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POSITIVE SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS
SECOND ORDER DIFFERENCE EQUATIONS VIA A NEW

FUNCTIONAL FIXED POINT THEOREM

Lydia Bouchala, Karima Mebarkia, and Svetlin Georgiev Georgievb

Abstract. In this paper, by using recent results on fixed point index, we
develop a new fixed point theorem of functional type for the sum of two
operators T + S where I − T is Lipschitz invertible and S a k-set contraction.
This fixed point theorem is then used to establish a new result on the existence
of positive solutions to a non-autonomous second order difference equation.

1. Introduction

Cone fixed point theorems, particularly those of functional type, have provided
several criteria for the existence and multiplicity of positive solutions for continuous
and discrete boundary value problems. See [5, 16, 18, 21, 25, 26] for works on
ordinary differential equations, and [2, 17, 20, 23, 24] for works on difference
equations. The flexibility of using functionals instead of norms allows the theorems
to be used in a wider variety of situations. The beginning of functional type fixed
point theorems goes back to the original Leggett and Williams fixed point theorem
[19] where the norm used in the lower boundary condition of Guo-Krasnosel’skii
fixed point theorem [13, 15] was replaced by a positive concave functional. Many
kinds of generalizations and variants of Leggett-Williams fixed point theorem have
been obtained in different directions, such as the several Avery et al. fixed point
theorems [4, 6, 7, 8, 9].

In [3, Theorem 10], Avery and Anderson generalized the Guo-Krasnosel’skii fixed
point theorem. A generalization that allows the user to choose two functionals
that satisfy certain conditions that are used instead of the norm. These functionals
do not need to be concave or convex, which leaves more freedom, especially in
applications to boundary value problems (BVPs for short). This is one of the
reasons that motivated us to extend Avery-Anderson’s theorem to the sum of two
operators.

This paper is part of the literature devoted to applications of fixed point theorems
of functional type for boundary value problems for finite difference equations. Firstly,
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we use the fixed point index theory developed in [11, 12] to extend [3, Theorem
10] for operators that are sums of the form T + S, where (I − T ) is a Lipschitz
invertible mapping with constant γ > 0 and S is a k-set contraction with k γ < 1.
Then, this extension is applied to a class of BVPs for finite difference equations.
We will present a technique that takes advantage of the flexibility of our fixed point
theorem to obtain at least one positive solution to the following non-autonomous
second order difference equation:

42u(k) + f(k, u(k)) = 0 , k ∈ {0, 1, . . . , N}, N ∈ N, N > 1 ,
with boundary conditions

u(0) = u(N + 2) = 0 ,
where f : {0, . . . , N + 2} × [0,∞) → [0,∞) is a continuous function and 42 is
the second forward difference operator which acts on u by 42u(k) = u(k + 2)−
2u(k + 1) + u(k), k ∈ {0, 1, . . . , N}. By positive solution, we mean a function
u : {0, . . . , N + 2} → R such that u(k) ≥ 0 on {0, 1, . . . , N + 2} and satisfies the
posed BVP.
In [22], a compression-expansion fixed point theorem of functional type has been
used to obtain at least one positive solution for the autonomous second order
difference equation:
(1.1) 42u(k) + f(u(k)) = 0 , k ∈ {0, 1, . . . , N}, N ∈ N, N > 1 ,
with boundary conditions
(1.2) u(0) = u(N + 2) = 0 ,
where f : [0,∞) → [0,∞) is a continuous function satisfying some conditions of
monotonic type. In [23], the layered compression-expansion fixed point theorem
was applied to show the existence of solutions to the problem (1.1)–(1.2), where
the nonlinearity f is the sum of a monotonic increasing and a monotonic decreasing
functions.

The paper is organized as follows: In Section 2, we give some auxiliary results.
In Section 3, a new fixed point theorem of functional type for the sum T + S in a
cone is established, where I − T is Lipschitz invertible and S a k-set contraction.
In Section 4, we investigate the existence of at least one positive solution for a class
of non-autonomous second order difference equations. We also give an example to
illustrate our main results. The article ends with a conclusion.

2. Preliminary

Definition 2.1. A closed, convex set P in a Banach space E is said to be cone if
(1) λx ∈ P for any λ ≥ 0 and for any x ∈ P,
(2) x ∈ P, −x ∈ P implies x = 0.

Let E be a real Banach space.

Definition 2.2. A mapping K : E → E is said to be completely continuous if it
is continuous and maps bounded sets into relatively compact sets.
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Theorem 2.3 ([1]). Let C be a closed subset of the class of continuous maps
u : {0, . . . , N + 1} → E. If C is uniformly bounded and the set {u(k) : u ∈ C} is
relatively compact for each k ∈ {0, . . . , N + 1}, then C is compact.

The concept of set contraction is related to Kuratowski’s measure of noncom-
pactness χ. For the main properties of measure of noncompactness we refer the
reader to [10, 14].

Definition 2.4. A mapping A : E → E is said to be k-set contraction if it is
continuous, bounded and there exists a constant k ≥ 0 such that

χ(A(D)) ≤ kχ(D) ,
for any bounded set D ⊂ E. The mapping A is said to be a strict set contraction if
k < 1.

Obviously, if A : E → E is a completely continuous mapping, then A is 0-set
contraction.

In all what follows, P will refer to a cone in a Banach space (E, ‖ · ‖), Ω is a
subset of P and U a bounded open subset of P and we will denote P \ {0} by P∗.

The fixed point index i∗(T + S,U ∩ Ω,P) defined by

(2.1) i∗ (T + S,U ∩ Ω,P) =
{
i ((I − T )−1S,U,P), if U ∩ Ω 6= ∅
0, if U ∩ Ω = ∅ ,

is well defined whenever the mapping T : Ω→ E is such that (I − T ) is Lipschitz
invertible with constant γ > 0 and S : U → E is a k-set contraction with 0 ≤ k <
γ−1 and S(U) ⊂ (I − T )(Ω). For details see [11, 12].

Proposition 2.5 ([12, Proposition 3.4]). Let U be a bounded open subset of P
with 0 ∈ U . Assume that T : Ω ⊂ P → E be a mapping such that (I − T ) is
Lipschitz invertible with constant γ > 0 and S : U → E is a k-set contraction with
0 ≤ k < γ−1 and S(U) ⊂ (I − T )(Ω). If

Sx 6= (I − T )(λx) , for all x ∈ ∂U, λ ≥ 1 and λx ∈ Ω ,

then
i∗(T + S,U ∩ Ω,P) = 1 .

Proposition 2.6 ([12, Proposition 3.9]). Let U be a bounded open subset of P.
Assume that T : Ω ⊂ P → E be a mapping such that (I − T ) is Lipschitz invertible
with constant γ > 0 and S : U → E is a k-set contraction with 0 ≤ k < γ−1 and
S(U) ⊂ (I − T )(Ω). If there exists u0 ∈ P∗ such that

Sx 6= (I − T )(x− λu0), for all λ ≥ 0 and x ∈ ∂U ∩ (Ω + λu0) ,
then

i∗(T + S,U ∩ Ω,P) = 0 .

Definition 2.7. A map α is said to be a nonnegative continuous functional on a
cone P of a real Banach space E if α : P → [0,∞) is continuous.
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Let α and β be nonnegative continuous functionals on P; and let r, R be two
positive real numbers, we define the sets:

P(β,R) = {x ∈ P : β(x) < R} ,

P(β, α, r, R) = {x ∈ P : r < α(x) and β(x) < R} .(2.2)

3. New fixed point theorem for sums of two operators

In the sequel, we will establish an extension of [3, Theorem 10] which guarantees
the existence of at least one nontrivial positive solution to some equations of the
form Tx+ Sx = x posed on cones of a Banach space.

Theorem 3.1. Let E be a Banach space; P ⊂ E a cone; α and β be nonnegative
continuous functionals on P and let r < R be two positive real numbers. Let
T : Ω ⊂ P → E be a mapping such that (I−T ) is Lipschitz invertible with constant
γ > 0 and S : P(β,R) → E be a k-set contraction mapping with 0 ≤ k < γ−1.
Assume that P(β, α, r, R) ∩ Ω 6= ∅, P(α, r) ⊂ P(β,R) and

(3.1) S(P(β,R)) ⊂ (I − T )(Ω) .
If one of the two following conditions is satisfied

(A1): for all x ∈ ∂P(α, r) and λ > 1 with λx ∈ Ω and T (λx) + Sx ∈ P,
(3.2) α(T (λx) + Sx) ≤ r , λα(x) ≤ α(λx) and α(0) < r ,

and there exists u0 ∈ P∗, for all η > 0 and x ∈ ∂P(β,R) ∩ (Ω + ηu0)
with T (x− ηu0) + Sx+ ηu0 ∈ P,

(3.3) β(T (x− ηu0) + Sx+ ηu0) 6= R ,

or
(A2): for all x ∈ ∂P(β,R) and λ > 1 with λx ∈ Ω and T (λx) + Sx ∈ P,

(3.4) β(T (λx) + Sx) ≤ R , λβ(x) ≤ β(λx) and β(0) < R ,

and there exists u0 ∈ P∗, for all η > 0 and x ∈ ∂P(α, r) ∩ (Ω + ηu0) with
T (x− ηu0) + Sx+ ηu0 ∈ P,

(3.5) α(T (x− ηu0) + Sx+ ηu0) 6= r ,

then T + S has at least one nontrivial fixed point x∗ ∈ P(β, α, r, R) ∩ Ω.

Proof. Suppose that Tx + Sx 6= x for all x ∈ ∂P(β, α, r, R), otherwise we are
finished.

We will suppose that the condition (A1) holds; the proof when (A2) is satisfied
is similar.

Claim 1: Sx 6= (I − T )(λx) for all x ∈ ∂P(α, r), λ > 1 and λx ∈ Ω.
On the contrary, suppose that there exists a x0 ∈ ∂P(α, r), λ0 > 1 and
λ0x0 ∈ Ω such that

T (λ0x0) + Sx0 = λ0x0 .
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Then,
r ≥ α (T (λ0x0) + Sx0) = α (λ0x0) ≥ λ0α(x0) > α(x0) = r ,

which is a contradiction with (3.2).
Note that 0 ∈ P(α, r) by assumption. Hence, from Proposition 2.5,

i∗(T + S,P(α, r) ∩ Ω,P) = 1 .

Claim 2: Sx 6= (I −T )(x− ηu0) for all η > 0 and x ∈ ∂P(β,R)∩ (Ω + ηu0),
for some u0 ∈ P∗. On the contrary, for any u0 ∈ P∗ there exist η0 > 0 and
z0 ∈ ∂P(β,R) ∩ (Ω + ηu0) such that

Sz0 = (I − T )(z0 − η0u0) .
So,

T (z0 − η0u0) + Sz0 + η0u0 = z0 .

Then,
β(T (z0 − η0u0) + Sz0 + η0u0) = β(z0) = R ,

which is a contradiction with (3.3).
As a result of Proposition 2.6, we arrive at

i∗(T + S,P(β,R) ∩ Ω,P) = 0 .

Thus, from the additivity property of the fixed point index i∗, we have
i∗(T + S,P(β, α, r, R) ∩ Ω,P) = i∗(T + S,P(β,R) ∩ Ω,P)

− i∗(T + S,P(α, r) ∩ Ω,P)
= −1 .

By the existence property of the fixed point index the operator T + S has at least
one fixed point x∗ ∈ P(β, α, r, R) ∩ Ω. Hence the desired result.

�

4. Applications

In this section, we will investigate the equation
(4.1) 42u(k) + f(k, u(k)) = 0 , k ∈ {0, 1, . . . , N}, N ∈ N, N > 1
with boundary conditions
(4.2) u(0) = u(N + 2) = 0 ,
where f : {0, . . . , N + 2} × [0,∞)→ [0,∞) is a continuous function satisfying:

(H1) :


0 ≤ f(k, u(k)) ≤ a(k) + b(k)|u(k)|p, p ≥ 0, a, b : {0, . . . , N + 2} → [0,∞)

be such that

0 ≤ a(k), b(k) ≤ B, k ∈ {0, . . . , N + 2} for some positive constant B .
In what follows, by using our approach, we will establish sufficient criteria for

the existence of positive solutions to BVP (4.1)–(4.2). Define the Banach space
E = {u : {0, . . . , N + 2} → R}
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with the norm
‖u‖ = max

k∈{0,...,N+2}
|u(k)| .

Define the function

H(k, l) = 1
N + 2

{
k(N + 2− l) , k ∈ {0, . . . , l} ,

l(N + 2− k) , k ∈ {l + 1, . . . , N + 2} ,

for any l ∈ {0, . . . , N + 2}.
In [22] it is proved that if u ∈ E is a solution to the BVP (4.1)–(4.2), then it is a
solution to the sum equation

u(k) =
N+1∑
l=1

H(k, l)f(l, u(l)) , k ∈ {0, . . . , N + 2} ,

and conversely. We have that

H(k, l) ≤ N + 2 , k, l ∈ {0, . . . , N + 2} .

Let

S1u(k) =
N+1∑
l=1

H(k, l)f(l, u(l)) , k ∈ {0, . . . , N + 2} .

Lemma 4.1. Suppose that (H1) holds. Let u ∈ E and ‖u‖ ≤ Q for some positive
constant Q. Then

S1u(k) ≤ (N + 2)(N + 1)B(1 +Qp) , k ∈ {0, . . . , N + 2} .

Proof. We have

S1u(k) =
N+1∑
l=1

H(k, l)f(l, u(l))

≤ (N + 2)
N+1∑
l=1

(a(l) + b(l)|u(l)|p)

≤ (N + 2)(N + 1)B(1 +Qp), k ∈ {0, . . . , N + 2} .

This completes the proof. �

Suppose
(H2): ε, A1, B, B1, R, R1, r are positive constants such that

ε ∈ (0, 1) , B1

2 > A1(N + 3)
(
(N + 2)(N + 1)B (1 +Rp) +R

)
,

r

A1
< R , R1 > max{R, 1}, A1 ∈ (0, 1) ,

A1(ε+ r + 2B1) ≤ r .
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For u ∈ E, define the operator

S2u(k) = A1

k−1∑
m=0

(S1u(m)− u(m)) , k ∈ {1, . . . , N + 2} .

Lemma 4.2. Suppose that (H1) and (H2) hold. Let u ∈ E and

(4.3) S2u(k) = C , k ∈ {1, . . . , N + 2} ,

where C is a constant. Then u is a solution to the BVP (4.1)–(4.2).

Proof. We have
k−1∑
m=0

(N+1∑
l=1

H(m, l)f(l, u(l))− u(m)
)
− C

A1
= 0 , k ∈ {1, . . . , N + 2} .

We take the ∆-operator of both sides of the last equation and we find
k∑
m=0

(N+1∑
l=1

H(m, l)f(l, u(l))− u(m)
)
−
k−1∑
m=0

(N+1∑
l=1

H(m, l)f(l, u(l))− u(m)
)

=
N+1∑
l=1

H(k, l)f(l, u(l))− u(k) = 0 ,

k ∈ {1, . . . , N + 2}. This completes the proof. �

Lemma 4.3. Suppose that (H1) and (H2) hold. Let u ∈ E and ‖u‖ ≤ Q for some
positive constant Q. Then

‖S2u‖ ≤ A1(N + 3) ((N + 2)(N + 1)B(1 +Qp) +Q) .

Proof. We have

‖S2u‖ ≤ A1

k−1∑
m=0

(‖S1u‖+ ‖u‖)

≤ A1

N+2∑
m=0

(‖S1u‖+ ‖u‖)

≤ A1(N + 3) ((N + 2)(N + 1)B(1 +Qp) +Q) .

This completes the proof. �

The main result in this section is as follows.

Theorem 4.4. Suppose that (H1) and (H2) hold. Then the BVP (4.1)–(4.2) has
at least one positive solution u∗ ∈ E such that r

A1
≤ max
k∈{0,...,N+2}

u∗(k) ≤ R.
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Remark 4.5. Note that our conditions for existence of a positive solution to the
BVP (4.1)–(4.2) is only a polynomial growth of f and then our main result can be
considered as a complementary result of Theorem 4.1 in [22] in the autonomous
case.

Proof. Let

P = {u ∈ E : u ≥ 0},

Ω = P .

For u ∈ P, define the functionals

α(u) = A1 max
k∈{0,...,N+2}

u(k) ,

β(u) = max
k∈{0,...,N+2}

u(k) ,

and for u ∈ E, define the operators.

Tu(k) = −ε u(k)
R1 + u(k) ,

S3u(k) = ε
u(k)

R1 + u(k) + u(k) + S2u(k) ,

Su(k) = S3u(k) +B1, k ∈ {1, . . . , N + 2} .

Note that if u ∈ P is a fixed point of the operator T + S, then Tu + Su = u,
whereupon S2u(k) = −B1, k ∈ {0, . . . , N + 2}, and then it is a positive solution to
the BVP (4.1)-(4.2).

(1) Define the function

g(x) = x

R1 + x
, x ≥ 0 .

Then

g′(x) = R1

(R1 + x)2 , x ≥ 0 ,

and

|g′(x)| ≤ 1 , x ≥ 0 .

Hence,

|g(x)− g(y)| ≤ |x− y| , x, y ≥ 0 ,

and ∥∥∥ u

R1 + u
− v

R1 + v

∥∥∥ ≤ ‖u− v‖ , u, v ∈ P .
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Therefore, for u, v ∈ P, we have

‖(I − T )u− (I − T )v‖ ≥ ‖u− v‖ − ε
∥∥∥ u

R1 + u
− v

R1 + v

∥∥∥
≥ (1− ε)‖u− v‖ .

Thus, I − T : P → E is Lipschitz invertible with a constant γ = (1− ε)−1.
(2) Let u ∈ P(β,R). Then ‖u‖ ≤ R and by Lemma 4.3, it follows

‖S2u‖ ≤ A1(N + 3) ((N + 2)(N + 1)B(1 +Rp) +R) ,

and

ε
u(k)

R1 + u(k) ≤ ε , k ∈ {0, . . . , N + 2} .

Consequently

‖Su‖ ≤ ε+R+A1(N + 3) ((N + 2)(N + 1)B(1 +Rp) +R) +B1 ,

Therefore, S : P(β,R)→ E is a completely continuous operator. Thus, S
is a 0-set contraction.

(3) Because r
A1

< R, we have that P(β, α, r, R)
⋂

Ω 6= ∅ and P(α, r) ⊂
P(β,R).

(4) Let u ∈ P(β,R) be arbitrarily chosen. By Lemma 4.3 and (H2), we find

‖S2u‖ ≤ A1(N + 3) ((N + 2)(N + 1)B(1 +Rp) +R)

<
B1

2 .

Therefore

S2u(k) + B1

2 > 0 , k ∈ {1, . . . , N + 2} .

Now, using that u(k) ≥ 0, k ∈ {1, . . . , N + 2}, we obtain

S3u(k) + B1

2 = ε
u(k)

R1 + u(k) + u(k) + S2u(k) + B1

2

≥ S2u(k) + B1

2
> 0 , k ∈ {1, . . . , N + 2} .

Hence,

Su(k) = S3u(k) + B1

2 + B1

2

>
B1

2 , k ∈ {1, . . . , N + 2} .
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Next,

Su(k) = ε
u(k)

R1 + u(k) + S2u(k) + u(k) +B1

≤ ε+R+B1 +B1

= ε+R+ 2B1 , k ∈ {1, . . . , N + 2} .

Take

v =
−(R1 + ε− Su) +

√
(R1 + ε− Su)2 + 4R1Su

2 .

We have v ≥ 0 and therefore v ∈ Ω. Also,
0 = v2 + (R1 + ε− Su)v −R1Su ,

whereupon
v2 +R1v + εv = Su v +R1Su

and
v(R1 + v) + εv = Su(v +R1) .

Thus,

Su = v + εv

R1 + v

= (I − T )v .
Therefore

S
(
P(β,R)

)
⊂ (I − T )(Ω) .

(5) Let x ∈ ∂P(α, r) and λ > 1. Then

α(T (λx) + Sx) = A1 max
k∈{0,...,N+2}

(
− ελx(k)
R1 + λx(k) + Sx(k)

)
≤ A1 max

k∈{0,...,N+2}
Sx(k)

≤ A1(ε+ r + 2B1)
≤ r .

(6) For any x ∈ ∂P(α, r), λ > 1, we have
α(λx) = A1 max

k∈{0,...,N+2}
(λx(k))

= A1λ max
k∈{0,...,N+2}

x(k)

= λα(x)

and

α(0) < r .
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(7) Let η > 0 and u0 ∈ P? be arbitrarily chosen. Take

x ∈ ∂P(β,R)
⋂

(Ω + ηu0) .

Then x(k) ≤ R , k ∈ {0, . . . , N + 2}, and x− ηu0 ∈ Ω or
x(k)− ηu0(k) ≥ 0 , k ∈ {0, . . . , N + 2} .

Because
ε(x(k)− ηu0(k))
R1 + x(k)− ηu0(k) ≤

εx(k)
R1 + x(k) , k ∈ {0, . . . , N + 2} ,

we get

β (ηu0 + T (x− ηu0) + Sx) = β

(
ηu0 −

ε(x− ηu0)
R1 + x− ηu0

+ εx

R1 + x
+ x+ S2x+B1

)
≥ β

(
x+ B1

2

)
> β(x)
= R

and hence,
β (ηu0 + T (x− ηu0) + Sx) 6= R .

All conditions of (A1) of Theorem 3.1 are then satisfied. Thus, we conclude that
the BVP (4.1)–(4.2) has at least one solution u∗ ∈ P such that r

A1
≤ ‖u∗‖ ≤ R.

This completes the proof. �

Example 4.6. Let

ε = B = A1 = 1
10500 , R =1, B1 = 2

10400 , r = 1
10600 ,

N = 5 , p = 2 , R1 = 100 .
Then

A1(N + 3) ((N + 2)(N + 1)B (1 +Rp) +R) = 1
10500 · 8 ·

(
7 · 6 · 1

10500 (1 + 1) + 1
)

<
1

10400 = B1

2
and

R1 = 100 > r ,
r

A1
= 1

10100 < R ,

and

A1(ε+ r + 2B1) = 1
10500

(
1

10500 + 1
10600 + 4

10400

)
<

1
10600 = r .

Thus, (H2) holds. Now, by our main result, it follows that the BVP

∆2u(k) = k

101000(1 + k + k2) + 1
10500 (u(k))2 , k ∈ {0, . . . , 5} ,

u(0) = u(7) = 0
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has at least one positive solution.

5. Conclusion

(a) In this paper we have developed a new functional fixed point theorem on
cones for the sum of two operators. The arguments are based upon recent
fixed point index theory in cones of Banach spaces.

(b) By using our approach, sufficient conditions for the existence of at least
one positive solution are established for a non-autonomous second order
difference equation.

(c) The nonlinearity f considered in the BVP (4.1)–(4.2) is non-autonomous
and satisfies a general growth condition, while in [22] the nonlinear term
must be autonomous with some conditions of monotonic type. Moreover,
one can easily give an example for the constants ε, A1, B, B1, R, R1, r
which satisfy the condition (H2).

(d) The functionals α and β considered in this paper are more general than
those in [22]. They are supposed to be only nonnegative and continuous,
while in [22] the functionals α and β besides of being nonnegative and
continuous were assumed concave and convex, respectively.

(e) For all the above reasons, our new topological approach developed in this
article can be used to study other types of difference equations as well as
dynamic equations.
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