
ON THE A.E. CONVERGENCE OF FOURIER

SERIES ON UNBOUNDED VILENKIN GROUPS

G. G�at

Abstract. It is well known that the 2nth partial sums of the Walsh-Fourier series
of an integrable function converges a.e. to the function. This result has been proved
[Sto] by techniques known in the martingale theory. The author gave \purely dyadic
harmonic analysis" proof of this in the former volume of this journal [G�at]. The
Vilenkin groups are generalizations of the Walsh group. We prove the a.e. convergence
SMnf ! f (n ! 1); f 2 L1(Gm) even in the case when Gm is an unbounded
Vilenkin group. The nowelty of this proof is that we use techniques, which are
elementary in dyadic harmonic analysis. We do not use any technique in martingale
theory used in the former proof [Sto].
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First we give a brief introduction to the Vilenkin systems. The Vilenkin systems
were introduced in 1947 by N.Ja. Vilenkin (see e.g. [Vil]). Let m := (mk; k 2
N) (N := f0; 1; : : :g) be a sequence of integers each of them not less than 2. Let
Zmk

be the mk -th discrete cyclic group, i.e. Zmk
can be represented by the set

f0; 1; : : : ;mk � 1g, where the group operation is the mod mk addition and every
subset is open. Haar measure on Zmk

is given in the way that the measure of a
singleton is 1=mk (k 2 N): Let

Gm :=
1�
k=0

Zmk
:

The elements x 2 Gm can be represented by the sequence x = (xi; i 2 N), where
xi 2 Zmi

(i 2 N). The group operation on Gm (denoted by +) is the coordinate-
wise addition (the inverse operation is denoted by �), the measure (denoted by
�) and the topology is the product measure and topology , resp. Consequently,
Gm is a compact Abelian group. If supn2Nmn < 1, then we call Gm a bounded
Vilenkin group. If the generating sequence m is not bounded, then Gm is said to
be an unbounded Vilenkin group. Gm is a (bounded or not) Vilenkin group in this
paper.

Give a base for the neighborhoods of Gm :

I0(x) := Gm; In(x) := fy = (yi; i 2 N) 2 Gm : yi = xi for i < ng

for x 2 Gm; n 2 P := N n f0g: Denote by 0 = (0; i 2 N) 2 Gm the nullelement
of Gm; In := In(0) (n 2 N). Denote by Lp(Gm) (1 � p � 1) the usual Lebesgue
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spaces (k:kp the corresponding norms) on Gm, An the � algebra generated by the
sets In(x) (x 2 Gm) and En the conditional expectation operator with respect to
An (n 2 N) (E�1f := 0 (f 2 L1):) If m is bounded then I := fIn(x) : x 2 Gm; n 2
Ng is called the set of intervalls on Gm. If the sequence m is not bounded, then
we de�ne the set of intervalls in a di�erent way ([Sim]), that is we have \more"
intervalls than in the bounded case.

A set I � Gm is called an interval if for some x 2 Gm and n 2 N; I is of the
form I =

S
k2U In(x; k) where U is obtained from

U0
n;0 =

�
0; : : : ;mn � 1

�
; U1

n;0 =

�
0; : : : ;

�
mn

2

�
�1
�
; U1

n;1 =

��
mn

2

�
; : : : ;mn � 1

�

U2
n;0 =

�
0; : : : ;

�
[mn=2]� 1

2

�
�1
�
; U2

n;1 =

��
[mn=2]� 1

2

�
; : : : ;

�
mn

2

�
�1
�
; : : :

etc, where In(x; k) := fy 2 Gm : yj = xj(j < n); yn = kg , (x 2 Gm; k 2 Zmn
; n 2

N). The sequence of U 's: (i.e. U is one of the following sets)

U0
n;0; U

1
n;0; U

1
n;1; U

2
n;0; U

2
n;1; U

2
n;2; U

2
n;3; : : : ; U

vn
n;0; U

vn
n;1; : : : :; U

vn
n;2vn�1:

The set of intervals is denoted by I.
Let M0 := 1;Mn+1 := mnMn (n 2 N): Then each natural number n can be

uniquely expressed as

n =
1X
i=0

niMi (ni 2 f0; 1; : : : ;mi � 1g; i 2 N);

where only a �nite number of ni 's di�er from zero. Set

rn(x) := exp(2�{
xn
mn

) (x 2 Gm; n 2 N; { :=
p�1)

the generalized Rademacher functions ,

 n :=
1Y
j=0

r
nj
j (n 2 N)

the Vilenkin functions. The system  := ( n : n 2 N) is called a Vilenkin system.
Each  n is a character of Gm and all the characters of Gm are of this form. De�ne
the m -adic addition:

k � n :=
1X
j=0

(kj + nj(modmj))Mj (k; n 2 N):

Then,  k�n =  k n;  n(x+ y) =  n(x) n(y);  n(�x) = � n(x); j nj = 1 (k; n 2
N; x; y 2 Gm):

De�ne the Fourier coe�cients , the partial sums of the Fourier series, the Dirich-
let kernels, the Fej�er means and the Fej�er kernels with respect to the Vilenkin
system  as follows.

f̂(n) :=

Z
Gm

f � n; Snf :=
n�1X
k=0

f̂(k) k;
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Dn(y; x) = Dn(y � x) :=
n�1X
k=0

 n(y) � n(x);

�nf :=
1

n

nX
k=1

Skf; Kn(y; x) = Kn(y � x) :=
1

n

nX
k=1

Dn(y � x);

(n 2 P; y; x 2 Gm; f̂(0) :=

Z
Gm

f; f 2 L1(Gm)):

It is well-known that

(Snf)(y) =

Z
Gm

f(x)Dn(y � x)d�(x); (�nf)(y) =

Z
Gm

f(x)Kn(y � x)d�(x)

(n 2 P; y 2 Gm; f 2 L1(Gm)):

It is also well-known that

DMn
(x) =

�
Mn if x 2 In(0)
0 if x =2 In(0)

;

SMn
f(x) =Mn

Z
In(x)

f = Enf(x)(f 2 L1(Gm); n 2 N):

We say that an operator T : L1(Gm) ! L0(Gm) (L
0(Gm) is the space of mea-

surable functions on Gm) is of type (p; p) (for 1 � p � 1) if kTfkp � cpkfkp for
all f 2 Lp(Gm) and constant cp depends only on p. We say that T is of weak type
(1; 1) if �(fjTf j > �g) � ckfk1=� for all f 2 L1(Gm) and � > 0.

In this paper c denotes an absolute constant which may not be the same at
di�erent occurences. For more on the Vilenkin system see [AVD, Tai, Vil].

Theorem 1. (The Calderon-Zygmund decomposition ( [Sim]). Let f 2 L1(Gm);
� > kfk1. Then there exists a decomposition

f =
1X
j=0

fj ; I
j := [

l2U
aj

kj ;bj

Ikj (u
j ; l) 2 I

disjoint intervals for which supp fj � Ij;
R
Ij
fj = 0; �(Ij)�1

R
Ij
jfjj � c�; (uj 2

Gm; kj ; aj; bj 2 N; j 2 P); kf0k1 � c�; �(F ) � ckfk1=�, where F = [j2PIj .
The proof of Theorem 1 uses the fact that the Mnth partial sums of the Walsh-

Fourier series of an integrable function converges a.e. to the function. This later
statement was proved by techniques known in the martingale theory. We give a new
proof for Theorem 1, which use techniques known in the theory of dyadic harmonic
analysis, only. First we prove the following lemma which is similar to Theorem 1,
but di�ers in the conditions to be proved for f0.

Lemma 2. Let f 2 L1(Gm); � > kfk1. Then there exists a decomposition

f =
1X
j=0

fj ; I
j := [

l2U
aj

kj ;bj

Ikj (u
j ; l) 2 I
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disjoint intervals for which supp fj � Ij ;
R
Ij
fj = 0; �(Ij)�1

R
Ij
jfjj � c�; (uj 2

Gm; kj ; aj; bj 2 N; j 2 P); lim supn!1 SMn
jf0j � c�; �(F ) � ckfk1=�, where

F = [j2PIj .
Proof of Lemma 2. Construct the following decomposition of the Vilenkin group
Gm.


0
0 := fI0(x) :M0

Z
I0(x)

jf(y)jd�(y) > �; x 2 Gmg = ;;


1
0 := f[k2U1

0;b
I0(x; k) =: I : �(I)�1

Z
I

jf(y)jd�(y) > �; 6 9J 2 
0
0 : I � J;

b = 0; 1; x 2 Gmg; : : :

v0
0 := f[k2Uv0

0;b
I0(x; k) =: I : �(I)�1

Z
I

jf(y)jd�(y) > �; 6 9J 2 [j<v0
j
0 : I � J;

b = 0; 1; : : : ; 2v0 � 1; x 2 Gmg; : : :

a
n := f[k2Ua

n;b
In(x; k) =: I : �(I)�1

Z
I

jf(y)jd�(y) > �;

69J 2 �[j<n [i�vj 
i
j

� [ �[i<a
i
n

�
: I � J; b = 0; 1; : : : ; 2a � 1; x 2 Gmg

(a = 0; 1; : : : ; vn) : : :

(n 2 P). Then, the elements of 
k
n n; k 2 N are disjoint intervalls. Moreover, if

i 6= ~{, then for all J 2 
a
i ; K 2 
~a

~{ we have J \K = ; (a; ~a 2 N). If x 2 I 2 
a
n,

then since there is no J 2 [j<n [i�vj 
i
j [i<a 
i

n for which I � J , then we have

Mj

R
Ij(x)

jf(y)jd�(y) � � for j = 0; 1; : : : ; n�1. and for all K 2 
a�1
n for which x 2

K we have �(K)�1
R
K
jf(y)jd�(y) � �. This implies � < �(I)�1

R
I
jf(y)jd�(y) �

3�. Since 
a
n has a �nite number of elements, then set the notation:


a
n = fIn;a;i : i = 1; : : : ; ln;ag 2 I; F := [1n=0 [vna=0 [ln;ai=1I

n;a;i:

Then,

fn;a;i := f1In;a;i � �(In;a;i)�1
Z
In;a;i

f (i � ln;a; a � vn; n 2 N);

where 1B(x) :=

�
1; if x 2 B;
0; if x =2 B the characteristic function of set B � Gm (x 2

Gm).

�(F ) =
1X
n=0

vnX
a=0

ln;aX
i=1

�(In;a;i)

=
1

�

1X
n=0

vnX
a=0

ln;aX
i=1

��(In;a;i)

� 1

�

1X
n=0

vnX
a=0

ln;aX
i=1

Z
In;a;i

jf j � 1

�

Z
Gm

jf j = kfk1=�:
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Then,

f =
1X
n=0

vnX
a=0

ln;aX
i=1

f1In;a;i + f1GmnF

=
1X
n=0

vnX
a=0

ln;aX
i=1

�
f � �(In;a;i)�1

Z
In;a;i

f

�
1In;a;i

+
1X
n=0

vnX
a=0

ln;aX
i=1

�
�(In;a;i)�1

Z
In;a;i

f

�
1In;a;i + f1GmnF

=:
1X
n=0

vnX
a=0

ln;aX
i=1

fn;a;i + f0:

Discuss the functions fn;a;i.
supp fn;a;i � In;a;i,

Z
In;a;i

fn;a;i =

Z
In;a;i

(f(t)� �(In;a;i)�1
Z
In;a;i

f(y)d�(y))d�(t) = 0;

�(In;a;i)�1
Z
In;a;i

jfn;a;ij

� �(In;a;i)�1
Z
In;a;i

jf j+ j�(In;a;i)�1
Z
In;a;i

f j � c � �(In;a;i)�1
Z
In;a;i

jf j
� c�:

The only relation rest to prove is lim supn SMn
jf0j � c�.

f0 =
1X
n=0

vnX
a=0

ln;aX
i=1

�
�(In;a;i)�1

Z
In;a;i

f

�
1In;a;i + f1GmnF =: f10 + f20 :

First, discuss function f10 .

jf10 j �
1X
n=0

vnX
a=0

ln;aX
i=1

c�1In;a;i) = c�1F � c�:

Thus,

SMn
jf10 (x)j =Mn

Z
In(x)

jf10 (t)jd�(t) � c�

for all x 2 Gm; n 2 N. Consequently, lim supn SMn
jf10 j � c� everywhere.

Secondly, discuss function f20 . If x 2 F , then since set F is open (the union of
intervalls (intervalls are both open and closed)), then there exists a n 2 N such as
In(x) � F . Since f20 = f1GmnF , then f

2
0 is zero on the intervall In(x). Thus, for

each l � n we haveMl

R
Il(x)

jf20 (t)jd�(t) = 0. This implies, lim supn SMn
jf20 (x)j = 0
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for x 2 F . Finally, let x =2 F . Then Mj

R
Ij(x)

jf(y)jd�(y) � � for j = 0; 1; : : : . This

gives

SMj
jf20 (x)j =Mj

Z
Ij(x)

jf(y)1GmnF (y)jd�(y) �Mj

Z
Ij(x)

jf(y)jd�(y) � �

for j = 0; 1; : : : . This follows that lim supn SMn
jf20 (x)j � � in the case of x =2 F .

Consequently, lim supn SMn
jf(x)j � lim supn SMn

jf10 (x)j + lim supn SMn
jf20 (x)j �

c�: This completes the proof of Lemma 2. �

Set the following maximal operators

S�f := lim sup
n

jSMn
f(x)j; Sf := sup

n
jSMn

f(x)j:

for f 2 L1(Gm).

Lemma 3. Operators S� and S are of type (1;1).

Proof.

kS�fk1 � kSfk1 = k sup
n2N

jMn

Z
In(x)

f(t)d�(t)jk1

� kkfk1 sup
n2N

Mn

Z
In(x)

1d�(t)k1 = kfk1:

�

Lemma 4. Operator S� is of weak type (1; 1).

Proof. � > kfk1 can be supposed. Apply Lemma 2.

�(S�f > 2c�) � �(S�f0 > c�) + �(S�(
X
n;a;i

fn;a;i) > c�) =: l1 + l2:

Since jS�f0j � c� a.e., then l1 = 0. On the other hand, by the �-sublinearity of
operator S

l2 � �(F ) + �(x 2 Gm n F : S(
X
n;a;i

fn;a;i) > c�)

� �(F ) +
c

�

Z
GmnF

S(
X
n;a;i

fn;a;i)

� ckfk1=�+ c

�

Z
GmnF

X
n;a;i

S(fn;a;i)

� ckfk1=�+ c

�

X
n;a;i

Z
GmnF

S(fn;a;i)

� ckfk1=�+ c

�

X
n;a;i

Z
GmnIn;a;i

S(fn;a;i):
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We prove that
R
GmnIn;a;i

S(fn;a;i) = 0 for all i � ln;a; a � vn n 2 N.

If y 2 Gm n In;a;i = Gm n [k2Ua
n;b
In(x

n;a;i; k), then we have two cases. If

y 2 Ia(x
n;a;i) n Ia+1(xn;a;i) for some a = 0; : : : ; n � 1, then If N � a implies

SMN
fn;a;i(y) =MN

R
IN (y) fn;a;i = 0, because IN (y) \ In(xn;a;i) = ;.

If N < a, then DMN
(y � x) = MN for x 2 [k2Ua

n;b
In(x

n;a;i; k) � In(x
n;a;i).

Consequently, SMN
fn;a;i(y) =MN

R
In;a;i

fn;a;i = 0:

The second case: y 2 In(x
n;a;i) but yn =2 Ua

n;b. In this case N � n + 1 implies

In+1(y) \ In;a;i = ;, that is, SMN
fn;a;i(y) = 0. If N � n, then for each x 2

In;a;i = [k2Ua
n;b
In(x

n;a;i; k), we haveDMN
(y�x) =MN which gives SMN

fn;a;i(y) =

MN

R
In;a;i

fn;a;i = 0: That is, in all cases for all N 2 N we have SMN
fn;a;i(y) = 0,

thus Sfn;a;i(y) = 0 for all y 2 Gm n In;a;i. Consequently, l2 � ckfk1=�. The proof
of Lemma 4 is complete. �

The proof of the following theorem known till now is based on the martingale
theory (see e.g. [Sto]). We give a \pure dyadic analysis" proof for it.

Theorem 5.Let f 2 L1(Gm). Then SMn
f ! f a.e.

Proof. Let � > 0. Then let P be a Vilenkin polynomial , that means P =
Pk�1

i=0 di i
for some d0; : : : ; dk�1 2 C; k 2 P. Since SMn

P (x) ! P everywhere (moreover,
SMn

P = P for Mn � k), then by lemmas 3 and 4 we have

�(fx 2 Gm : lim sup
n

jSMn
f(x)� f(x)j > �g)

� �(fx 2 Gm : lim sup
n

jSMn
f(x)� SMn

P (x)j > �=3g)
+ �(fx 2 Gm : lim sup

n
jSMn

P (x)� P (x)j > �=3g)
+ �(fx 2 Gm : lim sup

n
jP (x)� f(x)j > �=3g)

� �(fx 2 Gm : lim sup
n

jSMn
(f(x)� P (x))j > �=3g) + 0 + kP � fk1 3

�

� ckP � fk1=� =: �:
Since the set of Vilenkin polynomial is dense in L1(Gm) (see e.g. [AVD]), then �
can be less than an arbitrary small positive real number. This follows �(fx 2 Gm :
lim supn jSMn

f(x)�f(x)j > �g) = 0 for all � > 0. This gives the relation SMn
f ! f

almost everywhere. �

The proof of Theorem 1. We apply Lemma 2 and Theorem 5. The proof follows the
proof of Lemma 2. The only di�erence is that we have to prove kf0k1 � c� instead
of lim supn!1 SMn

jf0j � c�. By Theorem 5 we have SMn
f0 ! f0 a.e. Thus, we

have the a.e. inequality

jf0j = lim sup
n

jSMn
f0j � lim sup

n
SMn

jf0j � c�:

That is, the proof is complete. �

Corollary 6. The operator S is of type (p; p) for each 1 < p.

Proof. Since we have proved that operator S is of type (1;1) and of weak type
(1; 1), then by the interpolation theorem of Marczinkiewicz (see e.g. [SWS]) the
proof of Corollary 6 is complete. �
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