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18 (2002), 53–56
www.emis.de/journals

PREORDERS AND EQUIVALENCES GENERATED BY
COMMUTING RELATIONS

TAMÁS GLAVOSITS

Abstract. For any relation R on a fixed set X, we denote by R? and RF the

smallest preorder and equivalence on X containing R, respectively.
We show that if R and S are commuting relations on X in the sense that

R ◦ S = S ◦R, then R? ◦ S = S ◦R?, R ◦ S? = S? ◦R and R? ◦ S? = S? ◦R?.
Moreover, we show if in addition to the condition R◦S = S◦R we also have

R ◦S−1 = S−1◦R, then the corresponding equalities hold for the operation F
too.

1. A few basic facts on relations

As usual, a subset R of a product set X2 = X×X is called a relation on X. In
particular, the relation ∆X =

{
(x, x) : x ∈ X

}
is called the identity relation on X.

If R is a relation on X, and moreover x ∈ X and A ⊂ X, then the sets R(x) ={
y ∈ X : (x, y) ∈ R

}
and R[A] =

⋃
a∈AR(a) are called the images of x and A

under R, respectively.
If R is a relation on X, then the images R(x), where x ∈ X, uniquely determine

R since we have R =
⋃
x∈X{x}×R(x). Therefore, the inverse R−1 of R can be

defined such that R−1(x) =
{
y ∈ X : x ∈ R(y)

}
for all x ∈ X.

Moreover, if R and S are relations on X, then the composition S ◦ R of S and
R can be defined such that (S ◦ R)(x) = S

[
R(x)

]
for all x ∈ X. In particular, we

write Rn = R ◦Rn−1 for all n ∈ N by agreeing that R0 = ∆X .
A relation R on X is called reflexive, symmetric and transitive if ∆X ⊂ R,

R−1⊂ R and R2 ⊂ R, respectively. Moreover, a reflexive and transitive relation is
called a preorder, and a symmetric preorder is called an equivalence.

For any relation R on X, we define R? =
⋃∞
n=0R

n and RF =
(
R ∪ R−1

)?.
Thus, R? and RF are the smallest preorder and equivalence on X containing R,
respectively. Moreover, ? and F are algebraic closures on P(X2).

In the sequel, concerning the composition of relations, we shall also frequently
need the fact that, for any two families (Ri)i∈I and (Sj)j∈J of relations on X, we

have
(⋃

j∈J Sj

)
◦
(⋃

i∈I Ri

)
=
⋃
j∈J

⋃
i∈I Sj ◦Ri.

2. Composition powers of commuting relations

Theorem 2.1. If R and S are relations on X such that R ◦ S ⊂ S ◦ R, then for
all n,m ∈ N we have

Rn ◦ Sm ⊂ Sm ◦Rn.
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Proof. If n ∈ N such that Rn ◦ S ⊂ S ◦Rn, then we can see that

Rn+1 ◦ S = (R ◦Rn) ◦ S = R ◦ (Rn ◦ S) ⊂
R ◦ (S ◦Rn) = (R ◦ S) ◦Rn ⊂ (S ◦R) ◦Rn = S ◦ (R ◦Rn) = S ◦Rn+1.

Hence, by induction, it is clear that Rn ◦ S ⊂ S ◦Rn holds true for all n ∈ N.
Moreover, if n,m ∈ N such that Rn ◦ Sm ⊂ Sm ◦Rn, then we can see that

Rn ◦ Sm+1 = Rn ◦ (S ◦ Sm) = (Rn ◦ S) ◦ Sm ⊂
(S ◦Rn) ◦ Sm = S ◦ (Rn ◦ Sm) ⊂ S ◦ (Sm ◦Rn) = (S ◦ Sm) ◦Rn = Sm+1 ◦Rn.

Hence, by induction on m, it is clear that Rn ◦ Sm ⊂ Sm ◦Rn for all n,m ∈ N.

Now, as an immediate consequence of the above theorem, we can also state

Corollary 2.2. If R and S are relations on X such that R ◦ S = S ◦ R, then for
all n,m ∈ N we have

Rn ◦ Sm = Sm ◦Rn.

Moreover, by using Theorem 2.1, we can also prove the following

Theorem 2.3. If R and S are relations on X such that R ◦ S ⊂ S ◦ R, then for
all n ∈ N we have (

R ∪ S
)n ⊂ n⋃

k=0

Sn−k ◦Rk.

Proof. If n ∈ N such that
(
R∪S

)n ⊂ ⋃nk=0 S
n−k ◦Rk, then by using Theorem 2.1,

we can see that

(
R ∪ S

)n+1 =
(
R ∪ S

)
◦
(
R ∪ S

)n ⊂ (R ∪ S) ◦
n⋃
k=0

Sn−k ◦Rk =

n⋃
k=0

(
R ∪ S

)
◦
(
Sn−k ◦Rk

)
=

n⋃
k=0

(
R ◦

(
Sn−k ◦Rk

)
∪ S ◦

(
Sn−k ◦Rk

))
=

n⋃
k=0

((
R ◦ Sn−k

)
◦Rk ∪ Sn+1−k ◦Rk

)
⊂

n⋃
k=0

((
Sn−k ◦R

)
◦Rk ∪ Sn+1−k ◦Rk

)
=

n⋃
k=0

(
Sn−k ◦Rk+1 ∪ Sn+1−k ◦Rk

)
=
( n⋃
k=0

Sn−k ◦Rk+1

)
∪
( n⋃
k=0

Sn+1−k ◦Rk
)

=

( n⋃
k=0

Sn+1−k ◦Rk
)
∪
(n+1⋃
k=1

Sn+1−k ◦Rk
)

=
n+1⋃
k=0

Sn+1−k ◦Rk.

Hence, by induction, it is clear that
(
R ∪ S

)n ⊂ ⋃nk=0 S
n−k ◦Rk for all n ∈ N.

Remark 2.4. By Theorem 2.1, we can also state that
n⋃
k=0

Rn−k ◦ Sk ⊂
n⋃
k=0

Sk ◦Rn−k =
n⋃
k=0

Sn−k ◦Rk.

The following example shows that Theorem 2.3 cannot be improved by writing⋃n
k=0R

n−k ◦ Sk in place of
⋃n
k=0 S

n−k ◦Rk.

Example 2.5. If X = {1, 2} and

R = {(1, 2), (2, 2)} and S = {(2, 1), (2, 2)},
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then we can easily see that

R ◦ S ⊂ S ◦R, but
(
R ∪ S

)2 6⊂ 2⋃
k=0

Rn−k ◦ Sk.

By using Corollary 2.2, we can similarly prove the following counterpart of New-
ton’s binomial theorem.

Theorem 2.6. If R and S are relations on X such that R ◦ S = S ◦ R, then for
all n ∈ N we have (

R ∪ S
)n =

n⋃
k=0

Sn−k ◦Rk.

Remark 2.7. Note that, in the latter theorem, we may write
⋃n
k=0R

n−k ◦ Sk in
place of

⋃n
k=0 S

n−k ◦Rk.

3. Preorders and equivalences generated by commuting relations

Theorem 3.1. If R and S are relations on X such that R ◦ S ⊂ S ◦R, then

(1) R? ◦ S ⊂ S ◦R?; (2) R ◦ S? ⊂ S? ◦R; (3) R? ◦ S? ⊂ S? ◦R?.

Proof. By Theorem 2.1, we have

R? ◦ S =
( ∞⋃
k=0

Rn
)
◦ S =

∞⋃
k=0

Rn ◦ S ⊂
∞⋃
k=0

S ◦Rn = S ◦
( ∞⋃
k=0

Rn
)

= S ◦R?

and

R ◦ S? = R ◦
( ∞⋃
k=0

Sn
)

=
∞⋃
k=0

R ◦ Sn ⊂
∞⋃
k=0

Sn ◦R =
( ∞⋃
k=0

Sn
)
◦R = S? ◦R.

Therefore, the assertions (1) and (2) are true. The assertion (3) follows from the
assertion (1) by the the assertion (2).

Now, as an immediate consequence of Theorem 3.1, we can also state

Corollary 3.2. If R and S are relations on X such that R ◦ S = S ◦R, then

(1) R? ◦ S = S ◦R?; (2) R ◦ S? = S? ◦R; (3) R? ◦ S? = S? ◦R?.

Proof. Since R ◦ S ⊂ S ◦R and S ◦R ⊂ R ◦ S, by Theorem 3.1 we have

R? ◦ S ⊂ S ◦R?, R ◦ S? ⊂ S? ◦R and S? ◦R ⊂ R ◦ S?, S ◦R? ⊂ R? ◦ S.

Therefore, the assertions (1) and (2) are true. The assertion (3) again follows from
the assertion (1) by the assertion (2).

The following example shows that the converse of the above corollary need not
be true.

Example 3.3. If X = {1, 2} and

R = {(1, 2)} and S = {(1, 2), (2, 2)},

then we can easily see that R ◦ S ⊂ S ◦R, and moreover

R? ◦ S = S ◦R?, R ◦ S? = S? ◦R, R? ◦ S? = S? ◦R?, but S ◦R 6⊂ R ◦ S.

As a partial analogue of Corollary 3.2, we can also prove the following
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Theorem 3.4. If R and S are relations on X such that

R ◦ S = S ◦R and R ◦ S−1 = S−1◦R,
then

(1) RF ◦ S = S ◦RF; (2) R ◦ SF = SF ◦R; (3) RF ◦ SF = SF ◦RF.

Proof. Note that, in addition to the conditions of the theorem, we also have

R−1◦ S =
(
S−1◦R

)−1 =
(
R ◦ S−1

)−1 = S ◦R−1.

Therefore,(
R ∪R−1

)
◦ S = R ◦ S ∪ R−1◦ S = S ◦R ∪ S ◦R−1 = S ◦

(
R ∪R−1

)
and

R ◦
(
S ∪ S−1

)
= R ◦ S ∪ R ◦ S−1 = S ◦R ∪ S−1◦R =

(
S ∪ S−1

)
◦R.

Hence, by Corollary 3.2, it is clear that

RF ◦ S =
(
R ∪R−1

)? ◦ S = S ◦
(
R ∪R−1

)? = S ◦RF

and
R ◦ SF = R ◦

(
S ∪ S−1

)? =
(
S ∪ S−1

)? ◦R = SF ◦R.
Therefore, the assertions (1) and (2) are true.

The assertion (3) again follows from the assertion (1) by the assertion (2).
Namely, we also have

RF ◦S−1 =
(
RF
)−1◦S−1 =

(
S ◦RF

)−1 =
(
RF ◦S

)−1 = S−1◦
(
RF
)−1 = S−1◦RF.

The following example shows that the extra condition R ◦ S−1 = S−1◦R cannot
be omitted from the above theorem.

Example 3.5. If X = {1, 2, 3} and

R = {(1, 2)} and S = {(3, 2)},
then we can easily see that R ◦ S = S ◦ R, and moreover S ◦ RF ⊂ RF ◦ S and
R ◦ SF ⊂ SF ◦R, but

RF ◦S 6⊂ S ◦RF, SF ◦R 6⊂ R◦SF, RF ◦SF 6⊂ SF ◦RF, SF ◦RF 6⊂ RF ◦SF.
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