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Abstract. This paper is a direct continuation of [6] whose results are applied to Pearson distribu-
tions, particularly to normal, gamma, beta of the �rst kind, Pareto of the second kind, chi-square
and other speci�c distributions.
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In this paper we investigate the hazard rate and relative increment functions of Pearson dis-
tribution functions.

Let f be a (probability) density function. The corresponding distribution function is denoted
by F .

De�nition 1. By the relative increment function [briey, RIF] of F we mean the fraction

h(x) = [F (x+ a)� F (x)]=[1� F (x)];

where a is a positive constant, and F (x) < 1 for all x.

Monotone properties of RIFs are important from the points of view of statistics, probability
theory, in modelling bounded growth processes in biology, medicine and dental science and in
reliability and actuarial theories, where the probability that an individual, having survived to
time x, will survive to time x+a is h(x); \death rate per unit time" in the time interval [x; x+a]
is h(x)=a, and the hazard rate (failure rate or force of mortality) is de�ned to be

lim
a!0

h(x)=a = f(x)=[1� F (x)]:

(See e.g. [3], Vol. 2, Chap. 33, Sec. 7 or [4], x 5.34 and x 5.38.)
In [3], Vol. 2, Chap. 33, Sec. 7.2, some distributions are classi�ed by their increasing/decreasing

hazard rates. In [6], we proved

Lemma 1. Let F be a twice di�erentiable distribution function with F (x) < 1, f(x) > 0 for all
x. We de�ne the auxiliary function 	 as follows:

	(x) := [F (x) � 1] � f 0(x)=f2(x):

If 	 < (>)1, then the function h, the RIF of F strictly increases (strictly decreases).

According to Remark 0.1 in [6], there is a connection to reliability theory: a distribution
function F has IFR (increasing failure rate) i� ln[1 � F (x)] is concave down i.e., i� 	(x) � 1.
Similarly, F has DFR (decreasing failure rate) i� ln[1� F (x)] is concave up, i.e., 	(x) � 1.

In [6], we investigated the auxiliary function 	. In order to get rid of the inconvenient term
F (x)�1 = �

R
1

x f(t)dt in 	, all problems were reduced to simple formulae containing f=f 0 only.
This fact suggested to work out special methods for the family of Pearson distributions.
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De�nition 2. A probability distribution with the density function f is said to be a Pearson
distribution, if

f 0(x)=f(x) = Q(x)=q(x);

where Q(x) = Ax +B; q(x) = ax2 + bx+ c and A;B; a; b; c are real constants with

a2 + b2 + c2 > 0; A2 +B2 > 0:

Although A = 1 in the original de�nition, it is more convenient, in many concrete cases, to handle Pearson
distributions of this new form. In addition, we include some new distributions, like e.g.,

f(x) = C � exp(tan�1 x); x 2 (0; s) =: I

where 0 < s <1 and C =
R
s

0
exp(tan�1 x)dx.

Now we have f 0=f = (1 + x2)�1, so A = b = 0 and a = B = c = 1. From the formula 1.216 in [2] we get

C � (s+ s2=2 + s3=6� s4=24� 7 � s5=120)�1 :

The derivative function f 0 = C � exp(tan�1 x)=(1 + x2) > 0 in I, so m = s and Remark 1.1 of [6] applies, thus the

RIF strictly increases in I.

The main results of [6] were formulated in theorems 1 and 2:

Theorem 1. Let f be a probability density function and F be the corresponding distribution
function with the following properties.

8>>><
>>>:

I = (r; s) � R is the possible largest �nite or in�nite open

interval in which f > 0 (i.e., I is the open support of f ;

r and s may belong to the extended real line

R� = R [ f�1;1g);

(1)

there exists an m 2 I at which f 0 is continuous and f 0(m) = 0;(2)

f 0 > 0 in (r;m) and f 0 < 0 in (m; s)(3)

f is twice di�erentiable in (m; s)(4)

(f=f 0)0 = d=dx[f(x)=f 0(x)] > 0 in (m; s):(5)

Then the corresponding continuous RIF h is either strictly increasing in I, or strictly increasing
in (r; y) and strictly decreasing in (y; s) for some y 2 I.

Moreover, if 	(s�) = limx!s� 	(x) 2 R
� exists, then

(a) h strictly increases in I, if 	(s�) � 1;
(b) h strictly increases in (r; y) and strictly decreases in (y; s) for some y in I, if 	(s�) > 1.

Theorem 2. Let f be a density function with (1), (3{4), m = r and

(6) (f=f 0)0 < 0 in (m; s):

Then r is �nite, and

if 	(r+) < 1 or(7)

[	(r+) = 1 and 	 < 1 in some right neighborhood of r];

then 	 < 1 in I, and the corresponding RIF strictly increases in I;

(8) if 	(r+) > 1;
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then

if 	(s�) � 1;(8.1)

then 	 > 1 and the RIF strictly decreases in I ;

if 	(s�) < 1;(8.2)

then 	 > 1 in (r; y) and 	 < 1 in (y; s) for some y 2 I;

thus the RIF strictly decreases �rst and, after reaching its local minimum, strictly increases.

According to Remark 1.5 in [6], the assumption (5) can be reformulated as follows:

(5') (ln f)00 < 0; x 2 (m; s):

We de�ned the functions f and g be
00

�-equivalent (we write f
00

� g), if (ln f(x))00 = (ln g(x))00.
We denoted (ln f)00 by `00 [6].

And now, we go back to Pearson distributions and their RIFns/hazard rates.

Theorem 3. Let f be the density function of a Pearson distribution with (1{4).
Let M := b �B �A � c; L := a �B2 �A �M; D := a �L and assume that the conditions (9)

are ful�lled:

If a = 0; then M > 0;(9.1) 8><
>:

If a 6= 0 and A = 0; then

if a � B > 0; then m+ b1 � 0;

if a � B < 0; then s+ b1 � 0;

(9.2)

If a �A 6= 0 and q(�B=A) = 0; then a �A > 0;(9.3) �
If a � A > 0 and q(�B=A) 6= 0; then either D < 0; or

[D � 0 and (either Y (m) � 0 or Y (s) � 0)];
(9.4)

�
If a � A < 0 and q(�B=A) 6= 0; then

[D � 0; Y (m) � 0 and Y (s) � 0];
(9.5)

where Y (v) := a�(A�v+B)+sign[(v�m)+(v�s)]�D1, v 2 fm; sg, b1 := b=(2a), D1 := D1=2

and 1�1 := 0.
Then h, the corresponding RIF, either strictly increases in I, or there exists y in I such that

h strictly increases in (r; y) and strictly decreases in (y; s).
Furthermore,
h strictly increases in I if 	(s�) = limx!s� 	(x) � 1;
h strictly increases in (r; y) and strictly decreases in (y; s) for some y 2 I, if 	(s�) > 1.

Proof. By Theorem 1, it is su�cient to show that the condition (5) is ful�lled. We distinguish
three cases.

Case 1. A 6= 0 and q(�B=A) 6= 0. In this case, the polynomials q and Q have no common zero.
The condition (5) can be written in the form

(f=f 0)0 = (q=Q)0 = [(2ax+ b) �Q�A � q]=Q2 > 0; i.e.,

p(x) := a �A � x2 + 2aBx+M > 0 in (m; s) n f�B=Ag:(10)

If a 6= 0 and D � 0, then the roots of p are x1;2 = (�aB �D1)=(a � A) with x1 � x2.
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Subcase c1.1. a � A > 0. Then the parabola p is concave up. The condition (9.4) applies.
If D < 0, then p has no real zero, and p(x) > 0 for all x.
If D � 0, then p has real zeros. (9.4) gives that either D1 � a �A �m+a �B or a �A � s+a �B �

� �D1, i.e. either x2 � m or s � x1. In both cases, p(x) > 0 for every x 2 (m; s).

Subcase 1.2. a = 0. Then p has the special form p(x) �M and it is positive since (9.1) applies.

Subcase 1.3. a � A < 0. Then p is concave down. The condition (9.5) applies. The inequality
D � 0 implies that the zeros x1 and x2 of p are real, and

x1 = (�aB +D1)=(a �A) � (�aB �D1)=(a � A) = x2:

On the other hand, from (9.5) we get aAm+ aB � D1 and aAs+ aB � �D1, i.e. x1 � m
and s � x2. Thus (m; s) � (x1; x2) and p(x) > 0, x 2 (m; s).

Case 2. A 6= 0 and q(�B=A) = 0. In this case, q and Q have a common zero x1 = �B=A.

Subcase 2.1. a 6= 0. Then

q=Q = a � (x� x2)=A; and

(f=f 0)0 = a=A since the condition (9.3) applies.

Subcase 2.2. a = 0.

Then b 6= 0 (since b = 0 implies q(x) � c; from q(�B=A) = 0 we obtain c = 0 which contradicts
the De�nition 2.) The common root of q and Q is equal to x1 = �B=A = �c=b, so A � c = b � B
and M = 0. On the other hand, f=f 0 = b=A, which leads to the exponential distribution (Cf.
Remark 1.7 in [6].) The conditions (5) and (9.1) do not apply.

Case 3. A = 0. Then B 6= 0, and the condition (5) has the form

(11) (f=f 0)0 = (2ax+ b)=B > 0; x 2 (m; s):

Subcase 3.1. B > 0.

If a = 0, then the su�cient condition for (11) is b > 0, which follows from (9.1).
If a > 0, then (9.2) applies to give �b1 � m. Thus, every x in (m; s) will be greater than �b1,

i.e. (11) is ful�lled.
Similarly, if a < 0, then (9.2) gives s � �b1. So every x in (m; s) will be less than �b1. Hence,

(11) holds.

Subcase 3.2. B < 0. Then (11) has the form

(12) 2ax < �b; x 2 (m; s):

If a = 0, then (9.1) applies to give b < 0, and (12) is ful�lled.
If a > 0, then (9.2) gives s � �b1. So, for every x in (m; s), we have x < �b1, and (12) holds.
If a < 0, then (9.2) applies to give m � �b1. Thus, for each x from (m; s), we have x > �b1,

and (12) is ful�lled. The proof is complete. �

Remark 3.1. The value of s in (9.5) must be �nite, since a �A < 0 and a �A � s+ a �B +D1 � 0.

Remark 3.2. If m = s, then Remark 1.1 of [6] applies and no conditions (9) are required. The
RIF strictly increases in I .
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Theorem 4. Let f be the density function of a Pearson distribution with m = r, (1), (3{4) and
M; L; D be de�ned as in Theorem 3. We assume the following conditions (13) are ful�lled:

If a = 0; then M < 0;(13.1) 8><
>:

If a 6= 0 and A = 0; then

if a � B > 0; then s+ b1 � 0;

if a � B < 0; then m+ b1 � 0;

(13.2)

If a �A 6= 0 and q(�B=A) = 0; then a �A < 0;(13.3) �
If a � A > 0 and q(�B=A) 6= 0; then

[D � 0; Y1(m) � 0 and Y1(s) � 0];
(13.4)

�
If a � A < 0 and q(�B=A) 6= 0; then either D < 0; or

[D � 0; and feither Y1(s) � 0 or Y1(m) � 0g];
(13.5)

where Y1(v) := a � (A � v+B)� sign[(v�m)+ (v� s)] �D1, v 2 fm; sg, D1 := D1=2; b1 := b=(2a)
and 1�1 := 0.

Then r is �nite, and all the assertions of Theorem 2 hold.

Proof. By Theorem 2, it is enough to prove that (6) holds. We have three cases.

Case 1. A 6= 0 and q(�B=A) 6= 0. The condition (6) can be written in the form

(14) p(x) < 0 in (m; s) n f�B=Ag:

Subcase 1.1. a � A < 0. Then p is concave down, and (13.5) applies. If D < 0, then p has no
real zero, and p < 0 in R. If D � 0, then p has the real roots x1 � x2. The requirement
feither Y1(s) � 0 or Y1(m) � 0g is equivalent to feither s � x1 or x2 � mg, and in both cases,
(m; s) � (�1; x1) [ (x2;1) =: U . Since p < 0 in U , (14) is ful�lled.

Subcase 1.2. a � A > 0. Then p is concave up, and (13.4) applies. D � 0, so p has two real zeros
x1; x2 with x1 � x2. The requirement fY1(m) � 0 and Y1(s) � 0g is equivalent to fx1 � m and
s � x2g, i.e., to (m; s) � (x1; x2), and (14) holds since p < 0 in (x1; x2).

Subcase 1.3. a = 0. Then p(x) �M , and (13.1) applies.

Case 2. A 6= 0 and q(�B=A) = 0. Then x1 := �B=A is the common zero of Q and q.

Subcase 2.1. a 6= 0. Then q=Q = a � (x� x2)=A and (13.3) applies: (f=f 0)0 = a=A < 0.

Subcase 2.2. a = 0. Then b 6= 0 (since b = 0 leads to a contradiction, see the Subcase 2.2 of the
proof of Theorem 3), and the common root of q and Q is x1 = �B=A = �c=b, thus M = 0. So,
the conditions (6) and (13.1) do not apply.

Case 3. A = 0. Then B 6= 0, and (6) has the simple form

(15) (f=f 0)0 = (2ax+ b)=B < 0 in (m; s):

subcase 3.1. B > 0. Then (15) has the form

(16) 2ax+ b < 0 in (m; s):

If a = 0, then (13.1) applies to give M = b � B < 0, i.e. b < 0, so (16) holds.
If a > 0, then (13.2) applies to give s � �b1, thus (16) is ful�lled. If a < 0, then (13.2) applies:

m � �b1, and (16) holds.
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Subcase 3.2. B < 0. Then (15) can be written as follows:

(17) 2ax+ b > 0 in (m; s):

If a = 0, then (13.1) applies: M = b �B < 0, i.e. b > 0 and (17) holds.
If a > 0, then (13.2) applies to give m � �b1, thus (17) is ful�lled. If a < 0, then (13.2) gives

s � �b1, so (17) holds, and the proof is complete. �

The Remarks following Theorems 1 and 2 in [6] apply to Pearson distributions, too.In this
simple case, 	(s�) has special forms as may be seen in the following

Lemma 2. Let f be the density function of a Pearson distribution with (1) and (3{4).
I. Let s =1, and f1 := limx!1 x � f(x).

I.1 If A = a = f1 = 0 and b+B 6= 0, then 	(1) = B=(b+B);

I.2 If A 6= 0 and a = 0, then 	(1) = 1;

I.3 If a � A � (a+ A) 6= 0 and f1 = 0, then 	(1) = A=(a+A).

I.4 If (a = A = 0; b � f1 6= 0) or (A = 0; a 6= 0) or (a �A � f1 6= 0), then 	(1) = 0.

II. Let s be a �nite real number, and let limx!s� f(x) = 0.

II.1 If [A �Q(s) � q(s) 6= 0] or [A � q0(s) 6= 0, Q(s) = q(s) = 0] or [A = 0; q(s) 6= 0] or [A �Q(s) 6=
0; q(s) = q0(s) = 0], then 	(s�) = 1.

II.2 If A 6= 0, q(�B=A) �Q(s) � [Q(s) + q0(s)] 6= 0, q(s) = 0, then 	(s�) = Q(s)=[Q(s) + q0(s)].

II.3 If A 6= 0, q(�B=A) � q(s) 6= 0, Q(s) = 0, then 	(s�) = 0.

II.4 If A 6= 0, q(�B=A) = q(s) = 0; a + A 6= 0, and [either Q(s) = q0(s) = 0 or Q(s) 6= 0], then
	(s�) = A=(a+A).

II.5 If A = a = q(s) = 0, q0(s) � (b+B) 6= 0, then 	(s�) = B=(b+B).

Proof. I. In this part, lim always means limx!1.
I.1 Now we have f 0=f = B=(bx+ c) 6= 0. If b 6= 0, then we apply L'Hospital's rule to get

	(1) = lim[(F � 1)=(x � f)] � [Bx=(bx+ c)] = (B=b) � lim(F � 1)=(x � f) =

= (B=b) � lim(1 + x � f 0=f)�1 = (B=b) � lim[1 +Bx=(bx+ c)]�1 =

= B=(b+B):

If b = 0, then

	(1) = (B=c) � lim[(F � 1)=f ] = (B=c) � lim(f=f 0) = (B=c) � (c=B) = 1 = B=(b+B):

I.2 We have f 0=f = (Ax+B)=(bx+ c), thus

	(1) = lim[(F � 1)=f ] � [(Ax +B)=(bx+ c)] =

= (A=b) � lim(f=f 0) = (A=b) � lim(bx+ c)=(Ax+B) = 1;

provided b 6= 0. If b = 0, then

	(1) = lim[(F � 1)=(f=x)] � [(Ax+B)=(cx)] =

= (A=c) � limx2=(x � f 0=f � 1) = (A=c) � lim[(A+B=x)=c� x�2]�1 = 1:

1.3 We have

	(1) = lim[(F � 1)=(x � f)] � [(Ax2 +Bx)=(ax2 + bx+ c)] =

= (A=a) � lim f=(f + x � f 0) = (A=a) � lim[1 + x � f 0=f ]�1 =

= (A=a) � lim[1 + (Ax2 +Bx)=(ax2 + bx+ c)]�1 =

= A=(a+A); provided q(�B=A) 6= 0: If q(�B=A) = 0;
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then
f 0=f = A � (x+B=A)=[a � (x +B=A) � (x� x2)] = A=[a � (x� x2)];

and

	(1) = lim[(F � 1)=(x � f)] �Ax=[a � (x� x2)] = (A=a) � lim f=(f + x � f 0) =

= (A=a) � lim[1 +Ax=(ax� ax2)]
�1 = A=(a+A):

I.4 (i) Let a = A = 0; b 6= 0; f1 6= 0. Then f 0=f = B(bx+ c), and

	(1) = lim[(F � 1)=(x � f)] � [Bx=(bx+ c)] =

= (B=b) � lim[(F � 1)=(x � f)] = (B=b) � (0=f1) = 0:

(ii) Let A = 0; a 6= 0. Then f 0=f = B=(ax2 + bx+ c), and

	(1) = lim[(F � 1)=(x2 � f)] � [Bx2=(ax2 + bx+ c)] =

= (B=a) � lim[(F � 1)=(x2 � f)] = 0;

if lim x2 � f 6= 0; otherwise, L'Hospital's rule applies to give

	(1) = (B=a) � lim f=(x2 � f 0 + 2x � f) =

= (B=a) � lim[2x+ x2 � f 0=f ]�1 =

= (B=a) � lim[2x+B=(a+ b=x+ c=x2)]�1 = 0:

(iii) Let a � A � f1 6= 0. Then

	(1) = lim[(F � 1)=(x � f)] � [(Ax2 +Bx)=(ax2 + bx+ c)] =

= (A=a) � lim[(F � 1)=(x � f)] = (A=a) � (0=f1) = 0:

II. In this part, lim always means limx!s� , where s 2 R.
II.1 (i) Let A �Q(s) � q(s) 6= 0. We have two cases:

Case (i.1): q(�B=A) 6= 0.
Then 	(s�) = lim[(F � 1)=f ] � [Q=q] = [Q(s)=q(s)] � lim(f=f 0) = 1.

Case (i.2): q(�B=A) = 0. Then f 0=f = Q=q = A � (x+B=A):[a � (x+B=A) � (x� x2)] =
= A=[a � (x� x2)], where x2 6= s. Thus we have 	(s�) = A=[a � (s� x2)] � lim(f=f 0) = 1.

(ii) Let A � q0(s) 6= 0 and q(s) = Q(s) = 0. Then s = �B=A, and limQ=q = limQ0=q0 =
A=(2as+ b). Hence,

	(s�) = A=(2as+ b) � lim(f=f 0) = A=(2as+ b) � lim q0=Q0 = 1:

(iii) Let A = 0 and q(s) 6= 0. Then we get

	(s�) = B=q(s) � lim(F � 1)=f = B=q(s) � lim f=f 0 = 1:

(iv) q = a � (x� s)2, since q(s) = q0(s) = 0. So we have 	(s�) = [Q(s)=a] � L1, where

L1 = lim(F � 1)=[(x� s)2 � f ] = lim f=[2 � (x� s) � f + (x � s)2 � f 0] =

= lim[2 � (x� s) +Q(x)=a]�1 = a=Q(s):

Thus we get 	(s�) = 1.
II.2. Let A 6= 0; q(�B=A) �Q(s) � [Q(s) + q0(s)] 6= 0 and q(s) = 0. We have two cases.
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Case (i): q0(s) 6= 0. Then L'Hospital's rule gives

	(s�) = Q(s) � lim(F � 1)=(f � q) = Q(s) � lim f=(f 0 � q + f � q0) =

= Q(s) � lim[q0 + q � f 0=f ]�1 = Q(s) � lim[q0 +Q]�1 = Q(s)=[Q(s) + q0(s)]:

Case (ii): q0(s) = 0. Then q(x) = a � (x � s)2; a 6= 0. We have

	(s�) = lim[(F � 1)=f ] �Q(x) � a�1 � (x� s)�2 = Q(s) � a�1 � L1;

where

L1 = lim(F � 1)=[f � (x� s)2] = lim f=[f 0 � (x� s)2 + 2 � (x� s) � f ] =

= lim[(x � s)2 �Q=q + 2 � (x� s)]�1 = [Q(s)=a]�1;

so 	(s�) = 1 = Q(s)=[Q(s) + q0(s)].
II.3 Let A �q(s) 6= 0 and Q(s) = 0. Then s = �B=A, and Q = A �(x�s). Thus 	(s�) = A=q(s) �L1,

where L1 = lim(F � 1)=[f=(x� s)].
If lim f=(x� s) 6= 0, then L1 = 0, so 	(s�) = 0.
If lim f=(x� s) = 0, then L'Hospital's rule gives

L1 = lim f=f[(x� s) � f 0 � f ] � (x � s)�2g =

= lim(x� s)2=[A � (x� s)2=q(x)� 1] = 0;

and 	(s�) = 0, too.
II.4 Let A 6= 0; q(�B=A) = q(s) = 0; a+A 6= 0.

Case (i): Q(s) = q0(s) = 0. Then s = �B=A,
q(x) = a � (x � s)2; a 6= 0, and Q(x) = A � (x� s).
We have 	(s�) = A=a � lim(F � 1)=[(x � s) � f ] = A=a � lim[1 + (x � s) � Q=q]�1 =

= A=(a+A).
Case (ii): Q(s) 6= 0. The equality q0(s) = 0 would lead to q(x) = a � (x � s)2 and s = �B=A,
which contradicts Q(s) 6= 0. So we have q0(s) 6= 0 and s 6= �B=A.
Thus q(x) = a � (x+B=A) � (x� s), and Q=q = A=[a � (x � s)]. Hence,

	(s�) = A=a � lim(F � 1)=[(x� s) � f ] = A=a � lim[1 + (x� s) �Q=q]�1 = A=(a+A):

II.5 Let A = a = q(s) = 0; q0(s) � (b + B) 6= 0. Then q = bx + c; b 6= 0, s = �c=b and
Q=q = B=[b �(x�s)]. Thus 	(s�) = B=b � lim(F �1)=[(x�s) �f ] = B=b � lim[1+(x�s) �Q=q] =
= B=(b+B). The proof is complete �.

Let us see some applications to speci�c Pearson distributions.

Example 1. Normal distribution: f = K � E, where K = ��1 � (2�)�1=2,
E = exp[�1=2 � ��2 � (x�m)2], � > 0. We have A = 1; B = �m; a = b = 0; c = ��2.

Theorem 3 applies with I = (�1;1); m 2 I , (1{4) are ful�lled, (9.1) applies, since a = 0,
M = �2 > 0; Lemma 2, I.2 applies, because f1 = k � limx!1 x � E = 0, so 	(1) = 1, and
the RIF h strictly increases in I . (On the other hand, (50) can be checked immediately, since

f
00

� g = E and l00 = [� 1

2
� ��2 � (x �m)2]00 = �1=�2 < 0 in R). Cf. [1,5].

Example 2. (Special) Gamma distribution:

f(x) = K � x��1 � exp(��x); K = ��=� (�); � > 0; � > 1;

A = ��; B = �� 1; a = c = 0; b = 1;

Theorem 3 applies: I = (0;1); m = (��1)=� 2 I ; (1{4) hold; (9.1): a = 0; M = ��1 > 0;
Lemma 2, I.2 applies, since f1 = K � limx!1 x�= exp(�x) = 0. Thus, 	(1) = 1 and the RIF
strictly increases in I .
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Example 3. Chi-square distribution:

f(x) = K � xn=2�1 � exp(�x=2); K = 2�n=2=� (n=2); n is a positive integer; I = (0;1):

If n > 2, then we obtain a special case of Example 2 with � = n=2, � = 1=2. Thus, the RIF
strictly increases in I . If n = 2, then we get a special exponential distribution, for which the RIF
is constant (see Remark 1.7 in [6]). If n = 1, then f = (2� � x)�1=2 � exp(�x=2); Theorem 4 with
(13.1) applies, since f 0 < 0 in I , m = 0; M = �2 < 0, f1 = (2�)�1=2 � limx!1(x=ex)1=2 = 0,
A = B = �1=2, a = c = 0, b = 1,

	(1) = 1;	(0+) = �
1

2
� lim
x!0+

(x � f)�1 � lim
x!0+

[(F � 1) � (x+ 1)] =

=
1

2
� lim
x!0+

(x � f)�1 = (�=2)1=2 � lim
x!0+

x�1=2 = +1;

(8) and (8.1) apply: the RIF strictly decreases in I .

Example 4. Beta distribution of the �rst kind: f(x) = C � x� � (1 � x)� , where �; � > �1,
C = � (�+ � + 2)=[� (�+ 1) � � (� + 1)]: Let �; � > 0.

Theorem 3 applies: I = (0; 1); m 2 I ; A = �(� + �); B = �, a = �1; b = 1; c = 0;
M = �; L = � � �; (9.4) applies: a � A = � + � > 0, �B=A = �=(� + �), q(x) = x � x2,
q(�B=A) = � �� � (�+ �)�2 6= 0, D = �� � � < 0; Lemma 2, II.2 applies: Q(x) = �� (�+ �) � x,
s = 1; Q(1) = �� 6= 0, q(1) = 0; Q(1) + q0(1) = �(1+ �) 6= 0, thus 	(1�) = �=(1 + �) < 1, and
the RIF strictly increases in I .

Example 5. f(x) = C � (1�x2=s2)n, where C = [s �B( 1
2
; n+1)]�1, s > 0; n is a positive integer

(Example 6.1 in [4]); A = 2n; B = b = 0; a = 1, c = �s2; I = (�s; s); m = 0 2 I ; Theorem 3
applies: M = 2ns2; L = �4n2s2; (9.4) applies: q(�B=A) = �s2 6= 0, a �A = 2n > 0, D = L < 0;
Lemma 2, II.2 applies: Q(s) = 2ns 6= 0, q(s) = 0, q0(s) = 2s 6= 0, Q(s) + q0(s) = 2s � (n+ 1) 6= 0,
so 	(s�) = n=(n+ 1) < 1; thus, the RIF strictly increases in I .

Example 6. F (x) = 1� (�x)k; k > 1 is integer; A = a = c = 0, B = k� 1; b = 1; I = (�1; 0);
m = �1; (9.1), Remark 1.2 in [6] and Lemma 2, II.5 apply: M = k � 1 > 0; s = 0,

q(0) = 0; q0(0) = 1, b+B = k, so 	(0�) = (k � 1)=k < 1, and the RIF strictly increases in I .

Example 7. Pareto distribution of the 2nd kind: F (x) = 1� x�k; k > 0 (Cf. Chap. 19 in Vol.
1 of [3]); A = a = c = 0, B = k + 1; b = �1; I = (1;1); m = 1.

Theorem 4 with (13.1), Remark 1.2 of [6] and Lemma 2, I.1 apply: M = �k � 1 < 0,
f1 = limx!1 k=xk = 0, b+B = k 6= 0, so 	(1) = (k+1)=k[= 	(1+)] > 1 and the RIF strictly
decreases in I . (Actually, 	(x) � (k + 1)=k in I .)

Remark 4.1. We can say that the distributions in the examples 1� 2, 3 (if n > 2), 4� 6 are IHR
(increasing hazard rate), while the examples 3 (when n = 2) and 7 are DHR (decreasing hazard
rate) distributions.
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