ON THE LIMIT OF A SEQUENCE

Z. LÁSZLÓ and Z. VÖrös

Abstract. The object of this article is to examine the sequence

$$
a_{n}=\frac{\sum_{i=0}^{n} \frac{n^{i}}{i!}}{e^{n}}
$$

well known from probability theory. We prove that the sequence is bounded, strictly monotonously decreasing, and $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}$. The last two statements are proved by analytical means. Finally, a modification and a generalization of (a_{n}) will be mentioned, and the sketch of a second analytical proof for the original limit will be given.

1. On p. 288 of [1] (under 6.1) the following theorem is to be found: For $\lambda \longrightarrow \infty$,

$$
e^{-\lambda \Theta} \cdot \sum_{k \leq \lambda x} \frac{(\lambda \Theta)^{k}}{k!} \longrightarrow\left\{\begin{array}{lll}
0, & \text { if } & \Theta>x \\
1, & \text { if } & \Theta<x
\end{array}\right.
$$

[1] has no reference to the case $\Theta=x$. The sequence $\left(a_{n}\right)$ of the present article is a reformulation of this specific case.

The main problem to be discussed in this article was raised by Professor Zoltán László of Veszprém University several years ago.

Initially I was motivated to find an elementary solution to the problem, but the cul-de-sacs have convinced me that this is hardly viable.

Let $a_{n}=\frac{\sum_{i=0}^{n} \frac{n^{i}}{i!}}{e^{n}}$. Then the usual questions are likely to arise: Is the sequence monotonous? Is it bounded? Does a limit exist?
2.1. Boundedness is relatively easy to decide: The sequence is bounded from below, as a sum of positive terms is divided by a positive number, so $a_{n}>0$ holds; on the other hand, it is known that for all given $\mathrm{n} \quad \sum_{i=0}^{\infty} \frac{n^{i}}{i!}=e^{n}$, and the numerator of a_{n} is a partial sum of this very series. So $a_{n}<1$ follows.
2.2. The remaining two questions are more difficult to answer; here we have to resort to other means. On integrating by parts we obtain

$$
\int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x=1-e^{-n} \cdot\left(1+n+\frac{n^{2}}{2!}+\cdots+\frac{n^{n}}{n!}\right)
$$

1991 Mathematics Subject Classification. 26A12, 26A42, 40A05.
Key words and phrases. Limit, probability, analytical means.

So for a_{n}

$$
a_{n}=1-\int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x
$$

Now we shall prove that the sequence $\left(a_{n}\right)$ is strictly monotonously decreasing.
Statement: $\quad a_{n}>a_{n+1}$.
Proof: \quad By reason of the above formula for a_{n} we are to show that

$$
\int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x<\int_{0}^{n+1} \frac{e^{-x} \cdot x^{(n+1)}}{(n+1)!} d x
$$

By decomposition of the integral

$$
\int_{0}^{n+1} \frac{e^{-x} \cdot x^{(n+1)}}{(n+1)!} d x=\int_{0}^{n} \frac{e^{-x} \cdot x^{(n+1)}}{(n+1)!} d x+\int_{n}^{n+1} \frac{e^{-x} \cdot x^{(n+1)}}{(n+1)!} d x
$$

Hereafter we shall denote the first and second integrals on the right side by I_{1}, and I_{2} respectively.
First we shall give an estimate for I_{2}. For the derivative $f^{\prime}(x)$ of the function

$$
\begin{gathered}
f(x):=\frac{e^{-x} \cdot x^{(n+1)}}{(n+1)!} \\
f^{\prime}(x)=\frac{e^{-x} \cdot x^{n}}{n!} \cdot\left(1-\frac{x}{n+1}\right) \geq 0, \quad \text { if } \quad x \in[0, n+1]
\end{gathered}
$$

which means that in this interval $f(x)$ is monotonously increasing. So

$$
I_{2} \geq 1 \cdot \frac{e^{-n} \cdot n^{(n+1)}}{(n+1)!}
$$

Let us deal now with the first integral. By integration by parts

$$
I_{1}=\int_{0}^{n} \frac{e^{-x} \cdot x^{(n+1)}}{(n+1)!} d x=\left[-\frac{e^{-x} \cdot x^{(n+1)}}{(n+1)!}\right]_{0}^{n}+\int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x
$$

So we obtain that

$$
\begin{gathered}
\int_{0}^{n+1} \frac{e^{-x} \cdot x^{(n+1)}}{(n+1)!} d x=I_{2}+\int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x-\frac{e^{-n} \cdot n^{n+1}}{(n+1)!} \geq \\
\quad \geq \int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x+\frac{e^{-n} \cdot n^{n+1}}{(n+1)!}-\frac{e^{-n} \cdot n^{n+1}}{(n+1)!}
\end{gathered}
$$

as $I_{2} \geq \frac{e^{-n} \cdot n^{(n+1)}}{(n+1)!}$.
Thus we have proved that the sequence $\left(a_{n}\right)$ is bounded from below and strictly monotonously decreasing, consequently a limit exists.
2.3. Next, we shall try to find this limit. To this end, we are going to use the following lemma (without proof):

Lemma:

$$
\begin{equation*}
\left(\frac{e}{n}\right)^{n} \cdot n!=\sqrt{2 \pi n}+O\left(\frac{1}{\sqrt{n}}\right) \tag{1}
\end{equation*}
$$

whence

$$
\frac{n^{n}}{n!\cdot e^{n}}=\frac{1}{\sqrt{2 \pi n}} \cdot\left[1+O\left(\frac{1}{n}\right)\right]
$$

(The proof can be found in numerous places. E.g. [3].)
¿From the formula for a_{n}

$$
\lim _{n \rightarrow \infty} a_{n}=1-\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x
$$

so, to find the limit of the sequence, we have to calculate

$$
\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x
$$

Let $\eta=n^{-\frac{1}{2}+\varepsilon}$, where $0<\varepsilon<\frac{1}{6}$. Then, by the substitution $x=n \cdot(z+1)$

$$
\begin{aligned}
\int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x & =\int_{-1}^{0} \frac{e^{-n \cdot(z+1)} \cdot(z+1)^{n} \cdot n^{(n+1)}}{n!} d z=n \cdot \frac{n^{n}}{n!\cdot e^{n}} \cdot \int_{-1}^{0} e^{-n z} \cdot(z+1)^{n}= \\
& =\sqrt{\frac{n}{2 \pi}} \cdot\left[1+O\left(\frac{1}{n}\right)\right] \cdot \int_{-1}^{0}\left[e^{-z} \cdot(1+z)\right]^{n} d z=
\end{aligned}
$$

(Here we used Lemma (1) .) Transforming the integral further

$$
\begin{gathered}
=\sqrt{\frac{n}{2 \pi}} \cdot\left[1+O\left(\frac{1}{n}\right)\right] \cdot \int_{-1}^{0}\left[e^{-z} \cdot(1+z)\right]^{n} d z= \\
=\sqrt{\frac{n}{2 \pi}} \cdot\left[1+O\left(\frac{1}{n}\right)\right] \cdot\left[\int_{-1}^{-\eta}\left[e^{-z} \cdot(1+z)\right]^{n} d z+\int_{-\eta}^{0}\left[e^{-z} \cdot(1+z)\right]^{n} d z\right]
\end{gathered}
$$

As for the derivative $f^{\prime}(z)$ of the function $f(z):=e^{-z} \cdot(1+z) f^{\prime}(z)=-e^{-z} \cdot z$, for $z \leq 0 f^{\prime}(z) \geq 0$ holds, which means that the above function is monotonously increasing in the interval $[-1,-\eta]$. So

$$
\int_{-1}^{-\eta}\left[e^{-z} \cdot(1+z)\right]^{n} d z<(1-\eta) \cdot\left[e^{-\eta} \cdot(1-\eta)\right]^{n}<\left[e^{-\eta} \cdot(1-\eta)\right]^{n}
$$

that is, for the above integral

$$
\begin{gathered}
\sqrt{\frac{n}{2 \pi}} \cdot\left[1+O\left(\frac{1}{n}\right)\right] \cdot \int_{-1}^{0}\left[e^{-z} \cdot(1+z)\right]^{n} d z= \\
=\sqrt{\frac{n}{2 \pi}} \cdot\left[1+O\left(\frac{1}{n}\right)\right] \cdot \int_{-\eta}^{0}\left[e^{-z} \cdot(1+z)\right]^{n} d z+O\left(\sqrt{n} \cdot e^{-\frac{1}{2} n^{2 \varepsilon}}\right)
\end{gathered}
$$

On the remaining segment of the interval, using the equalities

$$
f(z)=e^{\ln f(z)}, \quad \text { and } \quad \ln f(z)=-z+\ln (z+1)
$$

$(z \in[-\eta, 0])$, and MacLaurin's series for the function $\ln (z+1):$

$$
\ln (z+1)=\frac{z}{2}-\frac{z^{2}}{3}+\frac{z^{3}}{4 \cdot(1+\vartheta(z))^{4}}
$$

for the expansion of the integrand we obtain

$$
f(z)=e^{-\frac{z^{2}}{2}+\frac{z^{3}}{3}-\frac{z^{4}}{4 \cdot(1+\vartheta(z))^{4}}},
$$

where $0<\vartheta(x)<1$. The factor $e^{-n \cdot \frac{z^{4}}{4(1+\vartheta(z))^{4}}}$ is of the form $1+O\left(n^{-1+n \varepsilon}\right)$ so the integral assumes the following form

$$
\sqrt{\frac{n}{2 \pi}} \cdot\left[1+O\left(n^{-1+4 \varepsilon}\right)\right] \cdot \int_{-\eta}^{0} e^{-n\left(\frac{z^{2}}{2}-\frac{z^{3}}{3}\right)} d z+O\left(\sqrt{n} \cdot e^{-\frac{1}{2} n^{2 \varepsilon}}\right)
$$

It is known that

$$
e^{n \frac{z^{3}}{3}}=1+n \cdot \frac{z^{3}}{3}+O\left(n^{-1+6 \varepsilon}\right)
$$

and

$$
\int_{-\eta}^{0} e^{n \cdot \frac{z^{2}}{2}} d z
$$

is of the order $n^{-1 / 2}$, the order term in $e^{n \cdot \frac{z^{3}}{3}}$ is $O\left(n^{-1+6 \varepsilon}\right)$, so

$$
\begin{gathered}
\sqrt{\frac{n}{2 \pi}} \cdot\left[1+O\left(n^{-1+4 \varepsilon}\right)\right] \cdot \int_{-\eta}^{0} e^{-n\left(\frac{z^{2}}{2}-\frac{z^{3}}{3}\right)} d z= \\
=\sqrt{\frac{n}{2 \pi}} \cdot\left[1+O\left(n^{-1+4 \varepsilon}\right)\right] \cdot \int_{-\eta}^{0} e^{-n \cdot \frac{z^{2}}{2}} \cdot\left(1+n \cdot \frac{z^{3}}{3}\right) d z+O\left(n^{1+6 \varepsilon}\right)= \\
=\frac{1}{\sqrt{2 \pi}} \cdot \int_{-n^{\varepsilon}}^{0} e^{-\frac{\vartheta^{2}}{2}} \cdot\left(1+\frac{\vartheta^{3}}{3 \sqrt{n}}\right) d \vartheta+O\left(n^{-1+6 \varepsilon}\right)= \\
=\frac{1}{\sqrt{2 \pi}} \cdot \int_{-\infty}^{0} e^{-\frac{\vartheta^{2}}{2}} d \vartheta+\frac{1}{\sqrt{2 \pi n}} \cdot \int_{-\infty}^{0} \frac{\vartheta^{3} \cdot e^{-\frac{\vartheta^{2}}{2}}}{3} d \vartheta+O\left(n^{-1+6 \varepsilon}\right) .
\end{gathered}
$$

The first integral equals $1 / 2$ (Gaussian integral), while the second one will be transformed further:

$$
\int_{-\infty}^{0} \frac{\vartheta^{3} \cdot e^{-\frac{\vartheta^{2}}{2}}}{3} d \vartheta=-\left[\frac{\vartheta^{2} \cdot e^{-\frac{\vartheta^{2}}{2}}}{3}\right]_{-\infty}^{0}+\frac{2}{3} \cdot \int_{-\infty}^{0} \vartheta \cdot e^{-\frac{\vartheta^{2}}{2}} d \vartheta=0+\frac{2}{3} \cdot\left[-e^{-\frac{\vartheta^{2}}{2}}\right]_{-\infty}^{0}=-\frac{2}{3}
$$

(using integration by parts). Thus, for the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{2 \pi n}} \cdot\left(-\frac{2}{3}\right)=0, \quad \text { és } \quad \lim _{n \rightarrow \infty} O\left(n^{-1+6 \varepsilon}\right)=0
$$

i.e. the value of the original integral is $\frac{1}{2}$, so we have proved the following

Theorem: $\quad \lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}$.

3.1. Remark: Defining the sequence b_{n} as

$$
b_{n}=\frac{\sum_{i=0}^{2 n} \frac{n^{i}}{i!}}{e^{n}}
$$

it can be shown that this sequence is strictly monotonously increasing. Integration by substitution is used and the relationship $f \leq g \Longrightarrow \int_{0}^{n} f \leq \int_{0}^{n} g$ is applied. Boundedness is proved in practically the same manner as in the previous case.The calculation of the limit is performed similarly, and

$$
\lim _{n \rightarrow \infty} b_{n}=1
$$

is obtained.
Moreover, it can be shown that by modifying the limits of the summation the limit can assume any value in the interval $[0,1]$.
3.2. Remark: To give a further proof for the limit of $\left(a_{n}\right)$ we shall use the following theorem: (p. 128 of [2])

If the functions $\varphi(x), h(x)$ and $f(x)=e^{h(x)}$ defined for the finite or infinite interval $[a, b]$ satisfy the following conditions:
(i) $\varphi(x) \cdot[f(x)]^{n}$ is absolute integrable in $[a, b]$ for $\forall n \in N$,
(ii) $h(x)$ assumes its maximum only in ξ of (a, b), and the least upper bound of $h(x)$ is less than $h(\xi)$-t for all closed intervals not including ξ; furthermore, a neighbourhood of ξ exists such that $h^{\prime \prime}(x)$ exists and is continuous; finally, $h^{\prime \prime}(x)<$ 0 ,
(iii) $\varphi(x)$ is continuous in $x=\xi, \varphi(x) \neq 0$,
then, for $\forall \alpha \in R$

$$
\begin{equation*}
\int_{a}^{\xi+\frac{\alpha}{\sqrt{n}}} \varphi(x) \cdot[f(x)]^{n} d x \quad \sim \quad \varphi(\xi) \cdot e^{n \cdot h(\xi)} \cdot \frac{1}{\sqrt{-n \cdot h^{\prime \prime}(\xi)}} \cdot \int_{-\infty}^{\alpha \cdot c} e^{-\frac{t^{2}}{2}} d t \tag{2}
\end{equation*}
$$

where $c=\sqrt{-h^{\prime \prime}(\xi)} . \diamond$
Let now $a=0, b=n+1, \varphi(x) \equiv 1, \alpha=0$. So condition (iii) is satisfied.
Let $h(x)=\ln x-\frac{x}{n}-\frac{\ln n!}{n}$. Then $h^{\prime}(x)=\frac{1}{x}-\frac{1}{n}$, whence we get that h has got a maximum in $x=n$, and $h(x)$ is strictly monotonously increasing in ($0, n$], is strictly
monotonously decreasing in $[n, \infty)$, and $\xi=n .-\frac{1}{x^{2}}<0$, so condition (ii) is also automatically satisfied.

On the other hand,

$$
\frac{1}{n!} \Gamma(n-1)=\int_{0}^{\infty} \frac{e^{-x} \cdot x^{n}}{n!} d x
$$

is absolute integrable, so (i) is also satisfied. Substituting this for formula (2) we get

$$
\int_{0}^{n} \frac{e^{-x} \cdot x^{n}}{n!} d x \sim \frac{e^{-n} \cdot n^{n}}{n!} \cdot \frac{1}{\sqrt{\frac{1}{n}}} \cdot \int_{-\infty}^{0} e^{-\frac{t^{2}}{2}} d t
$$

then, using Stirling's Formula the result $1 / 2$ is received.

References

[1] Feller, W., Введение в теорию вероятностей и ее приложсния, Moscow, 1967.
[2] Pólya, Gy. and Szegő, G., Feladatok és tételek az analízis köréből I., Budapest, 1980.
[3] Ruzsa, Z. I., Multiplikatív számelmélet, Budapest, 1996, manuscript.
(Received December 17, 1998)
Zoltán László, Department of Mathematics, Veszprém University, Zoltán Vörös, Tiszavasvári ICN Hungary

