The contracted model of exploded real numbers

by I. Szalay

Szeged

ABSTRACT. In this paper we show that a set of complex numbers u, where $\text{Im } u = \frac{1}{2} \cdot \frac{n}{|n|+1}$, $(n = 0, \pm 1, \pm 2, ...)$ and

 $(\operatorname{Re} u) \cdot (\operatorname{Im} u) \ge 0$

is one of the suitable model of exploded real numbers. This model allows the conclusion that the set of exploded real numbers exists.

In [1] we introduced the set of exploded real numbers \overline{R} with the following postulates and requirements.

Postulate of extension:

The set of real numbers is a proper subset of exploded real numbers. For any real number x there exists one exploded real number which is called exploded x or the exploded of x. Moreover, the set of exploded x is called the set of exploded real numbers.

Postulate of unambiguity:

For any pair of real numbers x and y, their explodeds are equal if and only if x is equal to y. Postulate of ordering:

For any pair of real numbers x and y, the exploded x is less than exploded y if and only if x is less than y.

Postulate of super-addition:

For any pair of real numbers x and y, the super-sum of their explodeds is exploded of their sum.

Postulate of super-multiplication:

For any pair of real numbers x and y, the super-product of their explodeds is the exploded of their product.

Requirement of equality for exploded real numbers:

If x and y are real numbers then x as an exploded real number equals to y as an exploded real number if they are equal in the traditional sense.

Requirement of ordering for exploded real numbers:

If x and y are real numbers then x as an exploded real number is less than y as an exploded real number if x is less than y in the traditional sense.

Requirement of monotonity of super-addition:

If u and v are arbitrary exploded real numbers and u is less than v then, for any exploded real number w, u superplus w is less than v superplus w.

Requirement of monotonity of super-multiplication:

If u and v are arbitrary exploded real numbers and u is less than v then, for any positive exploded real number w, u super- multiplied by w is less than v super-multiplied by w.

Definition 1. The explosion of real numbers in a contracted sense: for any real number x, its exploded is

(1.1)
$$\overline{x} = (\operatorname{sgn} x) \Big(\operatorname{area} \operatorname{th}\{|x|\} + \frac{i}{2} \frac{[|x|]}{[|x|] + 1} \Big), \quad x \in R.$$

²⁰⁰⁰ Mathematics Subject Classification. 03C30.

Key words and phrases. Exploded numbers, explosion of real numbers, compression of exploded numbers, compressed numbers, super- multiplication, super-addition.

Clearly,

Im
$$\overline{x} = \frac{1}{2} \frac{n}{|n|+1}$$
, where *n* is an integer number and $(\operatorname{Re} \overline{x}) \cdot (\operatorname{Im} \overline{x}) \ge 0$

Theorem 2. The mapping $x \to \overline{x}$ is mutually unambiguous.

Proof. Obviously, if $x = y \Rightarrow \overset{\square}{x} = \overset{\square}{y}$ (Re $\overset{\square}{x}$ = Re $\overset{\square}{y}$ and Im $\overset{\square}{x}$ = Im $\overset{\square}{y}$) Conversely, we assume that $\overset{\square}{x} = \overset{\square}{y}$. Hence,

(2.1)
$$(\operatorname{sgn} x) \operatorname{area} \operatorname{th}\{|x|\} = (\operatorname{sgn} y) \operatorname{area} \operatorname{th}\{|y|\}$$

and

(2.2)
$$(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1} = (\operatorname{sgn} y) \frac{[|y|]}{[|y|]+1}.$$

By (2.2) the cases $|x| \ge 1$ and |y| < 1; |x| < 1 and $|y| \ge 1$ are not allowed so we have the following two cases

$$a) \qquad \qquad 0 \le |x|, \ |y| < 1$$

or

$$b) \qquad |x|, |y| \ge 1,$$

only.

In the case a) exception of x = y = 0, |x| < 1 and y = 0; x = 0 and |y| < 1 is not allowed. (See (2.1).) Otherwise we can see that $\{|x|\}$ and $\{|y|\}$ are positive numbers, so (2.1) gives that $\operatorname{sgn} x = \operatorname{sgn} y$. In the case b) we have that $\frac{[|x|]}{[|x|]+1}$ and $\frac{[|y|]}{[|y|]+1}$ are positive numbers so, (2.2) gives that $\operatorname{sgn} x = \operatorname{sgn} y$. Collecting these, for all allowed cases of the pairs x, y we obtain

$$(2.3) \qquad \qquad \operatorname{sgn} x = \operatorname{sgn} y.$$

Using (2.3) we can see that (2.2) yields

$$(2.4) [|x|] = [|y|].$$

Using (2.3) again by (2.1) we get

 $\{|x|\} = \{|y|\}.$ (2.5)

By (2.4) and (2.5) we have that |x| = |y| and finally (2.3) gives that x = y.

Remark. Theorem 2 shows that the Postulate of unambiguity is fulfilled.

Theorem 3. If u is a complex number such that $\operatorname{Im} u = \frac{1}{2} \frac{n}{|n|+1}$, $n = 0, \pm 1, \pm 2, \ldots$ and $(\operatorname{Re} u) \cdot (\operatorname{Im} u) \ge 0$, then

$$\frac{\operatorname{Im} u}{\frac{1}{2} - |\operatorname{Im} u|} + \operatorname{th} \operatorname{Re} u = u$$

Proof. It is easy to see that

(3.2)
$$\frac{\operatorname{Im} u}{\frac{1}{2} - |\operatorname{Im} u|} = n$$

is valid. First let be $n = 1, 2, 3, \ldots$ Now we have that $\operatorname{Re} u \ge 0$ and by (1.1)

$$\overline{n + \operatorname{th} \operatorname{Re} u} = \operatorname{area} \operatorname{th}(\operatorname{th} \operatorname{Re} u) + \frac{i}{2} \frac{n}{n+1} = \operatorname{Re} u + i \operatorname{Im} u = u.$$

For n = 0, u is a real number, so $\operatorname{Re} u = u$. Using (1.1) we have:

$$\overrightarrow{\text{th } u} = (\operatorname{sgn} u) \operatorname{area} \operatorname{th} \{ |\operatorname{th} u| \} = (\operatorname{sgn} u) \operatorname{area} \operatorname{th} |\operatorname{th} u| =$$

 $= (\operatorname{sgn} u) \operatorname{area} \operatorname{th}(\operatorname{th} |u|) = (\operatorname{sgn} u)|u| = u.$

Finally, for n = -1, -2, -3 we have that $\operatorname{Re} u \leq 0$ and by (1.1)

$$\overline{n + \operatorname{th}\operatorname{Re} u} = -\left(\operatorname{area}\operatorname{th}(-\operatorname{th}\operatorname{Re} u) + \frac{i}{2}\frac{|n|}{|n|+1}\right) = \operatorname{Re} u + i\operatorname{Im} u = u.$$

Theorem 3 and (1.2) yield

Corollary 4. The complex number u is an exploded real number in a contracted sense, if and only if $\operatorname{Im} u = \frac{1}{2} \frac{n}{|n|+1}$, $n = 0, \pm 1, \pm 2, \ldots$, and $(\operatorname{Re} u) \cdot (\operatorname{Im} u) \ge 0$.

We denote the set of exploded real numbers, in a contracted sense, by R^{\Box} .

$$\overrightarrow{R} = \{ u \in \mathbf{C} : u = \operatorname{Re} u + i \operatorname{Im} u, \ \operatorname{Im} u = \frac{1}{2} \frac{n}{|n|+1}, n \text{ is integer and } (\operatorname{Re} u) \cdot (\operatorname{Im} u) \ge 0. \}$$

Definition 5. For any set $S \subseteq \mathbf{R}$, the exploded S is: $\overline{S} = \{u \in \mathbf{C} : u = \overline{x} \text{ such that } x \in S\}$. Considering the open interval (-1, 1) by Definitions 1 and 5 we obtain

Corollary 6. $\overline{(-1,1)} = \mathbf{R}$. So, we can see that the Postulate of extension is fulfilled.

Definition 7. The compression of exploded real numbers: for any exploded real number u, its compressed is

(7.1)
$$\frac{u}{\Box} = \frac{\operatorname{Im} u}{\frac{1}{2} - |\operatorname{Im} u|} + th \operatorname{Re} u, \quad u \in \mathbb{R}.$$

By (3.1) and (7.1) we have the identity

Definition 8. For set $S \subseteq \mathbf{R}^{\square}$, the compressed of S is: $\mathbf{S} = \{x \in \mathbf{R} : x = \mathbf{u}, \text{ such that } u \in S\}.$

Theorem 9. For any real number x the identity

(9.1)
$$(\stackrel{\square}{x}) = x, \quad x \in \mathbf{R}$$

holds. Definitions 5 and 8 with (7.2) and (9.1) yield

Corollary 10.

(10.1)
$$(\overset{[]}{\square}) = S, \quad S \subseteq \mathbf{R}$$

and

(10.2)
$$\boxed{\left(\begin{array}{c}S\\\Box\end{array}\right)} = S, \quad S \subseteq \begin{array}{c}\Box\\R\end{array}$$

Definition 11. For any $x, y \in R$ we say that $x \stackrel{\square}{\times} x \stackrel{\square}{<} y$ if $\operatorname{Im} x < \operatorname{Im} y$ or if $\operatorname{Im} x = \operatorname{Im} y$ then $\operatorname{Re} x < \operatorname{Re} y$.

Definition 12. For any $x, y \in \mathbf{R}$ we say that $\begin{bmatrix} \overline{R} \\ z \\ z \end{bmatrix} \stackrel{\square}{y}$ if $\begin{bmatrix} \overline{R} \\ y \\ z \end{bmatrix} \stackrel{\square}{<} \begin{bmatrix} \overline{R} \\ x \\ z \end{bmatrix}$.

Theorem 13. For any x the inequality $\begin{bmatrix} x \\ x \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ y \end{bmatrix}$ holds if and only if x < y.

Proof.

Necessity. Let us assume that $\overline{x} < \overline{y}$. By Definition 11 we consider two cases: *Case 1.* Im $\overline{x} < \text{Im } \overline{y}$, that is, by (1.1) we have

(13.1)
$$(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1} < (\operatorname{sgn} y) \frac{[|y|]}{[|y|]+1}$$

Now, if $x \ge y$ then considering the monotonity of the function $f(x) = (\operatorname{sgn} x) \frac{[|x|]}{||x||+1}$ we have that $f(x) \ge f(y)$ which contradicts (13.1). So, x < y. Case 2. Im $\overline{x} = \text{Im } \overline{y}$ and Re $\overline{x} < \text{Re } \overline{y}$. Now we have (2.2) and

(13.2)
$$(\operatorname{sgn} x) \operatorname{area} \operatorname{th}\{|x|\} < (\operatorname{sgn} y) \operatorname{area} \operatorname{th}\{|y|\}$$

moreover, x and y are not integer numbers. If x = 0 then y > 0, if y = 0 then x < 0. Otherwise, area th{|x|}, area th{|y|} > 0. Inequality sgn x > sgn y is not allowed. If sgn x < sgn y then x < y, obviously. If sgn x = sgn y = 1, then (2.2) yields that [x] = [y] and (13.2) gives that $\{x\} < \{y\}$, so 0 < x < y. If sgn x = sgn y = -1, then (2.2) yields that [|x|] = [|y|] and the identity [|x|] = -([x] + 1) shows that [x] = [y]. Inequality (13.2) gives that $\{|x|\} > \{|y|\}$. Hence, by identity $\{|x|\} = -(\{x\} - 1)$ we have that $\{x\} < \{y\}$. So, x < y < 0 is obtained. Collecting the cases we have

$$(13.3) x < y.$$

Sufficiency. Let us assume that x < y. Considering the monotonity of the function $f(x) = (\operatorname{sgn} x) \frac{||x||}{||x||+1}$, we have

(13.4)
$$(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1} < (\operatorname{sgn} y) \frac{[|y|]}{[|y|]+1}$$

or

(13.5)
$$(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1} = (\operatorname{sgn} y) \frac{[|y|]}{[|y|]+1}$$

two cases

$$a) 0 \le |x|, |y| < 1$$

or

$$b) |x|, |y| \ge 1,$$

only.

In the case a) if x = 0 then y > 0, if y = 0 then x < 0. Otherwise, 0 < |x|, |y| < 1. Clearly, [|x|] = [|y|] = 0, so $\{|x|\} = |x|$, $\{|y|\} = |y|$. The inequality x < y implies that sgn $x \le \text{sgn } y$. If sgn x < sgn y then -1 < x < 0 < y < 1. So,

 $(\operatorname{sgn} x) \operatorname{area} \operatorname{th}\{|x|\} < 0 < (\operatorname{sgn} x) \operatorname{area} \operatorname{th}\{|y|\}$

and Definition 11 by (1.1) gives that $\overline{x} < \overline{y}$. If sgn x = sgn y = 1 then 0 < x < y < 1. So,

 $0 < (\operatorname{sgn} x) \operatorname{area} \operatorname{th}\{|x|\} < (\operatorname{sgn} y) \operatorname{area} \operatorname{th}\{|y|\}$

and Definition 11 by (1.1) gives that $\overline{x} < \overline{y}$.

If sgn
$$x = \text{sgn } y = -1$$
, then $-1 < x < y < 0$. Hence, $0 < |y| < |x| < 1$ and $0 < \{|y|\} < \{|x|\} < 1$. So

 $0 > (\operatorname{sgn} y) \operatorname{area} \operatorname{th}\{|y|\} > (\operatorname{sgn} x) \operatorname{area} \operatorname{th}\{|x|\} > -1$

and Definition 11 by (1.1) gives that $\overline{x} < \overline{y}$. In the case b) (13.5) yields

$$[|x|] = [|y|].$$

Integer x and y are not allowed.

If sgn x = sgn y = 1, then the identity $\{|x|\} = x - [|x|]$ by x < y implies that $\{|x|\} < \{|y|\}$. Hence, $(\text{sgn } x) \text{ area th} \{|x|\} < (\text{sgn } y) (\text{area th} \{|y|\})$. So, Definition 11 by (1.1) gives that $\overline{x} < \overline{y}$.

The case $\operatorname{sgn} x = 1$ and $\operatorname{sgn} y = -1$ is not allowed. If $\operatorname{sgn} x = -1$ and $\operatorname{sgn} y = 1$ then $(\operatorname{sgn} x)$ area th $\{|x|\} < (\operatorname{sgn} y)(\operatorname{area} \operatorname{th}\{|y|\})$. So Definition 11 by (1.1) gives that $\overline{x} < \overline{y}$.

If sgn x = sgn y = -1, then identity $\{|x|\} = -x - [|x|]$. So, inequality x < y implies -x > -y > 1. Hence, $\{|x|\} > \{|y|\}$. So, $(\text{sgn } x) \operatorname{areath} \{|x|\} < (\text{sgn } y) \operatorname{areath} \{|y|\}$ and Definition 11 by (1.1) gives that $\overline{x} < \overline{y}$.

Remark. Theorem 13 shows that the Postulate of ordering is fulfilled.

Theorem 14. If $x, y \in \mathbf{R}$ then $x \stackrel{\square}{<} y \iff x < y$.

Proof. Identity (7.2) and Theorem 13 show that $x \stackrel{\square}{<} y \iff x \stackrel{\vee}{=} x \stackrel{\vee}{=} 0$. By (7.1) we have that $x \stackrel{\square}{=} = th x$ and $\frac{y}{\square} = th y$. Using the strict monotonity of the function th we have that $x \stackrel{\vee}{=} y \iff x < y$.

Remark. Theorem 14 shows that the Requirement of ordering is fulfilled.

Remark 15. By Theorem 14 we may use u < v instead of u < v for any $u, v \in \mathbb{R}^{n}$. Theorem 13 with identity (7.2) gives

Theorem 16. (*Monotonity of compression*) For any $u, v \in \mathbb{R}$ the inequality $\frac{u}{\Box} < \frac{v}{\Box}$ holds if and only if u < v. Moreover, Theorem 13 yields the following corollaries:

Corollary 17. The relation "<" is irreflixive, anti- symmetrical and transitive.

Corollary 18. (*Trichotomity*)) For any $x, y \in \mathbf{R}$ from among relations $\overline{x} < \overline{y}$, $\overline{x} = \overline{y}$ and $\overline{x} > \overline{y}$ one and only one is true.

Definition 19. (Super-addition) For any $x, y \in \mathbf{R}$, the super-sum of \overline{x} and \overline{y} is

(19.1)
$$\overline{x} \to \overline{y} = (\operatorname{sgn}(x+y)) \Big(\operatorname{area} \operatorname{th}\{|x+y|\} + \frac{i}{2} \frac{[|x+y|]}{[|x+y|]+1} \Big).$$

By Definition 1 the identity

(19.2)
$$\overrightarrow{x} - \overleftarrow{y} = \overrightarrow{x} + y, \quad x, y \in \mathbf{R} \quad (See \ Postulate \ of \ super - addition)$$

is obvious.

Definition 20. (Super-multiplication) For any $x, y \in \mathbf{R}$, the super-multiplication of \overline{x} and \overline{y} is

(20.1)
$$\overrightarrow{x} - \overleftarrow{y} = (\operatorname{sgn}(x \cdot y))(\operatorname{area} \operatorname{th}\{|x \cdot y|\} + \frac{i}{2} \frac{[|x \cdot y|]}{[|x \cdot y|] + 1}$$

By Definition 1 the identity

(20.2)
$$\qquad \qquad \overrightarrow{x} - \overleftarrow{y} = \overline{x \cdot y}, \quad x, y \in \mathbf{R} \quad (See \ Postulate \ of \ super - multiplication)$$

is obvious.

Remark 21. Using identities (19.2) and (20.2) we find that the field $(\mathbf{R}, +, \cdot)$ is isomorphic with the algebraic structure $(\overrightarrow{R}, -\overleftarrow{\ominus}, -\overleftarrow{\ominus})$; so the latter is also a field with the operations super-addition and super-multiplication. By (19.1) we can see that the additive unit element of \overrightarrow{R} is $\overrightarrow{0} = 0$. The additive inverse element of \overrightarrow{x} is $-\overrightarrow{x}$ for which, by (1.1), the identity

holds. By (20.1) we can see that the multiplicative unit element of $\overset{\square}{R}$ is $\overset{\square}{1} = \frac{i}{4}$. The multiplicative inverse element of $\overset{\square}{x} \neq 0$ is $(\frac{1}{\frac{1}{x}})$.

Remark 22. By (7.1) we have that for any $u \in \mathbb{R}^{\square}$ the identity

$$(22.1) \qquad \qquad \underline{-u} = -\underline{u}, \quad u \in \overline{R}$$

holds. Moreover, denoting $\overline{x} = u$ and $\overline{y} = v$, the identities (19.2) and (20.2) by (9.1) yield the identities

(22.2)
$$u - \biguplus - v = \boxed{u + v} (u, v \in \overrightarrow{R})$$

and

(22.3)
$$u - \bigodot - v = \boxed{u \cdot v} (u, v \in \overrightarrow{R}),$$

respectively.

Definition 23. The exploded real number u is called positive if u > 0 and negative if u < 0. (These are extensions of the familiar positivity and negativity of real numbers.)

Theorem 24. (Monotonity of super-addition) Let u, v and w be arbitrary exploded real numbers. If u < v then

$$u - \bigotimes - w < v - \bigotimes - w.$$

Proof. Using (22.2), Theorem 16, Theorem 13 and (22.2) again, we have that

$$u - \biguplus - w = \boxed{u + w} < \boxed{v + w} = v - \oiint - w.$$

Theorem 25. (Monotonity of super-multiplication) Let u, v be arbitrary and w positive exploded real numbers. If u < v then $u - \bigcirc -w < v - \bigcirc -w$.

Proof. First, we mention that by Theorem 16 and Definition 23 with Definition (7.1) $\overset{w}{\square} > \overset{0}{\square} = 0$ is obtained. Moreover, using (22.3), Theorem 16, Theorem 13 and (22.3) again, we have that

$$u - \bigcirc -w = \boxed{u \cdot w} < \boxed{v \cdot w} = v - \bigcirc -w.$$

Remark 26. Considering Remark 21, Theorem 24 and Theorem 25 we can see that $(\stackrel{\square}{R}, -\stackrel{}{\not{\ominus}}, -\stackrel{}{\not{\ominus}}, -\stackrel{}{\not{\ominus}})$ is an ordered field.

Reference

[1] I. Szalay: Exploded and compressed numbers. AMAPN, 18(2):33-51, 2002.

Received October 27, 2003.

DEPARTMENT OF MATHEMATICS FACULTY OF TEACHER'S TRAINING UNIVERSITY OF SZEGED H-6720 SZEGED, BOLDOGASSZONY SGT, 6-8. E-mail adress: szalay@jgytf.u-szeged.hu