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TRANSLATION INVARIANT OPERATORS ON HARDY SPACES
OVER VILENKIN GROUPS

J.E. DALY AND S. FRIDLI

Dedicated to Professor William R. Wade on the occasion of his 60th birthday

Abstract. We show that a number of well known multiplier theorems for
Hardy spaces over Vilenkin groups follow immediately from a general condition
on the kernel of the multiplier operator. In the compact case, this result shows
that the multiplier theorems of Kitada [6], Tateoka [13], Daly-Phillips [2], and
Simon [11] are best viewed as providing conditions on the partial sums of
the Fourier-Vilenkin series of the kernel rather than explicit conditions on
the Fourier-Vilenkin coefficients themselves. The theorem is used to prove an
extension of the Marcinkiewicz multiplier theorem for Hardy spaces.

1. Introduction

In this paper the setting will be a locally compact Vilenkin group G of bounded
order. ThusG contains a decreasing sequence of compact open subgroups (Gn)∞n=−∞
such that

i)
⋃∞
−∞Gn = G and

⋂∞
−∞Gn = {0},

ii) supn{order(Gn/Gn+1)} <∞.
In the case that G is compact, we use the convention that Gn = G if n ≤ 0.
The additive group of a local field is Vilenkin group, as is its ring of integers. In
particular, the p-adic numbers are a Vilenkin group. In the case that p = 2, the ring
of integers is also called the dyadic group and the characters the Walsh functions.

Let Γ denote the dual group of G and Γn = {γ ∈ Γ : γ(x) = 1 for all x ∈ Gn}.
The Haar measures µ on G and λ on Γ are chosen so that µ (G0) = λ (Γ0) = 1 and
consequently, µ (Gn) = (λ (Γn))−1 := (Mn)−1 for each n ∈ Z. There is a norm on
G defined by |x| = (Mn)−1 if x ∈ Gn\Gn+1. The Fourier transform and inverse
Fourier transform respectively are denoted by ∧ and ∨ , and satisfy

(ξGn)∧ = (λ (Γn))−1
ξΓn

where ξA denotes the characteristic function of a set A. Consequently,

(ξΓn)∨ = (λ (Gn))−1
ξGn .

We define distributions according to the theory developed by Taibleson [12] for
local fields. Let S(G) be defined as the collection of functions that have compact
support and that are constants on the cosets of a Gn (n ∈ Z). A sequence (ψk) in
S(G) is said to converge to ψ ∈ S(G) if there are n,m ∈ Z such that every ψk is
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constant on the cosets of Gm, suppψk ⊂ Gn (k ∈ N), and (ψk) converges uniformly
to ψ. Continuous linear functionals on S(G) are called distributions. The set of
distributions will be denoted by S′(G).

The (atomic) Hardy spaces on G are given as follows. A function a : G → C is
a p-atom, 0 < p ≤ 1, if

i) supp a ⊂ In := x+Gn for some x ∈ G, and n ∈ N,
ii) ‖a‖∞ ≤ (µ (In))−1/p,
iii)

∫
G
a(x)dx = 0.

A distribution f ∈ S ′(G) belongs to Hp(G) if f is given by f =
∑∞

i=1 λiai, where
each ai is a p-atom,

∑∞
i=1 |λi|p <∞, and convergence is in S ′(G). We set

‖f‖Hp = inf

( ∞∑

i=1

|λi|p
)1/p

with the infimum taken over all such atomic decompositions of f . A function
ϕ ∈ L∞ (Γ) is a (Fourier) multiplier on Hp(G) if there exists a constant C > 0 so
that for all f ∈ Hp(G) ∩ L2(G),

∥∥∥(ϕf∧)∨
∥∥∥

Hp
≤ C ‖f‖Hp .

A multiplier operator Tϕ is defined for a function ϕ on Γ by

(Tϕf)∧ = ϕ · f∧.
The operator Tϕ is a convolution operator determined by the distribution Φ which
has kernel k defined by

k∧ = ϕ.

The blocks ∆nk of the kernel k are defined by ∆nk = (k∧ξΓn+1\Γn
)∨ (n ∈ Z). For

a multiplier ϕ, the blocks are ∆nϕ = ϕ ξΓn+1\Γn
.

2. Results and proofs

A number of authors have proved multiplier theorems for Hp (G). Among them
are Daly, Fridli, Kitada, Onneweer, Phillips, Quek, Simon, and Tateoka. The
results of Kitada [6], Onneweer-Quek [8], and Tateoka [13] often were phrased in
terms of blocks of the kernel belonging to certain Herz spaces along with growth
bounds. These were called multiplier theorems; even though, the theorems are most
naturally phrased in terms of the corresponding kernel.

First we formulate Theorem 1 which is a general result for a convolution operator
with kernel k to be a bounded operator on Hp(G). Then we formulate Theorem 2.
From this theorem we will show that all of the previous multiplier results follow in
a straight forward manner. Finally, we will use it to prove an Hp(G) version of the
classical Marcinkiewicz multiplier theorem.

Theorem 1. Let k be locally integrable on G\{0} and 0 < p ≤ 1. If either

i) supN

∫
(GN )c |GN |−1

(∫
GN

|k(x− y)| dy
)p

dx <∞
or

ii) supN

∫
(GN )c |GN |−1

( ∫
GN

|k(x− y)− k(x)| dy
)p

dx <∞,

then Tk is bounded on Hp(G).

Theorem 1 in the case of p = 1 has appeared many places in the literature. For
example, Inglis [4] proves a version for totally disconnected groups and a version
for local fields appears in the paper of Phillips and Taibleson [9]. In both examples,
they were concerned with boundedness questions of operators on Lr, 1 < r < ∞,
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and weak(L1) results. As the atomic theory of Hardy spaces was developed, these
results were extended to H1. See [5] for an example.

If the kernel k is decomposed into blocks then one can get the following sufficient
conditions that turned to be useful in applications.

Theorem 2. Let k be locally integrable on G\{0} and 0 < p ≤ 1. If either

i) supN

∫
(GN )c |GN |−1

(∫
GN

|∑∞
j=N+1 ∆jk(x− y)| dy

)p

dx <∞
or

ii) supN

∫
(GN )c |GN |−1

(∫
GN

|∑∞
j=N+1(∆jk(x− y)−∆jk(x))| dy

)p

dx <∞,

then Tk is bounded on Hp(G).

Condition ii) of Theorem 1 and Theorem 2 is useful in analyzing the boundedness
properties of singular integral type operators. For example, in the case of q-series or
q-adic fields Kq, Calderon-Zygmund singular integral operators have been studied
extensively. See Phillips-Taibleson [9] for the Lp(Kq), 1 < p < ∞, case and Daly-
Phillips [3] for the Hp(Kq), 0 < p ≤ 1, case. These operators have homogeneity in
the kernels k: k(qjx) = q−jk(x). Thus the kernel can be written as k = ω • |·|−1

with ω(qjx) = ω(x) for x 6= 0. The kernel k is said to be homogeneous of degree
−1. If the kernel satisfies

∫

|y|≤1

∫

|x|>1

|k(x− y)− k(x)| dxdy <∞

then Tk is bounded on Lp(Kq) for 1 < p < ∞ and H1(Kq) (see [3]). Using
the homogeneity of the kernel, this condition is easily seen to be equivalent to
our condition ii) of Theorem 1 for p = 1. Also, if one chooses to decompose the
kernel into blocks in a manner inconsistent with the subgroup decompositions of
Γ, then one would begin the proof of boundedness using Theorem 1 directly and
not use Theorem 2. For example, Wo-Sang Young does so in [15] where she proves
a Marcinkiewicz multiplier theorem using dyadic blocks for an arbitrary compact
Vilenkin group.

We proceed with listing conditions that are sufficient for the multiplier operator
be bounded on Hp(G), and that have been used by several authors. They all can
be considered as consequences of Theorem 1.

Corollary 3. If k is locally integrable on G\{0} and 0 < p ≤ 1, and

sup
N

∞∑

j=N+1

∫

(GN )c

|GN |−1
( ∫

GN

|∆jk(x− y)| dy
)p

dx <∞,

then Tk is bounded on Hp(G).

We note that this condition was used by Simon [11] in the special case when G
is a compact bounded multiplicative Vilenkin group. He sated the result in terms
of (∆jϕ)∨ rather than ∆jk.

In the following corollary we assume that p = 1. It was first formalized and used
by Kitada [5] and Tateoka [13].

Corollary 4. Let k be locally integrable on G\{0} and 0 < p ≤ 1. If

sup
N

∫

(GN )c

∞∑

j=−∞
|(∆jk)(x)| dx <∞,

then Tk is bounded on H1G).
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Daly and Phillips [2] observed that the condition in Corollary 4 can be relaxed.
Namely, they proved that it is enough to start the summation from N + 1 instead
of −∞.

Corollary 5. Let k be locally integrable on G\{0} and 0 < p ≤ 1. If

sup
N

∫

(GN )c

∞∑

j=N+1

|(∆jk)(x)| dx <∞,

then Tk is bounded on H1 (G).

The condition in the following corollary is due to Kitada [5] and Tateoka [13].
We note that it was used for example by Daly and Fridli in [1] for Walsh multipliers.

Corollary 6. Let k be locally integrable on G\{0} and 0 < p ≤ 1. If

j∑

N=−∞
|GN |1−p

( ∫

GN\GN+1

|∆jk(y)| dy
)p

≤ C|Gj |1−p,

then Tk is bounded on Hp(G).

We will first provide the proofs of the corollaries, assuming Theorem 2, and then
provide the proof of Theorem 1 and Theorem 2. For Corollary 3, we use i) from
Theorem 2 and the fact p ≤ 1:

∫

(GN )c

|GN |−1
( ∫

GN

|
∞∑

j=N+1

∆jk(x− y)| dy
)p

dx

≤
∫

(GN )c

|GN |−1
( ∫

GN

∞∑

j=N+1

|∆jk(x− y)| dy
)p

dx

≤
∞∑

j=N+1

∫

(GN )c

|GN |−1
( ∫

GN

|∆jk(x− y)| dy
)p

dx.

Taking the supremum over N , we obtain Corollary 3.
To prove Corollary 5 with the condition of Daly and Phillips [2] for H1 (G), we

proceed from Corollary 3 with p = 1:
∞∑

j=N+1

∫

(GN )c

|GN |−1

∫

GN

|∆jk(x− y)| dy dx .

As x ∈ (GN )c , y ∈ GN we have that the value inner integral does not actually
depend on y. Indeed,

∫
GN

|∆jk(x − y)| dy dx =
∫

x+GN
|∆jk(t)| dt. The function

|GN |−1
∫

x+GN
|∆jk(t)| dt is nothing but the integral average function of |∆jk| over

the cosets of Gn. Consequently it is constant on these cosets and its integral over
(GN )c is equal to the integral of the function, i.e.

∞∑

j=N+1

∫

(GN )c

|GN |−1

∫

GN

|∆jk(x− y)| dy dx =
∞∑

j=N+1

∫

(GN )c

|∆jk(t)| dt.

Thus the condition in Corollary 3 and the Daly-Phillips conditions coincide when
p = 1. Allowing the above sum to run from −∞ to ∞, one obtains the Kitada-
Tateoka ([6], [13]) condition, i.e. Corollary 4 for H1(G).

Applying the same argument to condition from Corollary 3 for 0 < p < 1, and a
Hölder inequality with exponent 1/p we obtain the following condition.
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Corollary 7. Let k be locally integrable on G\{0} and 0 < p ≤ 1. Then

sup
N

∞∑

j=N+1

|GN |p−1
( ∫

(GN )c

|(∆jk(t)| dt
)p

<∞

implies that the operator Tk is bounded on Hp(G).

The proof of Corollary 6 forHp(G) is more involved than the previous. Beginning
again with i) from Theorem 2:

UN :=
∫

(GN )c

|GN |−1
(∫

GN

|
∞∑

j=N+1

∆jk(x− y)| dy
)p

dx

=
N−1∑

n=−∞

∫

Gn\Gn+1

|GN |−1
( ∫

GN

|
∞∑

j=N+1

∆jk(x− y)| dy
)p

dx

≤|GN |−1
N−1∑

n=−∞

∫

Gn\Gn+1

( ∫

GN

∞∑

j=N+1

|∆jk(x− y)| dy
)p

dx.

Using the Hölder inequality on the outer integral with r = 1/p and r′ = 1/(1− p),
we continue with

UN ≤ |GN |−1
N−1∑

n=−∞

( ∫

Gn\Gn+1

∫

GN

∞∑

j=N+1

|∆jk(x− y)| dy dx
)p

×
( ∫

G

ξGn\Gn+1(y)dy
)1−p

≤ |GN |−1
N−1∑

n=−∞
|Gn|1−p

( ∫

Gn\Gn+1

∫

GN

∞∑

j=N+1

|∆jk(x− y)| dy dx
)p

.

Making use of the fact that x− y ∈ Gn\Gn+1 when N > n, y ∈ GN , and x ∈ Gn,
we have

∫
GN

|∆jk(x−y)| dy =
∫

x+GN
|∆jk(t)| dt. Therefore the inequality becomes

UN ≤ |GN |p−1
N−1∑

n=−∞
|Gn|1−p

( ∞∑

j=N+1

∫

Gn\Gn+1

|∆jk(x)| dx
)p

≤ |GN |p−1
∞∑

j=N+1

N−1∑
n=−∞

|Gn|1−p
( ∫

Gn\Gn+1

|∆jk(x)| dx
)p

.

Since j ≥ N + 1 we have that the inner sum can be estimated above by the left
side of condition from Corollary 6. It is bounded by C|Gj |1−p. Thus

UN ≤ C|GN |p−1
∞∑

j=N+1

|Gj |1−p ≤ C|GN |p−1|GN |1−p = C.

We now proceed with the proof of Theorem 1 and Theorem 2.

Proofs of Theorems 1 and 2. We note that it is sufficient to show Tk(a) ∈ Lp(G).
Without the loss of generality we may suppose that supp a ⊂ GN , ‖a||L∞(G) ≤
|GN |−1/p, and

∫
GN

a = 0. Set

(1) ‖Tk(a)‖p
Lp(G) =

∫

GN

|Tk(a)(x)|pdx+
∫

(GN )c

|Tk(a)(x)|pdx = T1 + T2.
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For T1 we use the usual L2 argument that exploits the facts that Tk is bounded on
L2 and a ∈ L2:

T1 =
∫

G

|Tk(a)(x)|p ξGN
(x)dx

≤
(∫

G

|Tk(a)(x)|2dx
) p

2
( ∫

G

ξGN (x)dx
)1− p

2

≤ C‖a‖p
2|GN |1−

p
2

≤ C|GN |(
1
2− 1

p )p|GN |1−
p
2

= C.

For T2 we will use the boundedness and cancellation properties of the atom a. One
direction is

T2 =
∫

(GN )c

∣∣∣
∫

GN

k(x− y)a(y)dy
∣∣∣
p

dx ≤
∫

(GN )c

|GN |−1
( ∫

GN

|k(x− y)| dy
)p

dx

and the other is

T2 =
∫

GN )c

∣∣∣
∫

GN

k(x− y)a(y) dy
∣∣∣
p

dx

=
∫

(GN )c

∣∣∣
∫

GN

(k(x− y)− k(x))a(y) dy
∣∣∣
p

dx

≤
∫

(GN )c

|GN |−1
( ∫

GN

∣∣∣(k(x− y)− k(x))
∣∣∣ dy

)p

dx.

This proves Theorem 1.
Let us take (1) again. To prove Theorem 2 we decompose the kernel k in terms

of the blocks of its Fourier-Vilenkin transform k =
∑∞

j=−∞∆jk. Using this decom-
position, T2 becomes in the first case

∫

(GN )c

∣∣∣
∫

GN

k(x− y)a(y)
∣∣∣
p

dx ≤
∫

(GN )c

(∣∣∣
∫

GN

N−1∑

j=−∞
∆jk(x− y)a(y) dy

∣∣∣dx

+
∣∣∣
∫

GN

∞∑

j=N

∆jk(x− y)a(y) dy
∣∣∣
)p

dx .

Since ∆jk(x−y) = ∆jk(x) as j < N and y ∈ GN , and using the fact
∫

GN
a = 0, we

have that the first integrand is identically zero. Combining this with our estimates
for T1

‖Tk(a)‖p
Lp(G) ≤ C +

∫

(GN )c

(∣∣∣
∫

GN

∞∑

j=N

∆jk(x− y)a(y) dy
∣∣∣
)p

dx = C + U1.

Using again the fact
∫

GN
a = 0, U1 can be rewritten as

U2 =
∫

(GN )c

(∣∣∣
∫

GN

∞∑

j=N

(∆jk(x− y)−∆jk(x))a(y) dy
∣∣∣
)p

dx.

The final estimates for both U1 and U2 follow from ‖a‖L∞(G) ≤ |GN |−1/p. Indeed,
for U1 we have

U1 ≤
∫

(GN )c

( ∫

GN

∣∣∣
∞∑

j=N

∆jk(x− y)
∣∣∣|a(y)| dy

)p

dx

≤
∫

(GN )c

|GN |−1
( ∫

GN

∣∣∣
∞∑

j=N

∆jk(x− y)
∣∣∣ dy

)p

dx.
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This is the required estimate for (i) of Theorem 2. As stated above, the estimate
for (ii) of Theorem 2 is is obtained in an identical manner from U2. ¤

We will use Theorem 2 in the form of Corollary 5 (Kitada, Tateoka) to prove
a version of the Marcinkiewicz multiplier theorem for Hp(G). This will be for the
compact multiplicative G. Then the dual group Γ = {χn} can be enumerated in the
way that corresponds to the Paley enumeration in the Walsh case. The Dirichlet
kernels are defined as Dn =

∑n−1
k=0 χk (n ∈ N). For details we refer the reader to

[10].
First we will need a lemma that is a type of Sidon inequality. The authors [1]

earlier proved a version for the dyadic group and Walsh series.

Lemma 8. Let G be compact multiplicative Vilenkin group. If n,N ∈ N and
1 < q ≤ 2 then for any numbers ck (1 ≤ k ≤ |Γn|), we have

∫

(GN )c

∣∣∣
|Γn|∑

k=1

ckDk(x)
∣∣∣ dx ≤ C|GN |

1
q−1

( |Γn|∑

k=1

|ck|q
)1/q

.

Proof. The generalized Rademacher functions, see e.g. [10] for the definition, will
be denoted by rj (j ∈ N). By means of the Rademacher function the Dirichlet
kernels can be decomposed as Dk = χk

∑∞
j=0

∑mj−1
`=mj−kj

r`
jD|Γj | ([10]). We note

that D|Γn| = |GN |−1ξGN ([10]).
Without loss of generality, we may assume n > N . Then

∫

(GN )c

∣∣∣
|Γn|∑

k=1

ckDk(x)
∣∣∣ dx =

∫

(GN )c

∣∣∣
|Γn|∑

k=1

ckχk(x)
∞∑

j=0

mj−1∑

`=mj−kj

r`
jD|Γj|(x)

∣∣∣ dx

=
∫

(GN )c

∣∣∣
|Γn|∑

k=1

ckχk(x)
N−1∑

j=0

mj−1∑

`=mj−kj

r`
jD|Γj|(x)

∣∣∣ dx

≤
N−1∑

j=0

|Gj |−1

∫

(GN )c

ξGj (x)
∣∣∣

mj−1∑

`=mj−kj

r`
j

|Γn|∑

k=1

ckχk(x)
∣∣∣ dx.

Set

kj,` =

{
1 if, mj − kj ≤ ` ≤ mj − 1
0 if, 0 ≤ ` < mj − kj

(j ∈ N).

Then we have

∫

(GN )c

∣∣∣
|Γn|∑

k=1

ckDk(x)
∣∣∣ dx ≤

N−1∑

j=0

mj−1∑

`=0

|Gj |−1

∫

(GN )c

ξGj (x)
∣∣∣
|Γn|∑

k=1

kj,`ckχk(x)
∣∣∣ dx.

Introducing hj,`(x) = sgn
( ∑|Γn|

k=1 kj,`ckχk(x)
)
, this becomes

∫

(GN )c

∣∣∣
|Γn|∑

k=1

ckDk(x)
∣∣∣ dx ≤

N−1∑

j=0

mj−1∑

`=0

|Gj |−1

|Γn|∑

k=1

kj,`ck

∫

G

ξGj (x)hj,`(x)χk(x)dx

=
N−1∑

j=0

mj−1∑

`=0

|Gj |−1

|Γn|∑

k=1

kj,`ck(ξGjhj,`)∧(k)
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We will apply Hölder’s inequality followed by Hausdorff- Young’s and in the final
step the boundedness of the Vilenkin group to obtain

∫

(GN )c

∣∣∣
|Γn|∑

k=1

ckDk(x)
∣∣∣ dx ≤ C

N−1∑

j=0

mj−1∑

`=0

|Gj |−1
( |Γn|∑

k=1

|ck|q
)1/q

×
( |Γn|∑

k=1

|(ξGjhj,`)∧(k)|q′
)1/q′

≤ C

N−1∑

j=0

mj−1∑

`=0

|Gj |−1
( |Γn|∑

k=1

|ck|q
)1/q

‖ξGj
hj‖q

≤ C

N−1∑

j=0

mj−1∑

`=0

|Gj |
1
q−1

( |Γn|∑

k=1

|ck|q
)1/q

≤ C|GN |
1
q−1

( |Γn|∑

k=1

|ck|q
)1/q

.

¤
Our theorem about the generalized Marcinkiewicz condition [7] reads as follows.

Theorem 9. Let G be a compact multiplicative Vilenkin group. Suppose that
1 < q ≤ 2 and p >

q

2q − 1
. If ϕ is bounded and satisfies

∑

j∈Γk+1\Γk

|ϕ(j + 1)− ϕ(j)|q ≤ C |Γk|1−q
,

then Tϕ is bounded on Hp(G).

Remark. We note that besides the trigonometric and the Vilenkin systems the
Marcinkiewicz condition have been studied with respect to some other systems as
well. Here we only mention a recent result by Weisz [14] in which the Ciesielski
system is considered.

Proof. We will show the above Marcinkiewicz condition implies the kernel satisfies
the Kitada-Tateoka condition from Corollary 6 to provide boundedness on Hp(G).
Recall that this condition for G compact is

k∑
n=0

|Gn|1−p
(∫

Gn\Gn+1

|∆kk(y)| dy
)p

≤ C|Gk|1−p.

We begin with the left-hand side:

I1 =
k∑

n=0

|Gn|1−p
( ∫

Gn\Gn+1

|∆kk(y)| dy
)p

=
k∑

n=0

|Gn|1−p
( ∫

Gn\Gn+1

∣∣∣
|Γk+1|∑

m=|Γk|
ϕ(m)χm(y)

∣∣∣ dy
)p

.

For the inner sum, we use summation by parts to obtain:

∣∣∣
|Γk+1|∑

m=|Γk|
ϕ(m)χm

∣∣∣ ≤
∣∣ϕ(|Γk|)D|Γk|

∣∣ +
∣∣ϕ (|Γk+1|)D|Γk+1|

∣∣

+
∣∣∣
|Γk+1|−1∑

m=|Γk|
(ϕ(m+ 1)− ϕ(m))Dm

∣∣∣ .
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Consequently,

I1 ≤
k∑

n=0

|Gn|1−p
( ∫

Gn\Gn+1

∣∣ϕ (|Γk|)D|Γk|(y)
∣∣ +

∣∣ϕ (|Γk+1|)D|Γk+1|(y)
∣∣ dy

)p

+
k∑

n=0

|Gn|1−p
( ∫

Gn\Gn+1

∣∣∣
|Γk+1|−1∑

m=|Γk|
(ϕ(m+ 1)− ϕ(m))Dm(y)

∣∣∣ dy
)p

=I11 + I12.

For I11, we are integrating over Gn\Gn+1 which is contained in the complement of
the support of D|Γk| and D|Γk+1| for n < k. So in this case the integral is zero. For
n = k, we have

I11 = |Gk|1−p
( ∫

Gk\Gk+1

∣∣ϕ (|Γk|)D|Γk|(y)
∣∣ +

∣∣ϕ (|Γk+1|)D|Γk+1|(y)
∣∣ dy

)p

≤ |Gk|1−p (B |Γk| |Gk|+ 0)p

= Bp |Gk|1−p
,

where B is an upper bound for |ϕ|. This is the desired estimate for I11. For I12 we
apply the Sidon type inequality in Lemma 8:

I12 =
k∑

n=0

|Gn|1−p
( ∫

Gn\Gn+1

∣∣∣
|Γk+1|−1∑

m=|Γk|
(ϕ(m+ 1)− ϕ(m))Dm(y)

∣∣∣ dy
)p

≤ C

k∑
n=0

|Gn|1−p
(
|Gn|

1
q−1

( |Γk+1|−1∑

m=|Γk|
|ϕ(m+ 1)− ϕ(m)|q

)1/q)p

≤ C

k∑
n=0

|Gn|1−p
(
|Gn|

1
q−1 |Gk|1−

1
q

)p

≤ C |Gk|(1−
1
q )p

k∑
n=0

|Gn|1−2p+ p
q

≤ C |Gk|(1−
1
q )p |Gk|1−2p+ p

q as 1− 2p+
p

q
> 0

= C |Gk|1−p
,

the desired estimate for I12. This completes the proof. ¤
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