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CONDITIONS OF ANALYTICITY FOR FUNCTIONS OF ONE
COMPLEX VARIABLE

T. ROZGONYI AND M. TAR

ABSTRACT. In this paper certain necessary and sufficient conditions are con-
sidered for the analyticity of nonlinear functions of one complex variable in
terms of the their monogenity set.

Let f: D — C be a function, continuous over the domain D C C, and let z € D
be its any fixed point. Put
flz4+h)— f(z
ity - LD = 1)
defined over the domain Q. = {h € C | 0 < |h| < €} with € = &(2), where &(2)
denotes the distance from z to the boundary of D.

Recall that for the set of monogenity (the set of differential numbers) 9. (f) of
f at the point z is given by Luzin’s equality [1]

mz = ﬂ5>09ﬁ5 (Z)a

where M. (2) ={£ € C|E=p.(h), heQ.}.
The following assertion gives a sufficient condition for analyticity.

Theorem 1. Let f: D — C be a function which is continuous on the domain D
and monogenic in each everywhere dense subset E of D. If f satisfies the condition
(a) at any point £ € C there are at most a countable family of sets M. contain-
ing &,

then f is a nonlinear analytic function over D.
Proof. Assume the contrary. Then there exists a perfect subset P C D, at the
points of P f is not analytic.

The condition (a) immediately implies that the set 91, is not the complete plane
for all z € D, with the possible exception of countable set H C D.

Let {&} be the set of points of the plane C with rational coordinates, and denote
P,k (n,k € N) the subset of the points z € P\ H with

(0.1) () ~ ] > -

for all h satisfying 0 < |h| < 1 and z+ h € D.
_ As {&} is an everywhere dense subset of the C = CU{occ} and M, is closed in
C, it is easy to see
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Moreover, since f is continuous, all the sets P,  are closed.

The perfect set P is of second category (in itself), hence there exist indices n = ng
and k£ = kg such that P, 1, is everywhere dense in some subset Py of P. Since
Py, 1, is closed, we have Py = P, i, and it can be written in the form Py = PNGy,
where Gy C D is a domain. Consider the function ¢g(z) = f(z) — cz, where ¢ = &, .
By (1) for z € Py and 0 < |h] < nio the function g(z) satisfies

g(z+h)—g(z)| _ 1
0.2 ALV A o) Il
02 et s, L
If we put z = 21, 2+ h = 25 into (2), we obtain
1
(0.3) |9(22) — g(z1)] 2 — [22 — 2],
no

for all z9 € Ko and z; € Ko N Py := Py, where Ky C Gq is an arbitrary circle of
diameter n%,

Therefore, the function g(z) is single leafed on the perfect set P; and analytical
on the open set Ko\ P (if it is nonempty). By Theorem 9 [2] there exists a domain
G1 C Ky on which the function g(z) single leafed if Gy N Py = P, is nonempty.
Let us consider the inverse z = ¢g~!(w) of the function w = g(z) on the domain
Gi = g(G1).

From (3) it follows that the function g~!(w) satisfies

(0.4) |g_1(w1) - g_l(w2)| < ng |wy — wo

for any wy € Py = g(P2) and wy € G}. According to (4) the set M, (g~!) for
w € Py is bounded. By Theorem 2 [2] the function has a complete differential
almost everywhere on Py. Let us denote the corresponding subset of Py by Q.

We have two cases to distinquish

Case 1. The set Py is everywhere dense in a circle K C G7. Since P, C P;, we
infer that the function g(z) is single leafed in the domain Gy = g~1(K).

We claim that the function g~!(w) is monogenic almost everywhere in K, i.e. in
QNK =0Q.

Suppose the contrary, the function g~ is not monogenic at a point wy € Q1.
Then M., (¢g~1) is a complete circle ([2], p. 21). Put E* = g(E N Gy). Since
the function g(z) is continuous and single leafed in the domain Go the set E* is
everywhere dense in the circle K = g(G3).

Write

1

Ey={weE |lg~ ()] =a},

where a € S, S is a circle with boundary 9, (g~1). It is easy to see that E* D
Ug B, therefore the sets E are disjoint. Since E* is a countable set and S is not,
there exists a = ag such that E} =0, therefore [¢7!(w)]" # ag for any w € E*.

Let us consider the function ¢(w) = g~ (w) — apw (w € K). By our assumption
0 ¢ M, (¢) for w € K\ R, with a countable set R. It is easy to see that the function
¥ (w) is single leafed in an open set A everywhere which is dense in K. To see this
it suffices to take

N@:{weKW¢W+Q—@W>

1 1
Z _70 < ‘t| <=7,

n n
and argue as in the proof of the inequality (3).

Since for any w € E* there exists ¢'(w) # 0, the mapping z = ¢(w) preserves
the orientation of each component Ay (k =1,2,...) of the open set A.

Now we show that the function z = 1(w) realizes an inner mapping (in the sense
of S. Stoylov) of the circle K.
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Again, suppose the contrary, and let A C K (A # K) be the maximal open
subset of K on which the mapping z = ¥ (w) is inner.

Analogously, to our previous argument let us consider a subset Lg of the perfect
set L = K\ A on which the function ¢ (w) is single leafed. Clearly, we may assume
Ly = K1 N L, where K1 C K is some circle. Since 1(w) is single leafed the set
(L) is nowhere dense. Hence, by Theorem 8 [2], mapping z = ¥ (w) is inner in
the circle K7, which is a contradiction to the maximality of A.

Consequently, mapping z = ¢ (w) is inner in the circle K. It is well-known that
an inner mapping either preserves or inverts the orientation at any point of the
domain. As it is shown above, z = ¥(w) preserves the orientation of the domains
Ay (k =1,2,...). On the other hand, at the point wq it inverts the orientation,
therefore, the circle

Mo, (V) = {w € C| w= 1y, +Yage >, 8 € [0,27]}

contains an inner point w = 0. Hence the Jacobian mapping

J(wo) = [ty | = [t

is negative.

We have obtained a contradiction, so the function f is analytical over the domain
D.

Case 2. Let Py nowhere dense in the domain G5. Then the function ¢ (w) is
analytical on the open set G \ Py which is everywhere dense in the domain G7%, is
single leafed on Py. Hence, by Theorem 9 [2], function z = ¢(w) realizes an inner
mapping of the domain Gj. The remaining part of the statement can be proved
analogously to Case 1.

The nonlinearity of f easily follows from the condition (a), because for a linear
function f(z) = cz + d we have M, (f) = {c} for any z € C. O

Remark 1. We show that the condition (a) is also necessary for the analyticity of
a nonlinear function f: D — C defined on a domain D C C.

Indeed, for an analytic function f and for z € D we have

(0.5) M. (f) ={f'(2)}

Assume that our assertion is not true. Then, by (5), there exist a ¢ € C and an
uncountable set M C D such that f'(z) = ¢ for z € M. It is easy to see that
there exists a subdomain Dy C D such that M; = M N Dj is an un-countable set.
By the Theorem of uniqueness for analytic functions we get f'(z) =c¢ (z € D). It
follows that f(z) = cz 4+ ¢y (2 € D), i.e., f is a linear function, which contradicts
our assumption.

We point out another property of analytic functions in the next statement.

Theorem 2. Let w = f(z) be a nonlinear function which is analytic in the domain
D and let Sy C D be a set of points z € D with f"(z) = 0. Then for any closed
domain Dy C D\ Sy there exists € > 0 such that

(0.6) f(2) & M(2),
where zy € Dy.

Proof. First note that each subdomain Dy C D contains at most a finite set of
points of Sy. In the opposite case by the Theorem of uniqueness for analytic
functions we have f”(z) =0 for any z € D, i.e., f is linear.

Suppose that the assertion of theorem 2 is false. Then either in some subdomain
Dy C D\ Sy for any n € N (n > ng) there exists a point z, € Dy such that
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f'(zn) € M1 (zy,), or there exists &, € C such that

&n — 2n
and 0 < &, — 2| < +.
We shall assume that the sequence {2, } converges to a point zy € Dy. (Otherwise
a convergent subsequence of {z,} can be considered).
Clearly, &, — 20 (n — 00).
By decomposing the function f into its Taylor series in the neighbourhoods of
the points z,, (7) can be rewritten as

f// Z/n f’// Z/n
Pl = £+ D g,z T e ey
From this we obtain
f"(an) ()
2! + 3! (&n—2n) +---=0.
Taking limits we conclude f”(z9) = 0. But this contradicts that f”(z) # 0 for
any z € Dy. O

Since for an analytic function f monogenic at the point z we have (5), the
condition in Theorem 2 can be reformulated as follows:

(b) for any closed domain Dy C D\ Sy there exists € > 0 such that
(0.8) M. (f) NM(2) =0,
where zy € Dy.

Note that the condition (b) (if Dy is a circle) with certain additional restrictions
is also sufficient for the analyticity of a nonlinear function.

Theorem 3. Let f: D — C be a continuous function in the domain D C C,
monogenic almost everywhere in D, and let H C D be an countable set.

If for any closed circle K C D there exists ¢ > 0 such that every z € K \ H
satisfies (8), then f is a nonlinear function which is analytic in the domain D.

Proof. Assume the contrary; then there exists a perfect set P C D, at the points
where f is not analytic.
Let 2y € P be an arbitrary point, K C D the circle with centre zy of radius
r < 1p(z,0D), K., the concentric circle of radius g9 < min{e, £}, where ¢ is the
number in (8). (Note that (8) also holds for any ¢ with 0 < g9 < €).
For any fixed z € K., consider the function ¢,(h), h € Q.,. We have
pz(h+1t)—pz(h) 1[flz+h+t)—f(z) [flz+h) - [f(2)

t ot h+t h
L {[fG )~ fe = [f(z 4+ h) — [t} =

~ th(h+t)
fz+h+t)— f(z+h) f(z-l—h)—f(z).

t(h+1)  h(h+t)
This implies that each differential number w(p,;h) of the function ¢, (h) at the
point h is determined by the equality
1 1
w(pz;h) = Ew(f;z +h)— Egoz(h).
We show that 0 ¢ 9, (p,) for any h € Q., \ Ho, where Hy is an countable set.
Indeed, 0 € M}, () implies that there exists h such that

@z(h) € Mrn(f),
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where z + h € K, or
flz+h)— f(z
RS P,
Putting z + h = 2’ we have

/
SO o)
z2—z
where z, 2’ € K. However, this contradicts the condition of theorem 2.

If the function ¢, (h) has nonzero differential in a set everywhere dense in Q,,
and 0 ¢ My, (¢,) for h € Qg, \ Ho, analogously as in the proof of Theorem 1 we
claim that ¢, (h) (for any fixed z € K,,) realizes an inner mapping of the domain
Q-

Let M be the set of points for which, in accordance with the conditions of
theorem 2, there exists the differential f'(z) = ©.(0), and R = maxp|—, |¢-(h)]
for any z € Dy.

Since the mapping & = ¢, (h) is inner in the circle Ko = {h | |h| < g0}, we
assume |, (h)| < R for any h, |h| < g9 and z € M.

Choose an arbitrary point zg € K., \ M. By the continuity of the function ¢, (h)
of the variable z (for any fixed h) we get

lim . (h) = ¢z (h).

z—zozEM

It follows that |¢.(h)| < R for any h € Q., and z € K,,, i.e. the sets of monogenity
M, (f) are bounded in the circle K.,. By Lemma 11 [2] we obtain that f is analytic
in the circle K,,, which contradicts Py = PN K., # 0.

The nonlinearity of f follows from (8), since for a linear function f(z) = cz+ ¢
we have

M. (f) = M(2) = {c}
for any z € C. (]
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