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CONSTRUCTION OF FAMILIES OF LONG CONTINUED
FRACTIONS REVISITED

R.A. MOLLIN

Abstract. In this survey article, we revisit construction of simple continued
fractions of quadratic irrationals with long period lengths, which has generated
much interest in the relatively recent literature. We show that new and not-so-
new results actually follow from results of Perron in the 1950s and from results
of this author from over a decade ago. Moreover, we are able to generalize and
simplify numerous such results for a better understanding of the phenomenon.
This continues work in [7]–[12].

1. Introduction

It is generally acknowledged that Dan Shanks began the search for families of
quadratic surds with unbounded continued fraction period length with his discovery
in [14]–[15]. Numerous other constructions of explicit constructions of continued
fractions has since appeared. However, even some of the most recent contributions
such as [3] ostensibly overlooked the contributions of Perron and others from which
much of the later results follow. It is the purpose of this paper to exhibit what
should be well known and show how some recent results follow from them including
some generalizations and simplifications.

2. Notation and Preliminaries

The background for the following together with proofs and details may be found
in [4]. Let ∆ = d2D0 (d ∈ N, D0 > 1 squarefree) be the discriminant of a real
quadratic order O∆ = Z+Z[

√
∆] = [1,

√
∆] in Q(

√
∆), U∆ the group of units of O∆,

and ε∆ the fundamental unit of O∆. Now we introduce the notation for continued
fractions. Let α ∈ O∆. We denote the simple continued fraction expansion of α (in
terms of its partial quotients) by:

α = 〈q0; q1, . . . , qn, . . .〉 .
If α is periodic, we use the notation:

α = 〈q0; q1.q2. . . . , qk−1; qk, qk+1, . . . , q`+k−1〉 ,
to denote the fact that qn = qn+` for all n ≥ k. The smallest such ` = `(α) ∈ N is
called the period length of α. The convergents (for n ≥ 0) of α are denoted by

(2.1)
xn

yn
= 〈q0; q1, . . . , qn〉 =

qnxn−1 + xn−2

qnyn−1 + yn−2
.
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We will need the following facts, the proofs of which can be found in most standard
undergraduate number theory texts (for example see [5], and see [4] for a more
advanced exposition).

(2.2) xj = qjxj−1 + xj−2 (for j ≥ 0 with x−2 = 0, and x−1 = 1),

(2.3) yj = qjyj−1 + yj−2 (for j ≥ 0 with y−2 = 1, and y−1 = 0),

(2.4) xjyj−1 − xj−1yj = (−1)j−1 (j ∈ N).

In particular, we will be dealing with α =
√

D where D is a radicand. In this
case, the complete quotients are given by (Pj +

√
D)/Qj where the Pj and Qj are

given by the recursive formulae as follows for any j ≥ 0 (with P0 = 0 and Q0 = 1):

(2.5) qj =

⌊
Pj +

√
D

Qj

⌋
,

(2.6) Pj+1 = qjQj − Pj ,

and

(2.7) D = P 2
j+1 + QjQj+1.

Thus, we may write:

(2.8)
√

D =
〈
q0; q1, . . . , qn, (Pn+1 +

√
D)/Qn+1

〉
.

We will also need the following facts for α =
√

D. For any integer j ≥ 0, and
` = `(

√
D):

(2.9)
√

D =
〈
q0; q1, . . . , q`−1, 2q0

〉
,

(2.10) where qj = q`−j for j = 1, 2, . . . , `− 1, and q0 = b
√

Dc

(2.11) xj`−1 = q0yj`−1 + yj`−2.

Also, for any j ∈ N

(2.12) P1 = Pj` = q0 and Q0 = Qj` = 1,

(2.13) x2
j−1 − y2

j−1D = (−1)jQj .

When ` is even,

(2.14) P`/2 = P`/2+1 = P(2j−1)`/2+1 = P(2j−1)`/2 and Q`/2 = Q(2j−1)`/2,

whereas when ` is odd,

(2.15) Q(`−1)/2 = Q(`+1)/2.
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3. Main Results

The first result is due to Perron.

Theorem 3.1. Given a palindrome q1, . . . , q`−1 of natural numbers for ` ≥ 2, there
exist integers u, v, w ∈ Z such that the following matrix equation holds:

(3.1)
`−1∏

j=1

(
qj 1
1 0

)
=

(
u v
v w

)
.

If we set

τ =
{

1 if u ≡ vw ≡ 0 (mod 2),
2 if u ≡ vw + 1 ≡ 0 (mod 2),

and either choice of τ = 1 or τ = 2 is allowed if u is odd, then there exists a
nonsquare D ∈ N such that

(3.2)
τ − 1 +

√
D

τ
=

〈
q0; q1, . . . , q`−1, 2q0 − τ + 1

〉
,

where

(3.3) q0 = (τ − 1 + ux− (−1)`vw)/2

for some x ∈ Z. Moreover, when this holds, and xj/yj is the jth convergent of
(τ − 1 +

√
D)/τ , then

(3.4) u = y`−1, v = y`−2, and w = x`−2 − q0y`−2,

and

(3.5) D = (τq0 − τ + 1)2 + τ2xv − τ2(−1)`w2 =

(τ

2

)2

u2x2 +
(

τ2v − (−1)`

2
uvw

)
x +

(τ

2

)2

v2w2 − (−1)`τ2w2.

Proof. See [13]. Also there is a more accessible and recent interpretation in [2]. ¤

The next result will be useful in the balance of the paper.

Theorem 3.2 (Fundamental Unit Theorem for Quadratic Orders). Suppose that
(3.2) holds. Then

(3.6)
`−1∏

j=0

(
qj 1
1 0

)(
q0 1
1 0

)
=

(
(τ−1)τt+(τ−1)s+Ds

τ2
(τ−1)s+t

τ
(τ−1)s+t

τ s

)
,

where
t2 − s2D = ±τ2,

and (t + s
√

D)/τ is the fundamental unit of the order Z[(τ − 1 +
√

D)/τ ].

Proof. See [7]. ¤

We also need the following, which we proved in [6].

Theorem 3.3. Suppose that D ∈ N is squarefree, σ = 2 if D ≡ 1 (mod 4) and
σ = 1 otherwise. Then all of the Qj/σ in the simple continued fraction expansion
of ωD are powers of a single integer a > 1 if and only if one of the following holds:

(a): `(ωD) = 1 and D = (σq0 − σ + 1)2 + σ2.
(b): `(ωD) = 2 and D = (σq0 − σ + 1)2 + σ2a with aq1 = 2q0 − σ + 1.
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(c): `(ωD) > 2 and D = (ban +(a−1)/b)2+4an where b | (a−1) and b, n ∈ N.
In this case, `(ωD) = 2n + 1, for

⌊
n
2

⌋ ≥ j ≥ 1:

P2j =
σ(ban − (a− 1)/b)

2
, Q2j = σaj , q2j = ban−j ,

for
⌊

n
2

⌋ ≥ j ≥ 0:

P2j+1 =
σ(ban + (a− 1)/b)

2
, Q2j+1 = σan−j ,

and
Qn = Qn+1 = σan−bn/2c.

Also, the fundamental unit of Z[ωD] is given by:

εωD =

(
σ(ban + (a− 1)/b) + 2

√
D

2σ

)(
σ(ban + a + 1) + 2b

√
D

2σa

)n

.

In [3], Madden develops long continued fractions using a rather complicated
process that even entails having zero partial quotients that have to be discarded
to get the final continued fraction expansion. In the following, we show how his
results follow from the known results, Theorem 3.1–3.3, in a much simpler and more
general fashion. For instance the development in [3, Section 3, pp. 129–130], there
is a development of

√
D where D = (b(2bn + 1)k + n)2 + 2(2bn + 1)k for natural

numbers b, k, n. We now show how this is merely a special case of a slight variation
of Theorem 3.3, seemingly unknown to Madden who does not discuss the nature of
the Qj or Pj in the simple continued fraction expansions of such

√
D.

Theorem 3.4. If a, b, k are natural numbers with a ≡ 1 (mod 2b) and

D =
(

bak +
a− 1
2b

)2

+ 2ak,

then in the simple continued fraction expansion of
√

D, we have the following.

(3.7) P2j = bak − a− 1
2b

, q2j = 2bak−j , (k ≥ j ≥ 1),

(3.8) P2j+1 = bak +
a− 1
2b

, Q2j = aj , Q2j+1 = 2ak−j (k ≥ j ≥ 0),

(3.9) q2j+1 = baj , (k > j ≥ 0),

(3.10) q0 = q2k+1 = bak +
a− 1
2b

=
q4k+2

2
= P1,

and

(3.11) `(
√

D) = 4k + 2.

Also, if D is squarefree, then the fundamental unit of Z[
√

D] is given by:

ε4D =

(
b2ak + (a + 1)/2 + b

√
D

a

)2k
(
bak + (a− 1)/(2b) +

√
D

)2

2
.

Proof. Since

q0Q0 − P0 = P1 = b
√

Dc = bak +
a− 1
2b

,

then Q1 = 2ak and q1 = b, so

P2 = bak − a− 1
2b

, Q2 = a, and q2 = 2bak−1.
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Thus,

P3 = bak +
a− 1
2b

, Q3 = 2ak−1, and q3 = ba.

Continuing in this fashion, we see that we get (3.7)–(3.11). When D is squarefree,
the form for the fundamental unit follows from [1, Satz 2, p. 159]. ¤

For instance, Madden [3, p. 144] looks at a = 11 and b = 1, so
√

D =
√

112k + 12 · 11k + 25.

In his case, he only looks at the partial quotients qj . However, by our Theorem 3.4,
we see that P2j = 11k − 5 for k ≥ j ≥ 1, P2j+1 = 11k + 5 for k ≥ j ≥ 0, Q2j = 11j ,
and Q2j+1 = 2 · 11k−j for k ≥ j ≥ 0. Also, the partial quotients are given by

(3.12) q2j = 2 · 11k−j for k ≥ j ≥ 1, q2j+1 = 11j for k > j ≥ 0,

and q0 = q2k+1 = 11k + 5 = q4k+2/2 = P1. In Madden’s case, his methods
force him to remove (undefined) zeros from the partial quotients before the correct
expansion is achieved. Our method, however, is precise and should be well-known
having essentially been discovered by this author over a decade ago. To give more
credence to the last allegation, we note that the partial quotients in our Theorem
3.4, which generalized the Madden result, appear (less a factor of 2) in the simple
continued fraction of (1 +

√
D)/2 where

D =
(

bak +
a− 1

b

)2

+ 4ak,

since, by Theorem 3.3, q2j = bak−j and q2j+1 = baj for k > j ≥ 0, with

`((1 +
√

D)/2) = 2k + 1.

For instance, take b = 1, and a = 11 then D = 112k + 24 · 11k + 100, and

q2j = 11k−j for bk/2c ≥ j ≥ 1, and q2j+1 = 11j for bk/2c ≥ j ≥ 0.

Compare with (3.12). The central goal of [3] is to produce a product of matrices
n∏

j=1

(
qj 1
1 0

)
=

(
u 2v − δw
v w

)
,

where uw − v(2v − δw) = (−1)n with δ ∈ {0, 1}, then develop continued fractions
with partial quotients based upon the qj . (Madden uses lower triangular matrices,
while we use upper triangular ones.) However, the more than twenty pages of so
doing in [3] can be boiled down to an observation from Perron’s Theorem 3.1 as
follows. Pick any palindrome of natural numbers q1, q2, . . . , q`−1 and select qn = 2q0

where q0 is chosen as in Theorem 3.1. Then,
`−1∏

j=1

(
qj 1
1 0

)(
2q0 1
1 0

)
=

(
2q0u + v u
2q0v + w v

)
,

and

2q0uv + v2 − u(2q0v + w) = v2 − uw = y2
`−2 − y`−1(x`−2 − q0y`−2) =

y2
`−2 − x`−2y`−1 + q0y`−1y`−2.

However, by (2.11), q0y`−1 = x`−1 − y`−2, so the latter equals

y2
`−2 − x`−2y`−1 + (x`−1 − y`−2)y`−2 = x`−1y`−2 − x`−2y`−1 = (−1)`,

where the last equality follows from (2.4). Hence, we have accomplished the task.
Moreover, this method is more general, apart from being much simpler, than that
presented in [3] since it allows us to look at D ≡ 1 (mod 4) which is avoided in [3].



180 R.A. MOLLIN

We can even look at the case where D is not squarefree. For instance, consider the
following.

Example 3.1. If D = 245 = 5 · 72 ≡ 1 (mod 4), then
√

245 = 〈15; 1, 1, 1, 7, 6, 7, 1, 1, 1, 30〉 = 〈q0; q1, . . . , q`−1, 2q0〉,
so

`−1∏

j=1

(
qj 1
1 0

)(
30 1
1 0

)
=

(
101521 3312
66240 2161

)
=

(
y` y`−1

q0y`−2 + x`−2 y`−2

)
,

where y`y`−2 − (q0y`−2 + x`−2)y`−1 = 101521 · 2161 − 66240 · 3312 = 1 = (−1)`.
Note as well that we may employ Theorem 3.2 to get the fundamental unit:

`−1∏

j=0

(
qj 1
1 0

)(
15 1
1 0

)
=

(
811440 51841
51841 3312

)
=

(
sD t
t s

)
,

with t2−s2D = 518412−33122·245 = 1, where 51841+3312
√

245 is the fundamental
unit of Z[

√
245].

However, the idea is to build upon the values of qj in the simple continued
fraction expansion of

√
245 to get infinite families of continued fraction expansions

whose period length goes to infinity. We showed how to do this in [8]–[12]. We
apply our techniques here to this specific example. Let

Bk + Ak

√
245 = (51841 + 3312

√
245)k,

for any k ∈ N, and set
Dk(X) = A2

kX2 + 2Bk + C

for any X ∈ N. Then by [12],
√

Dk(X) = 〈AkX + 15; wk−1, 2(AkX + 15)〉,
where wk−1 represents k − 1 iterations of 1, 1, 1, 7, 6, 7, 1, 1, 1, 30 followed by one
iteration of 1, 1, 1, 7, 6, 7, 1, 1, 1, and `(

√
Dk(X)) = 10k. For instance, if k = 3,

then B3 = 557288527109761, A3 = 35603857991376, and X = 1, then
√

D3(1) =
√

1267634703871183234344593143 =

〈35603857991391;w2, 71207715982782〉,
where w2 = 1, 1, 1, 7, 6, 7, 1, 1, 1, 30, 1, 1, 1, 7, 6, 7, 1, 1, 1, 30, 1, 1, 1, 7, 6, 7, 1, 1, 1. and
`(

√
D3(1)) = 30. Hence, limk→∞ `(

√
Dk(X)) = ∞ and if we fix k ∈ N, then for

any X ∈ N, `(
√

Dk(X)) = 10k.

The technique displayed in Example 3.1 comes from [12]. However, we developed
numerous other such techniques of different stripes in [7]–[11].
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