The contracted model of exploded real numbers

by I. Szalay
 Szeged

ABSTRACT. In this paper we show that a set of complex numbers u, where $\operatorname{Im} u=\frac{1}{2} \cdot \frac{n}{|n|+1},(n=0, \pm 1, \pm 2, \ldots)$ and

$$
(\operatorname{Re} u) \cdot(\operatorname{Im} u) \geq 0
$$

is one of the suitable model of exploded real numbers. This model allows the conclusion that the set of exploded real numbers exists.

In [1] we introduced the set of exploded real numbers $\stackrel{\rightharpoonup}{R}$ with the following postulates and requirements.

Postulate of extension:
The set of real numbers is a proper subset of exploded real numbers. For any real number x there exists one exploded real number which is called exploded x or the exploded of x. Moreover, the set of exploded x is called the set of exploded real numbers.
Postulate of unambiguity:
For any pair of real numbers x and y, their explodeds are equal if and only if x is equal to y.
Postulate of ordering:
For any pair of real numbers x and y, the exploded x is less than exploded y if and only if x is less than y.
Postulate of super-addition:
For any pair of real numbers x and y, the super-sum of their explodeds is exploded of their sum.
Postulate of super-multiplication:
For any pair of real numbers x and y, the super-product of their explodeds is the exploded of their product.
Requirement of equality for exploded real numbers:
If x and y are real numbers then x as an exploded real number equals to y as an exploded real number if they are equal in the traditional sense.
Requirement of ordering for exploded real numbers:
If x and y are real numbers then x as an exploded real number is less than y as an exploded real number if x is less than y in the traditional sense.
Requirement of monotonity of super-addition:
If u and v are arbitrary exploded real numbers and u is less than v then, for any exploded real number w, u superplus w is less than v superplus w.
Requirement of monotonity of super-multiplication:
If u and v are arbitrary exploded real numbers and u is less than v then, for any positive exploded real number w, u super- multiplied by w is less than v super-multiplied by w.

Definition 1. The explosion of real numbers in a contracted sense: for any real number x, its exploded is

$$
\begin{equation*}
\stackrel{\rightharpoonup}{x}=(\operatorname{sgn} x)\left(\operatorname{areath}\{|x|\}+\frac{i}{2} \frac{[|x|]}{[|x|]+1}\right), \quad x \in R . \tag{1.1}
\end{equation*}
$$

2000 Mathematics Subject Classification. 03C30.
Key words and phrases. Exploded numbers, explosion of real numbers, compression of exploded numbers, compressed numbers, super- multiplication, super-addition.

Clearly,

$$
\operatorname{Im} \stackrel{\square}{x}=\frac{1}{2} \frac{n}{|n|+1}, \quad \text { where } \quad n \quad \text { is an integer number and } \quad(\operatorname{Re} \stackrel{\square}{x}) \cdot(\operatorname{Im} \stackrel{\square}{x}) \geq 0 .
$$

Theorem 2. The mapping $x \rightarrow \stackrel{\square}{x}$ is mutually unambiguous.
Proof. Obviously, if $x=y \Rightarrow \stackrel{\square}{x}=\stackrel{\square}{y}(\operatorname{Re} \stackrel{\square}{x}=\operatorname{Re} \stackrel{\square}{y}$ and $\operatorname{Im} \stackrel{\square}{x}=\operatorname{Im} \stackrel{\square}{y})$
Conversely, we assume that $\frac{\square}{x}=\frac{\square}{y}$. Hence,

$$
\begin{equation*}
(\operatorname{sgn} x) \text { area } \operatorname{th}\{|x|\}=(\operatorname{sgn} y) \text { area } \operatorname{th}\{|y|\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1}=(\operatorname{sgn} y) \frac{[|y|]}{[|y|]+1} \tag{2.2}
\end{equation*}
$$

By (2.2) the cases $|x| \geq 1$ and $|y|<1 ;|x|<1$ and $|y| \geq 1$ are not allowed so we have the following two cases
a)

$$
0 \leq|x|,|y|<1
$$

or
b)

$$
|x|,|y| \geq 1
$$

only.
In the case a) exception of $x=y=0,|x|<1$ and $y=0 ; x=0$ and $|y|<1$ is not allowed. (See (2.1).) Otherwise we can see that $\{|x|\}$ and $\{|y|\}$ are positive numbers, so (2.1) gives that $\operatorname{sgn} x=\operatorname{sgn} y$.

In the case b) we have that $\frac{[|x|]}{[|x|]+1}$ and $\frac{[|y|]}{\| y \mid]+1}$ are positive numbers so, (2.2) gives that $\operatorname{sgn} x=\operatorname{sgn} y$.
Collecting these, for all allowed cases of the pairs x, y we obtain

$$
\begin{equation*}
\operatorname{sgn} x=\operatorname{sgn} y \tag{2.3}
\end{equation*}
$$

Using (2.3) we can see that (2.2) yields

$$
\begin{equation*}
[|x|]=[|y|] \tag{2.4}
\end{equation*}
$$

Using (2.3) again by (2.1) we get

$$
\begin{equation*}
\{|x|\}=\{|y|\} . \tag{2.5}
\end{equation*}
$$

By (2.4) and (2.5) we have that $|x|=|y|$ and finally (2.3) gives that $x=y$.
Remark. Theorem 2 shows that the Postulate of unambiguity is fulfilled.
Theorem 3. If u is a complex number such that $\operatorname{Im} u=\frac{1}{2} \frac{n}{|n|+1}, n=0, \pm 1, \pm 2, \ldots$ and $(\operatorname{Re} u) \cdot(\operatorname{Im} u) \geq 0$, then

$$
\frac{\operatorname{Im} u}{\frac{1}{2}-|\operatorname{Im} u|}+\operatorname{th} \operatorname{Re} u=u .
$$

Proof. It is easy to see that

$$
\begin{equation*}
\frac{\operatorname{Im} u}{\frac{1}{2}-|\operatorname{Im} u|}=n \tag{3.2}
\end{equation*}
$$

is valid. First let be $n=1,2,3, \ldots$. Now we have that $\operatorname{Re} u \geq 0$ and by (1.1)

$$
\overline{n+\operatorname{th} \operatorname{Re} u}=\operatorname{areath}(\operatorname{th} \operatorname{Re} u)+\frac{i}{2} \frac{n}{n+1}=\operatorname{Re} u+i \operatorname{Im} u=u
$$

For $n=0, u$ is a real number, so $\operatorname{Re} u=u$. Using (1.1) we have:

$$
\begin{aligned}
\overline{\operatorname{th} u}= & (\operatorname{sgn} u) \text { area } \operatorname{th}\{|\operatorname{th} u|\}=(\operatorname{sgn} u) \text { area th } \mid \text { th } u \mid= \\
& =(\operatorname{sgn} u) \operatorname{areath}(\operatorname{th}|u|)=(\operatorname{sgn} u)|u|=u .
\end{aligned}
$$

Finally, for $n=-1,-2,-3$ we have that $\operatorname{Re} u \leq 0$ and by (1.1)

$$
\stackrel{\widetilde{n+\operatorname{th} \operatorname{Re} u}}{ }=-\left(\operatorname{area} \operatorname{th}(-\operatorname{th} \operatorname{Re} u)+\frac{i}{2} \frac{|n|}{|n|+1}\right)=\operatorname{Re} u+i \operatorname{Im} u=u
$$

Theorem 3 and (1.2) yield
Corollary 4. The complex number u is an exploded real number in a contracted sense, if and only if $\operatorname{Im} u=\frac{1}{2} \frac{n}{|n|+1}, n=0, \pm 1, \pm 2, \ldots$, and $(\operatorname{Re} u) \cdot(\operatorname{Im} u) \geq 0$.

We denote the set of exploded real numbers, in a contracted sense, by $\stackrel{\square}{R}$.

$$
\stackrel{\rightharpoonup}{R}=\left\{u \in \mathbf{C}: u=\operatorname{Re} u+i \operatorname{Im} u, \operatorname{Im} u=\frac{1}{2} \frac{n}{|n|+1}, n \text { is integer and }(\operatorname{Re} u) \cdot(\operatorname{Im} u) \geq 0 .\right\}
$$

Definition 5. For any set $S \subseteq \mathbf{R}$, the exploded S is: $\stackrel{\rightharpoonup}{S}=\{u \in \mathbf{C}: u=\stackrel{\square}{x}$ such that $x \in S\}$. Considering the open interval $(-1,1)$ by Definitions 1 and 5 we obtain

Corollary 6. $(-1,1)=\mathbf{R}$.
So, we can see that the Postulate of extension is fulfilled.
Definition 7. The compression of exploded real numbers: for any exploded real number u, its compressed is

$$
\begin{equation*}
\stackrel{u}{\square}=\frac{\operatorname{Im} u}{\frac{1}{2}-|\operatorname{Im} u|}+t h \operatorname{Re} u, \quad u \in \stackrel{\square}{R} . \tag{7.1}
\end{equation*}
$$

By (3.1) and (7.1) we have the identity

$$
\begin{equation*}
\stackrel{\widetilde{u}}{\substack{u\\)}}=u, \quad u \in \stackrel{\square}{R} . \tag{7.2}
\end{equation*}
$$

Definition 8. For set $S \subseteq \widetilde{\mathbf{R}}$, the compressed of S is: $\underset{\square}{S}=\{x \in \mathbf{R}: x=\stackrel{u}{\square}$, such that $u \in S\}$.
Theorem 9. For any real number x the identity

$$
\begin{equation*}
\stackrel{(\square)}{x})=x, \quad x \in \mathbf{R} \tag{9.1}
\end{equation*}
$$

holds.
Definitions 5 and 8 with (7.2) and (9.1) yield

Corollary 10.

$$
\begin{equation*}
(\stackrel{\rightharpoonup}{S})=S, \quad S \subseteq \mathbf{R} \tag{10.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{(\underset{\square}{S})}=S, \quad S \subseteq \stackrel{\rightharpoonup}{R} . \tag{10.2}
\end{equation*}
$$

Definition 11. For any $x, y \in R$ we say that $\stackrel{\square}{x} \stackrel{\stackrel{\rightharpoonup}{R}}{<} \frac{\square}{y}$ if $\operatorname{Im} \stackrel{\rightharpoonup}{x}<\operatorname{Im} \stackrel{\square}{y}$ or if $\operatorname{Im} \stackrel{\square}{x}=\operatorname{Im} \stackrel{\square}{y}$ then $\operatorname{Re} \stackrel{\square}{x}<\operatorname{Re} \stackrel{\rightharpoonup}{y}$.

Theorem 13. For any x the inequality $\stackrel{\square}{x} \stackrel{\square}{<}$ 号 holds if and only if $x<y$.

Proof.

Case 1. $\operatorname{Im} \stackrel{\square}{x}<\operatorname{Im} \bar{y}$, that is, by (1.1) we have

$$
\begin{equation*}
(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1}<(\operatorname{sgn} y) \frac{[|y|]}{[|y|]+1} \tag{13.1}
\end{equation*}
$$

Now, if $x \geq y$ then considering the monotonity of the function $f(x)=(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1}$ we have that $f(x) \geq f(y)$ which contradicts (13.1). So, $x<y$.

Case 2. $\operatorname{Im} \bar{x}=\operatorname{Im} \bar{y}$ and $\operatorname{Re} \dot{x}<\operatorname{Re} \dot{y}$. Now we have (2.2) and

$$
\begin{equation*}
(\operatorname{sgn} x) \text { area } \operatorname{th}\{|x|\}<(\operatorname{sgn} y) \text { area } \operatorname{th}\{|y|\} \tag{13.2}
\end{equation*}
$$

moreover, x and y are not integer numbers. If $x=0$ then $y>0$, if $y=0$ then $x<0$. Otherwise, area th $\{|x|\}$, area $\operatorname{th}\{|y|\}>0$. Inequality $\operatorname{sgn} x>\operatorname{sgn} y$ is not allowed.

If $\operatorname{sgn} x<\operatorname{sgn} y$ then $x<y$, obviously.
If $\operatorname{sgn} x=\operatorname{sgn} y=1$, then (2.2) yields that $[x]=[y]$ and (13.2) gives that $\{x\}<\{y\}$, so $0<x<y$.
If $\operatorname{sgn} x=\operatorname{sgn} y=-1$, then (2.2) yields that $[|x|]=[|y|]$ and the identity $[|x|]=-([x]+1)$ shows that $[x]=[y]$. Inequality (13.2) gives that $\{|x|\}>\{|y|\}$. Hence, by identity $\{|x|\}=-(\{x\}-1)$ we have that $\{x\}<\{y\}$. So, $x<y<0$ is obtained.
Collecting the cases we have

$$
\begin{equation*}
x<y \tag{13.3}
\end{equation*}
$$

Sufficiency. Let us assume that $x<y$. Considering the monotonity of the function $f(x)=(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1}$, we have

$$
\begin{equation*}
(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1}<(\operatorname{sgn} y) \frac{[|y|]}{[|y|]+1} \tag{13.4}
\end{equation*}
$$

or

$$
\begin{equation*}
(\operatorname{sgn} x) \frac{[|x|]}{[|x|]+1}=(\operatorname{sgn} y) \frac{[|y|]}{[|y|]+1} \tag{13.5}
\end{equation*}
$$

In case of (13.4), Definition 11 and (1.1) show that $\begin{aligned} & \stackrel{\square}{x} \\ & <\dot{R}^{\circ} \\ & y\end{aligned}$.
In case of (13.5) the cases $|x| \geq 1$ and $|y|<1 ;|x|<1$ and $|y| \geq 1$ are not allowed. So, we have the following two cases
a)

$$
0 \leq|x|,|y|<1
$$

or
b)

$$
|x|,|y| \geq 1
$$

only.

In the case a) if $x=0$ then $y>0$, if $y=0$ then $x<0$. Otherwise, $0<|x|,|y|<1$. Clearly, $[|x|]=[|y|]=0$, so $\{|x|\}=|x|,\{|y|\}=|y|$. The inequality $x<y$ implies that $\operatorname{sgn} x \leq \operatorname{sgn} y$.

If $\operatorname{sgn} x<\operatorname{sgn} y$ then $-1<x<0<y<1$. So,

$$
(\operatorname{sgn} x) \text { area } \operatorname{th}\{|x|\}<0<(\operatorname{sgn} x) \text { area } \operatorname{th}\{|y|\}
$$

and Definition 11 by (1.1) gives that $\stackrel{\square}{x}<\frac{\square}{y}$.
If $\operatorname{sgn} x=\operatorname{sgn} y=1$ then $0<x<y<1$. So,

$$
0<(\operatorname{sgn} x) \text { area } \operatorname{th}\{|x|\}<(\operatorname{sgn} y) \text { area } \operatorname{th}\{|y|\}
$$

and Definition 11 by (1.1) gives that $\stackrel{\square}{x}<\frac{\square}{y}$.
If $\operatorname{sgn} x=\operatorname{sgn} y=-1$, then $-1<x<y<0$. Hence, $0<|y|<|x|<1$ and $0<\{|y|\}<\{|x|\}<1$. So

$$
0>(\operatorname{sgn} y) \text { area } \operatorname{th}\{|y|\}>(\operatorname{sgn} x) \text { area } \operatorname{th}\{|x|\}>-1
$$

and Definition 11 by (1.1) gives that $\stackrel{\square}{x}<\stackrel{\square}{y}$.
In the case b) (13.5) yields

$$
[|x|]=[|y|] .
$$

Integer x and y are not allowed.
If $\operatorname{sgn} x=\operatorname{sgn} y=1$, then the identity $\{|x|\}=x-[|x|]$ by $x<y$ implies that $\{|x|\}<\{|y|\}$. Hence, $(\operatorname{sgn} x)$ area $\operatorname{th}\{|x|\}<(\operatorname{sgn} y)(\operatorname{area} \operatorname{th}\{|y|\})$. So, Definition 11 by (1.1) gives that $\stackrel{\rightharpoonup}{x}<\stackrel{\rightharpoonup}{y}$.

The case $\operatorname{sgn} x=1$ and $\operatorname{sgn} y=-1$ is not allowed.
If $\operatorname{sgn} x=-1$ and $\operatorname{sgn} y=1$ then $(\operatorname{sgn} x)$ area $\operatorname{th}\{|x|\}<(\operatorname{sgn} y)(\operatorname{area} \operatorname{th}\{|y|\})$. So Definition 11 by (1.1) gives that $\bar{x}<\frac{\square}{y}$.

If $\operatorname{sgn} x=\operatorname{sgn} y=-1$, then identity $\{|x|\}=-x-[|x|]$. So, inequality $x<y$ implies $-x>-y>1$. Hence, $\{|x|\}>\{|y|\}$. So, $(\operatorname{sgn} x)$ area $\operatorname{th}\{|x|\}<(\operatorname{sgn} y)$ area $\operatorname{th}\{|y|\}$ and Definition 11 by (1.1) gives that $\underset{x}{ }$ $<$.

Remark. Theorem 13 shows that the Postulate of ordering is fulfilled.

$$
\stackrel{\rightharpoonup}{R}
$$

Theorem 14. If $x, y \in \mathbf{R}$ then $x<y \Longleftrightarrow x<y$.

$$
\stackrel{\rightharpoonup}{R}
$$

Proof. Identity (7.2) and Theorem 13 show that $x<y \Longleftrightarrow{ }_{\square}^{x}<{ }_{\square}^{y}$. By (7.1) we have that ${ }_{\square}^{x}=\operatorname{th} x$ and $\underset{\square}{y}=$ th y. Using the strict monotonity of the function th we have that $\underset{\square}{x}<\underset{\square}{y} \Longleftrightarrow x<y$.

Remark. Theorem 14 shows that the Requirement of ordering is fulfilled.

$$
\stackrel{\square}{R}
$$

Remark 15. By Theorem 14 we may use $u<v$ instead of $u \stackrel{R}{<} v$ for any $u, v \in \stackrel{\square}{R}$. Theorem 13 with identity (7.2) gives

Theorem 16. (Monotonity of compression) For any $u, v \in \stackrel{\square}{R}$ the inequality $\underset{\square}{u}<\underset{\square}{v}$ holds if and only if $u<v$. Moreover, Theorem 13 yields the following corollaries:

Corollary 17. The relation " $<$ " is irreflixive, anti- symmetrical and transitive.
Corollary 18. (Trichotomity)) For any $x, y \in \mathbf{R}$ from among relations $\stackrel{\square}{x}<\frac{\square}{y}, ~ \stackrel{\square}{x}=\frac{\square}{y}$ and $\stackrel{\square}{x}>\stackrel{\square}{y}$ one and only one is true.

Definition 19. (Super-addition) For any $x, y \in \mathbf{R}$, the super-sum of \square

$$
\begin{equation*}
\stackrel{\square}{x}-\nsubseteq-\stackrel{\square}{y}=(\operatorname{sgn}(x+y))\left(\operatorname{area} \operatorname{th}\{|x+y|\}+\frac{i}{2} \frac{[|x+y|]}{[|x+y|]+1}\right) . \tag{19.1}
\end{equation*}
$$

By Definition 1 the identity

$$
\begin{equation*}
\stackrel{\square}{x}-\underset{y}{\square+y}, \quad x, y \in \mathbf{R} \quad(\text { See Postulate of super }- \text { addition }) \tag{19.2}
\end{equation*}
$$

is obvious.
Definition 20. (Super-multiplication) For any $x, y \in \mathbf{R}$, the super-multiplication of \bar{x} and $\stackrel{\rightharpoonup}{y}$ is

$$
\begin{equation*}
\stackrel{\rightharpoonup}{x}-\wp-\vec{y}=(\operatorname{sgn}(x \cdot y))\left(\operatorname{area} \operatorname{th}\{|x \cdot y|\}+\frac{i}{2} \frac{[|x \cdot y|]}{[|x \cdot y|]+1} .\right. \tag{20.1}
\end{equation*}
$$

By Definition 1 the identity

$$
\begin{equation*}
\stackrel{\rightharpoonup}{x}-\oint-\vec{y}=\overline{x \cdot y}, \quad x, y \in \mathbf{R} \quad \text { (See Postulate of super }- \text { multiplication }) \tag{20.2}
\end{equation*}
$$

is obvious.
Remark 21. Using identities (19.2) and (20.2) we find that the field ($\mathbf{R},+, \cdot)$ is isomorphic with the algebraic structure ($\stackrel{\square}{R},-\infty--\oint-)$; so the latter is also a field with the operations super-addition and super-multiplication. By (19.1) we can see that the additive unit element of $\stackrel{\rightharpoonup}{R}$ is $\frac{\square}{0}=0$. The additive inverse element of $\stackrel{\square}{x}$ is $\breve{-x}_{-x}$ for which, by (1.1), the identity

$$
\begin{equation*}
\overrightarrow{-x}=-\stackrel{\square}{x}, \quad x \in \mathbf{R} \tag{21.1}
\end{equation*}
$$

holds. By (20.1) we can see that the multiplicative unit element of \vec{R} is $\frac{\square}{1}=\frac{i}{4}$. The multiplicative inverse element of $\vec{x} \neq 0$ is $\left(\frac{1}{x}\right)$.

Remark 22. By (7.1) we have that for any $u \in \vec{R}$ the identity

$$
\begin{equation*}
-\underline{u}_{1}=-\underline{\underline{u}}, \quad u \in \stackrel{\square}{R} \tag{22.1}
\end{equation*}
$$

holds. Moreover, denoting $\stackrel{\rightharpoonup}{x}=u$ and $\stackrel{\rightharpoonup}{y}=v$, the identities (19.2) and (20.2) by (9.1) yield the identities

$$
\begin{equation*}
u-\bigoplus-v=\stackrel{\underset{\sim}{u}+\underset{\square}{v}}{ }(u, v \in \stackrel{\square}{R}) \tag{22.2}
\end{equation*}
$$

and

$$
\begin{equation*}
u-\wp-v=\stackrel{u}{u} \cdot \underset{\square}{v}(u, v \in \stackrel{\square}{R}), \tag{22.3}
\end{equation*}
$$

respectively.
Definition 23. The exploded real number u is called positive if $u>0$ and negative if $u<0$. (These are extensions of the familiar positivity and negativity of real numbers.)

Theorem 24. (Monotonity of super-addition) Let u, v and w be arbitrary exploded real numbers. If $u<v$ then

$$
u-\Varangle-w<v-\nleftarrow-w .
$$

Proof. Using (22.2), Theorem 16, Theorem 13 and (22.2) again, we have that

$$
u-\npreceq-w=\stackrel{u}{a+w}<\stackrel{v}{\square}+\underset{\square}{w}=v-\nmid-w .
$$

Theorem 25. (Monotonity of super-multiplication) Let u, v be arbitrary and w positive exploded real numbers. If $u<v$ then $u-\bigodot-w<v-\oint-w$.

Proof. First, we mention that by Theorem 16 and Definition 23 with Definition (7.1) $\underset{\sim}{w}>{ }_{\square}^{0}=0$ is obtained. Moreover, using (22.3), Theorem 16, Theorem 13 and (22.3) again, we have that

Remark 26. Considering Remark 21, Theorem 24 and Theorem 25 we can see that ($\stackrel{\llcorner }{R},-\oplus-,-\bigodot-$) is an ordered field.

Reference

[1] I. Szalay: Exploded and compressed numbers. AMAPN, 18(2):33-51, 2002.

Received October 27, 2003.

DEPARTMENT OF MATHEMATICS FACULTY OF TEACHER'S TRAINING UNIVERSITY OF SZEGED H-6720 SZEGED, BOLDOGASSZONY SGT, 6-8.
E-mail adress: szalay@jgytf.u-szeged.hu

