28]
of 1892 differs from the aforementioned derivatives in the sense that the kernel of
the integral in the definition of the Hadamard derivative contains a logarithmic
function of arbitrary exponent. The works in [4, 18, 19, 20, 33, 34, 35, 43] are
major developments in the fundamental theory of Hadamard fractional calculus. A
Caputo-type modification of the Hadamard fractional derivative, which is called
the Caputo-Hadamard fractional derivative, was given in [30], and its fundamental
theorems were proved in [1, 25].

In this paper, we present existence results for the problems (1)–(2) in the case
where the right hand side is convex-valued. This result relies on the set-valued
analog of Mönch’s fixed point theorem combined with the technique of measure
of noncompactness. Recently, this has proved to be a valuable tool in studying
fractional differential equations and inclusions in Banach spaces; for additional
details, see the papers of Agarwal et al. [2] and Benchohra et al. [12, 13, 14]. Our
results here extend to the multivalued case some previous results in the literature
and constitutes what we hope is an interesting contribution to this emerging field.
We include an example to illustrate our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that
are used in the remainder of this paper.

Let C(J,E) be the Banach space of all continuous functions from J into E with
the norm

‖y‖∞ = sup{|y(t)| : 1 ≤ t ≤ T} ,
let L1(J,E) denote the Banach space of functions y : J → E which are Bochner
integrable with norm

‖y‖L1 =
∫ T

1
|y(t)| dt .

AC(J,E) is the space of functions y : J → E, which are absolutely continuous
whose first derivative, y′, is continuous.

Let (X, | · |) be a Banach space. Let Pcl(X) = {Y ∈ P(X) : Y is closed},
Pb(X) = {Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}
and Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}. A multivalued map
G : X → P(X) is convex (closed) valued if G(X) is convex (closed) for all x ∈ X. G
is bounded on bounded sets if G(B) = ∪

x∈B
G(x) is bounded in X for all B ∈ Pb(X)

(i.e. sup
x∈B
{sup{|y| : y ∈ G(x)}} < ∞). G is called upper semi-continuous (u.s.c.)
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on X if for each x0 ∈ X, the set G(x0) is a nonempty closed subset of X, and if
for each open set N of X containing G(x0), there exists an open neighborhood
N0 of x0 such that G(N0) ⊆ N . G is said to be completely continuous if G(B) is
relatively compact for every B ∈ Pb(X).

If the multivalued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph (i.e. xn → x∗, yn → y∗,
yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a fixed point if there is x ∈ X such that
x ∈ G(x). The fixed point set of the multivalued operator G will be denote by
FixG. A multivalued map G : J → Pcl(R) is said to be measurable if for every
y ∈ R, the function

t→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}
is measurable. Let X and Y be two sets, and N : X → p(Y ) be a set-valued map.
We define the graph of N , as

graph(N) = {(x, y) : x ∈ X, y ∈ N(x)} .
For more details on multivalued maps see the books of Deimling ([21]), and Aubin
et al. ([6, 7]).
Let R > 0, and

B = {x ∈ E : |x| ≤ R}, U = {x ∈ C(J,E) : ‖x‖ ≤ R} ,
clearly U is a closed subset of C(J,B).

For convenience, we first recall the definition of the Kuratowski measure of
noncompactness, and summarize the main properties of this measure.

Definition 2.1 ([5, 8]). Let E be a Banach space and let ΩE be the family of
bounded subsets of E. The Kuratowski measure of noncompactness is the map
α : ΩE → [0,∞) defined by

α(B) = inf{ε > 0 : B ⊂
m⋃
j=1

Bj and diam(Bj) ≤ ε}, for B ∈ ΩE .

Properties: The Kuratowski measure of noncompactness satisfies the following
properties (for details, see [5], [8]).

(1) α(B) = 0⇔ B is compact (B is relatively compact).
(2) α(B) = α(B).
(3) A ⊂ B ⇒ α(A) ≤ α(B).
(4) α(A+B) ≤ α(A) + α(B).
(5) α(cB) = |c|α(B), c ∈ R.
(6) α(conB) = α(B).

Here B and conB denote the closure and the convex hull of the bounded set B,
respectively.
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For a given set V of functions u : J → E, we set
V (t) = {u(t) : u ∈ V } , t ∈ J ,

and

V (J) = {u(t) : u ∈ V (t) , t ∈ J} .

Theorem 2.2 ([40]). Let E be a Banach space and C ⊂ L1(J,E) be countable
with |u(t)| ≤ h(t) for a.e. t ∈ J and every u ∈ C, where h ∈ L1(J,R+). Then the
function φ(t) = α(C(t)) belong to L1(J,R+) and satisfies

α
({∫ T

0
u(s) ds, u ∈ C

})
≤ 2

∫ T

0
α
(
C(s)

)
ds .

Let us now recall the set-valued analog of Mönch’s fixed point theorem.

Theorem 2.3 ([42]). Let K be a closed, convex subset of a Banach space E, U
a relatively open subset of K, and N : U 7→ P(K). Assume graphN is closed, N
maps compact sets into relatively compact sets, and for some x0 ∈ U , the following
two conditions are satisfied:

• Let y belongs to ACnδ ([a, b], E) or

(3) M ⊂ U, M ⊂ conv(x0 ∪N(M)) M = U
with C a countable subset of M implies M is compact,

•
(4) x /∈ (1− λ)x0 + λN(x) for all x ∈ U U, λ ∈ (0, 1) .

Then there exists x ∈ U with x ∈ N(x).

Definition 2.4. A multivalued map F : J ×E → P(E) is said to be Carathéodory
if

(1) t→ F (t, u) is measurable for each u ∈ E;
(2) u→ F (t, u) is upper semicontinuous for almost all t ∈ J .

For each y ∈ C(J,E), define the set of selections of F by
SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) a.e. t ∈ J} .

Definition 2.5 ([34]). The Hadamard fractional integral of order α > 0 for a
function h : [a, b]→ R, where a, b ≥ 0, is defined by

HI
α
a h(t) = 1

Γ(α)

∫ t

a

(
log t

s

)α−1h(s)
s

ds ,

provided the integral exists.

Definition 2.6 ([30]). Let ACnδ [a, b] = {g : [a, b] → C, δn−1g ∈ AC[a, b]} where

δ = t
d

dt
, 0 < a < b < ∞ and let α ∈ C, such that Re(α) ≥ 0. For a function

g ∈ ACnδ [a, b] the Caputo-Hadamard derivative of fractional order α is defined as
follows:
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(i): If α /∈ N, and n− 1 < α < n such that n = [Re(α)] + 1, then

(cHDα
a g)(t) = 1

Γ(n− α)

(
t
d

dt

)n ∫ t

a

(
log t

s

)n−α−1
δng(s)ds

s
,

(ii): If α = n ∈ N, then (cHDα
a g)(t) = δng(t),

where in both cases, [Re(α)] denotes the integer part of the real number Re(α) and
log(·) = loge(·).

Lemma 2.7. Let y ∈ ACnδ [a, b] or Cnδ [a, b] and α ∈ C. Then

(5) Iαa (cHDα
a y)(t) = y(t)−

n−1∑
k=0

δky(a)
k!

(
log t

a

)k
.

3. Main results

Let us start by defining what we mean by a solution of the problem (1)–(2).

Definition 3.1. A function y ∈ ACδ(J,E) is said to be a solution of (1)–(2), if
there exist a function v ∈ L1(J,E) with v(t) ∈ F (t, y(t)) for a.e. t ∈ J such that
c
HD

ry(t) = v(t) on J , and the function y satisfies condition (2).

To prove the existence of a solution to (1)–(2), we need the following auxiliary
lemma

Lemma 3.2. Let h : J → E be a continuous function. A function y is a solution
of the fractional integral equation

(6)
y(t) = 1

Γ(r)

∫ t

1

(
log t

s

)r−1
h(s)ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
h(s)ds

s
− c
]
,

if and only if y is a solution of the fractional boundary value problem,
c
HD

ry(t) = h(t) , 0 < r ≤ 1 ,(7)

ay(1) + by(T ) = c .(8)

Proof. Assume y satisfies (7). Then Lemma 2.7 implies that

y(t) =H Irh(t) + y(1) .

The boundary condition (8) implies that

ay(1) + by(T ) =H Irh(t) + (a+ b)y(1) = c ,

and

y(1) = c

a+ b
− b HI

rh(t)
a+ b

.
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Finally, we obtain the solution (6)

y(t) =H Irh(t)− b

a+ b
HI

rh(t) + c

a+ b
.

Conversely, it is clear that if y satisfies equation (6), then equations (7)–(8)
hold. �

Theorem 3.3. Assume the following hypotheses hold:
(H1) F : J × E → Pcp,c(E) is a Carathéodory multi-valued map.
(H2) There exists a function p ∈ C(J,E) such that

‖F (t, u)‖p := sup{|v| : v(t) ∈ F (t, y)} ≤ p(t) ,

for each (t, y) ∈ J × E.
(H3) There exists l > 0 such that

Hd(F (t, x), F (t, x̄)) ≤ l|x− x̄| for every x, x̄ ∈ E .

(H4) For each bounded set B ⊂ C(J,E) and for each t ∈ J , we have

α(F (t, B, ) ≤ p(t)α(B) ,

where α is a measure of noncompactness on E.
(H5) The function φ = 0 is the unique solution in C(J,E) satisfying

(9)
φ(t) ≤ 2

{ 1
Γ(r)

∫ t

1

(
log t

s

)r−1
ϕ(s, φ(s))ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
ϕ(s, φ(s))ds

s
− c
]}

, for t ∈ J .

Then the BVP (1)–(2) has at least one solution in J .

Proof. First we transform problem (1)–(2) into a fixed point problem. Consider
the multivalued operator

N(y) =


h ∈ ACδ(J,E) :

(Ny)(t) = 1
Γ(r)

∫ t

1

(
log t

s

)r−1
v(s)ds

s
− 1
a+ b

×

[
b

Γ(r)

∫ T

1

(
log T

s

)r−1
v(s)ds

s
− c

]
,

v ∈ SF,y


.

Clearly, from Lemma 3.2, the fixed points of N are solutions to (1)–(2). We
shall show that N satisfies the assumptions of Mönch’s fixed point theorem. The
proof will be given in several steps.

Step 1: N(y) is convex for each y ∈ C(J,E).
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Indeed, if h1, h2 belong to N(y), then there exist v1, v2 ∈ SF,y such that for
each t ∈ J we have

hi(t) = 1
Γ(r)

∫ t

1

(
log t

s

)r−1
vi(s)

ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
vi(s)

ds

s
− c
]
, i = 1, 2 .

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have(
dh1 + (1− d)h2

)
(t) = 1

Γ(r)

∫ t

1

(
log t

s

)r−1
[dv1(s) + (1− d)v2(s)]ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
[dv1(s) + (1−d)v2(s)]ds

s
−c
]
.

Since SF,y is convex (because F has convex values), we have

dh1 + (1− d)h2 ∈ N(y) .

Step 2: N(M) is relatively compact for each compact M ⊂ U .

Let M ⊂ U be a compact set and let {hn} by any sequence of elements of N(M).
We show that {hn} has a convergent subsequence by using the Arzela-Ascoli
criterion of compactness in C(J,B). Since {hn} ∈ N(M), there exist yn ∈M and
vn ∈ SF,yn such that

hn(t) = 1
Γ(r)

∫ t

1

(
log t

s

)r−1
vn(s)ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
vn(s)ds

s
− c
]
,

for n ≥ 1. Using Theorem 2.2 and the properties of the Kuratowski measure of
noncompactness, we have

(10)

α({hn(t)}) ≤ 2
{

1
Γ(r)

∫ t

1
α
((

log t
s

)r−1 vn(s)
s

: n ≥ 1
)
ds

− 1
a+ b

[ b

Γ(r)

∫ T

1
α
((

log T
s

)r−1 vn(s)
s

: n ≥ 1
)
ds− c

]}
.

On the other hand, since M(s) is compact in E, the set {vn(s) : n ≥ 1} is compact.
Consequently, α({vn(s) : n ≥ 1}) = 0 for a.e. s ∈ J .

Furthermore,

α

({(
log t

s

)r−1 vn(s)
s

})
=
(

log t
s

)r−1 1
s
α({vn(s) : n ≥ 1}) = 0 ,
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and

α

({(
log T

s

)r−1 vn(s)
s

})
=
(

log T
s

)r−1 1
s
α({vn(s) : n ≥ 1}) = 0 ,

for a.e. t, s ∈ J . Hence, from this and (10), {hn(t) : n ≥ 1} is relatively compact
with respect to α for each t ∈ J . In addition, for each t1, t2 ∈ J with t1 < t2, we
have

|hn(t2)− hn(t1)| =

∣∣∣∣∣ 1
Γ(r)

∫ t1

1

[(
log t2

s

)r−1
−
(

log t1
s

)r−1]
vn(s)ds

s

+ 1
Γ(r)

∫ t2

t1

(
log t2

s

)r−1
vn(s)ds

s

∣∣∣∣∣
≤ p(t)

Γ(r)

∫ t1

1

[(
log t1

s

)r−1
−
(

log t2
s

)r−1]ds
s

+ p(t)
Γ(r)

∫ t2

t1

(
log t2

s

)r−1 ds

s
.

As t1 → t2, the right hand side of the above inequality tends to zero. This shows
that {hn : n ≥ 1} is equicontinuous. Consequently, {hn : n ≥ 1} is relatively
compact in C(J,B).

Step 3: The graph of N is closed.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We need to show that h∗ ∈ N(y∗).
Now hn ∈ N(yn) means that there exists vn ∈ SF,yn such that, for each t ∈ J ,

hn(t) = 1
Γ(r)

∫ t

1

(
log t

s

)r−1
vn(s)ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
vn(s)ds

s
− c
]
, vn ∈ S1

F,yn .

We must show that there exists v∗ ∈ SF,y∗ such that for each t ∈ J

h∗(t) = 1
Γ(r)

∫ t

1

(
log t

s

)r−1
v∗(s)

ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
v∗(s)

ds

s
− c
]
, v∗ ∈ S1

F,y∗ .

Since F (t, ·, ·) is upper semicontinuous, for every ε > 0, there exists n0(x) such
that for every n ≥ n0, we have vn ∈ F (t, y(t), x(t)) ⊂ F (t, y∗(t), x∗(t)) + εB(0, 1)
a.e. t ∈ J . And since F has compact values, there exists a subsequence vnm(·) such
that

vnm(.)→ v∗ as m→∞ ,
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v∗ ∈ F
(
t, y∗(t)

)
as t ∈ J .

For every w(t) ∈ F (t, y∗(t)), we have

|vnm − v∗| ≤ |vnm − w(t)|+ |w(t)− v∗|

and so

|vnm − v∗| ≤ d
(
vnm(t), F (t, y∗(t))

)
.

By an analogous relation obtained by interchanging the roles of vnm and v∗, it
follows that

|vnm − v∗| ≤ Hd(F (t, ynm(t), F (t, y∗(t)))

≤ l|ynm − y∗| .

Therefore,

|hn(t)− h∗(t)| ≤
1

Γ(r)

∫ t

1

(
log t

s

)r−1
l|vnm − v∗| ds

+ 1
a+ b

[ b

Γ(r)

∫ t

1

(
log t

s

)r−1
l|vnm − v∗| ds

]

≤

(
1 + 1

a+b

)
l(log T )r

Γ(r + 1) ‖ynm − y∗‖L1 .

Hence
‖hn(t)− h∗(t)‖∞ → 0 as m→∞ .

Step 4: M is relatively compact in C(J,B).

Suppose M ⊂ U , M ⊂ conv(0 ∪ N(M)), and M = C for some countable set
C ⊂M . Using an argument similar to the one used in Step 2 shows that N(M) is
equicontinuous. Then, since M ⊂ conv(0∪N(M)), we see that M is equicontinuous
as well.

To apply the Arzela-Ascoli theorem, it remains to show that M(t) is relatively
compact in E for each t ∈ J . Since C ⊂M ⊂ conv(0 ∪N(M)) and C is countable,
we can find a countable set H = {hn : n ≥ 1} ⊂ N(M) with C ⊂ conv(0∪H).Then,
there exist yn ∈M and vn ∈ SF,yn such that

hn(t) = 1
Γ(r)

∫ t

1

(
log t

s

)r−1
vn(s)ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
vn(s)ds

s
− c
]
.

From M ⊂ C ⊂ conv(0 ∪ (H)), and according, to Theorem 2.2, we have
α(M(t)) ≤ α(C(t)) ≤ α(H(t)) = α({hn(t) : n ≥ 1}).
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Using (10) and the fact that vn(s) ∈M(s), we obtain

α(M(t)) ≤ 2
(

1
Γ(r)

∫ t

1
α
({(

log t
s

)r−1
vn(s)

})ds
s

− 1
a+ b

[ b

Γ(r)

∫ T

1
α
({(

log T
s

)r−1
vn(s)ds

s

})
− c
])

.

Now, since vn(s) ∈M(s), we have

α(M(t)) ≤ 2
(

1
Γ(r)

∫ t

1
α
({(

log t
s

)r−1 vn(s)
s

: n ≥ 1
})

ds

− 1
a+ b

[ b

Γ(r)

∫ T

1
α
({(

log T
s

)r−1 vn(s)
s

: n ≥ 1
})

ds− c
])

.

Also, since vn(s) ∈M(s), we have

α
({(

log t
s

)r−1 vn(s)
s

;n ≥ 1
})

=
(

log t
s

)r−1 1
s
α(M(s)) ,

and

α
({(

log T
s

)r−1 vn(s)
s

;n ≥ 1
})

=
(

log T
s

)r−1 1
s
α(M(s)) ,

and it follows that

α(M(t)) ≤ 2
(

1
Γ(r)

∫ t

1

(
log t

s

)r−1
α(M(s))ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
α(M(s))ds

s
)− c

])

≤ 2
(

1
Γ(r)

∫ t

1

(
log t

s

)r−1
ψ(s, α(M(s)))ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
ψ(s, α(M(s)))ds

s
− c
])

.

Also, the function ϕ given by ϕ(t) = ρ(M(t)) belongs to C(J,E). Consequently by
(H3), ϕ = 0; that is, ρ(M(t)) = 0 for all t ∈ J . Now, by the Arzela-Ascoli theorem,
M is relatively compact in C(J,E).

Step 5: The apriori estimate.
Let h ∈ C(J,E) such that y ∈ λN(y) for some 0 < λ < 1. Then

h(t) = 1
Γ(r)

∫ t

1

(
log t

s

)r−1
v(s)ds

s
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− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
v(s)ds

s
− c,

]
v ∈ SF,y .

For each t ∈ J , we have

‖N(y)‖ ≤ 1
Γ(r)

∫ t

1

(
log t

s

)r−1
|v(s)|ds

s

− 1
a+ b

[ b

Γ(r)

∫ T

1

(
log T

s

)r−1
|v(s)|ds

s
− c
]

≤ (log t)r

Γ(r + 1)

∫ t

1
p(s) ds

− 1
a+ b

[b(log T )r

Γ(r + 1)

∫ T

1
p(s)ds− c

]
≤
(

1− b

a+ b

) (log T )r

Γ(r + 1)

∫ T

1
p(s) ds+ c

a+ b
,

where

‖p‖∞ sup
{
|p(t)| : t ∈ J

}
.

Then

‖y‖

((
1− b

a+ b

) (log T )r

Γ(r + 1)

∫ T

1
p(s) ds+ c

a+ b

)
:= R .

Hence the condition (4) is satisfied. As a consequence of Steps 1–5 and Theorem 2.3,
we conclude that N has a fixed point x ∈ C(J,E) which is a solution of problem
1–(2). This concludes the proof. �

3.1. An example. We conclude this paper with an example to illustrate our main
result. Let

E = l1 =
{

(y1, y2, . . . , yn, . . . ),
∞∑
1
|yn| <∞

}
,

be our Banach space with norm

‖y‖E =
∞∑
1
|yn| .

We apply Theorem 3.3 to the the following fractional differential inclusion,
(11) c

HD
ry(t) ∈ Fn(t, y(t)) , for a.e. t ∈ J = [1, e], 0 < r ≤ 1 ,

(12) ay(1) + by(e) = c ,

where
Fn
(
t, y(t)

)
=
{
v ∈ E : fn(t, y(t)) ≤ v ≤ gn

(
t, y(t)

)}
,

and where fn, gn : J × E × E 7→ E. We assume that for each t ∈ [1, e], fn(t, ·, ·) is
lower semi-continuous (i.e., the set {y ∈ E : fn(t, y(t)) > µ1} is open for each µ1 ∈
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R), and assume that for each t ∈ [1, e], gn(t, ·, ·) is upper semi-continuous (i.e., the
set {y ∈ E : gn(t, y(t)) < µ2} is open for each µ2 ∈ R), with y = (y1, y2, . . . , yn, . . .).

Set F = (F1, F2, . . . , Fn, . . .), f = (f1, f2, . . . , fn, . . .), g = (g1, g2, . . . , gn, . . .).
Assume that there exists p ∈ C([1, e],R+) such that,

‖F (t, u)‖P = sup
{
|v|, v(t) ∈ F

(
t, y(t)

)}
= max

(
|fn(t, y(t))|, |gn(t, y(t))|

)
≤ p(t) , for each t ∈ [1, e], y ∈ E.

It is clear that F is compact and convex-valued, and it is upper semi-continuous,
and furthermore, we assume that for (t, y) ∈ J × E. We also assume that for each
bounded set B ⊂ C(J,E) and for each t ∈ J , we have

α(F (t, B) ≤ p(t)α(B) ,

where α is a measure of noncompactness on E, and the function φ = 0 is the unique
solution in C(J,E) of

φ(t) ≤ 2
{

1
Γ(r)

∫ t

1

(
log t

s

)r−1
ϕ(s, φ(s))ds

s

− 1
a+ b

[ b

Γ(r)

∫ e

1

(
log e

s

)r−1
ϕ(s, φ(s))ds

s
− c
]}
, for t ∈ J .

Since all the conditions of Theorem 3.3 are satisfied, the problem (11)–(12) has at
least one solution y on [1, e].
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