
ON THE LIMIT OF A SEQUENCE

Z. L�aszl�o and Z. V�or�os

Abstract. The object of this article is to examine the sequence

an =

nX

i=0

n
i

i!

en

well known from probability theory. We prove that the sequence is bounded, strictly
monotonously decreasing, and limn!1 an = 1

2
: The last two statements are proved

by analytical means. Finally, a modi�cation and a generalization of (an) will be
mentioned, and the sketch of a second analytical proof for the original limit will be

given.
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1. On p. 288 of [1] (under 6.1) the following theorem is to be found: For
� �!1,

e��� �
X
k��x

(��)k

k!
�!

�
0; if � > x

1; if � < x:

[1] has no reference to the case � = x . The sequence (an) of the present article is
a reformulation of this speci�c case.

The main problem to be discussed in this article was raised by Professor Zolt�an
L�aszl�o of Veszpr�em University several years ago.

Initially I was motivated to �nd an elementary solution to the problem, but the
cul-de-sacs have convinced me that this is hardly viable.

Let an =

nX
i=0

ni

i!

en
. Then the usual questions are likely to arise: Is the sequence

monotonous? Is it bounded? Does a limit exist?
2.1. Boundedness is relatively easy to decide: The sequence is bounded

from below, as a sum of positive terms is divided by a positive number, so an > 0

holds; on the other hand, it is known that for all given n
1X
i=0

ni

i!
= en, and the

numerator of an is a partial sum of this very series. So an < 1 follows.

2.2. The remaining two questions are more di�cult to answer; here we have
to resort to other means. On integrating by parts we obtainZ n

0

e�x � xn
n!

dx = 1� e�n �
�
1 + n+

n2

2!
+ � � �+ nn

n!

�
:
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So for an

an = 1�
Z n

0

e�x � xn
n!

dx :

Now we shall prove that the sequence (an) is strictly monotonously decreasing.

Statement: an > an+1.

Proof: By reason of the above formula for an we are to show that

Z n

0

e�x � xn
n!

dx <

Z n+1

0

e�x � x(n+1)
(n+ 1)!

dx :

By decomposition of the integral

Z n+1

0

e�x � x(n+1)
(n+ 1)!

dx =

Z n

0

e�x � x(n+1)
(n+ 1)!

dx+

Z n+1

n

e�x � x(n+1)
(n+ 1)!

dx :

Hereafter we shall denote the �rst and second integrals on the right side by I1, and
I2 respectively.
First we shall give an estimate for I2. For the derivative f

0(x) of the function

f(x) :=
e�x � x(n+1)
(n+ 1)!

f 0(x) =
e�x � xn

n!
�
�
1� x

n+ 1

�
� 0 ; if x 2 [0; n+ 1] ;

which means that in this interval f(x) is monotonously increasing. So

I2 � 1 � e
�n � n(n+1)
(n+ 1)!

:

Let us deal now with the �rst integral. By integration by parts

I1 =

Z n

0

e�x � x(n+1)
(n+ 1)!

dx =

�
�e�x � x(n+1)

(n+ 1)!

�n
0

+

Z n

0

e�x � xn
n!

dx :

So we obtain that

Z n+1

0

e�x � x(n+1)
(n+ 1)!

dx = I2 +

Z n

0

e�x � xn
n!

dx� e�n � nn+1
(n+ 1)!

�

�
Z n

0

e�x � xn
n!

dx+
e�n � nn+1
(n+ 1)!

� e�n � nn+1
(n+ 1)!

;

as I2 � e�n � n(n+1)
(n+ 1)!

. }
Thus we have proved that the sequence (an) is bounded from below and strictly
monotonously decreasing, consequently a limit exists.
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2.3. Next, we shall try to �nd this limit. To this end, we are going to use the
following lemma (without proof):
Lemma: � e

n

�n
� n! =

p
2�n+O

�
1p
n

�
; (1)

whence
nn

n! � en =
1p
2�n

�
�
1 +O

�
1

n

��
:

(The proof can be found in numerous places. E.g. [3].)
>From the formula for an

lim
n!1

an = 1� lim
n!1

Z n

0

e�x � xn
n!

dx ;

so, to �nd the limit of the sequence, we have to calculate

lim
n!1

Z n

0

e�x � xn
n!

dx:

Let � = n�
1
2
+", where 0 < " < 1

6 . Then, by the substitution x = n � (z + 1)

Z n

0

e�x � xn
n!

dx =

Z 0

�1

e�n�(z+1) � (z + 1)n � n(n+1)
n!

dz = n� nn

n! � en �
Z 0

�1

e�nz �(z+1)n =

=

r
n

2�
�
�
1 +O

�
1

n

��
�
Z 0

�1

�
e�z � (1 + z)

�n
dz =

(Here we used Lemma (1) .) Transforming the integral further

=

r
n

2�
�
�
1 +O

�
1

n

��
�
Z 0

�1

�
e�z � (1 + z)

�n
dz =

=

r
n

2�
�
�
1 + O

�
1

n

��
�
�Z ��

�1

�
e�z � (1 + z)

�n
dz +

Z 0

��

�
e�z � (1 + z)

�n
dz

�
:

As for the derivative f 0(z) of the function f(z) := e�z � (1 + z) f 0(z) = �e�z � z,
for z � 0 f 0(z) � 0 holds, which means that the above function is monotonously
increasing in the interval [�1;��]. So

Z ��

�1

�
e�z � (1 + z)

�n
dz < (1� �) � �e�� � (1� �)

�n
<
�
e�� � (1� �)

�n
;

that is, for the above integral

r
n

2�
�
�
1 + O

�
1

n

��
�
Z 0

�1

�
e�z � (1 + z)

�n
dz =

=

r
n

2�
�
�
1 + O

�
1

n

��
�
Z 0

��

�
e�z � (1 + z)

�n
dz + O

�p
n � e� 1

2n
2"
�

:
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On the remaining segment of the interval, using the equalities

f(z) = eln f(z) ; and ln f(z) = �z + ln (z + 1) ;

(z 2 [��; 0]), and MacLaurin's series for the function ln (z + 1) :

ln (z + 1) =
z

2
� z2

3
+

z3

4 � (1 + #(z))4

for the expansion of the integrand we obtain

f(z) = e
�z2

2
+

z3

3
� z4

4 � (1 + #(z))4 ;

where 0 < #(x) < 1. The factor e
�n� z

4

4(1+#(z))4 is of the form 1 + O
�
n�1+n"

�
so the

integral assumes the following form

r
n

2�
� �1 + O

�
n�1+4"

�� � Z 0

��

e
�n

�
z2

2
� z3

3

�
dz + O

0
@pn � e�1

2
n2"

1
A :

It is known that

en
z
3

3 = 1+ n � z
3

3
+ O

�
n�1+6"

�
;

and Z 0

��

en�
z
2

2 dz

is of the order n�1=2, the order term in en�
z
3

3 is O
�
n�1+6"

�
, so

r
n

2�
� �1 +O

�
n�1+4"

�� � Z 0

��

e
�n

�
z2

2
� z3

3

�
dz =

=

r
n

2�
� �1 + O

�
n�1+4"

�� � Z 0

��

e�n�
z
2

2 �
�
1 + n � z

3

3

�
dz + O

�
n1+6"

�
=

=
1p
2�
�
Z 0

�n"
e�

#
2

2 �
�
1 +

#3

3
p
n

�
d#+ O

�
n�1+6"

�
=

=
1p
2�
�
Z 0

�1

e�
#
2

2 d#+
1p
2�n

�
Z 0

�1

#3 � e�#
2

2

3
d#+ O

�
n�1+6"

�
:

The �rst integral equals 1=2 (Gaussian integral), while the second one will be trans-
formed further:

Z 0

�1

#3 � e� #
2

2

3
d# = �

"
#2 � e� #

2

2

3

#0
�1

+
2

3
�
Z 0

�1

#�e�#
2

2 d# = 0+
2

3
�
h
�e� #

2

2

i0
�1

= �2

3
:
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(using integration by parts). Thus, for the limit

lim
n!1

1p
2�n

�
�
�2

3

�
= 0 ; �es lim

n!1
O
�
n�1+6"

�
= 0 ;

i.e. the value of the original integral is 1
2
, so we have proved the following

Theorem: lim
n!1

an =
1

2
: }

3.1. Remark: De�ning the sequence bn as

bn =

2nX
i=0

ni

i!

en

it can be shown that this sequence is strictly monotonously increasing. Integration

by substitution is used and the relationship f � g =)
Z n

0

f �
Z n

0

g is applied.

Boundedness is proved in practically the same manner as in the previous case.The
calculation of the limit is performed similarly, and

lim
n!1

bn = 1 :

is obtained.

Moreover, it can be shown that by modifying the limits of the summation the
limit can assume any value in the interval [0,1].

3.2. Remark: To give a further proof for the limit of (an) we shall use
the following theorem: (p. 128 of [2])

If the functions '(x), h(x) and f(x) = eh(x) de�ned for the �nite or in�nite
interval [a; b] satisfy the following conditions:

(i) '(x) � [f(x)]n is absolute integrable in [a; b] for 8 n 2 N ,
(ii) h(x) assumes its maximum only in � of (a; b), and the least upper bound

of h(x) is less than h(�)-t for all closed intervals not including �; furthermore, a
neighbourhood of � exists such that h00(x) exists and is continuous; �nally, h00(x) <
0,

(iii) '(x) is continuous in x = �, '(x) 6= 0,
then, for 8 � 2 R

Z �+ �p
n

a

'(x) � [f(x)]n dx � '(�) � en�h(�) � 1p
�n � h00(�) �

Z ��c

�1

e�
t
2

2 dt ; (2)

where c =
p
�h00(�). }

Let now a = 0, b = n+ 1, '(x) � 1, � = 0. So condition (iii) is satis�ed.

Let h(x) = ln x� x

n
� ln n!

n
. Then h0(x) = 1

x
� 1

n
, whence we get that h has got a

maximum in x = n, and h(x) is strictly monotonously increasing in (0; n], is strictly



40 Z. L�ASZL�O AND Z. V�OR�OS

monotonously decreasing in [n;1), and � = n. � 1

x2
< 0, so condition (ii) is also

automatically satis�ed.
On the other hand,

1

n!
� (n� 1) =

Z 1

0

e�x � xn
n!

dx

is absolute integrable, so (i) is also satis�ed. Substituting this for formula (2) we
get Z n

0

e�x � xn
n!

dx � e�n � nn
n!

� 1q
1
n

�
Z 0

�1

e�
t
2

2 dt ;

then, using Stirling's Formula the result 1=2 is received.
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