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The contracted model of exploded real numbers

by I. Szalay

Szeged

ABSTRACT. In this paper we show that a set of complex numbers u, where Im u = 1
2 · n

|n|+1 , (n = 0,±1,±2, . . .)
and

(Re u) · (Im u) ≥ 0

is one of the suitable model of exploded real numbers. This model allows the conclusion that the set of exploded real numbers
exists.

In [1] we introduced the set of exploded real numbers
|

R
|

with the following postulates and requirements.

Postulate of extension:
The set of real numbers is a proper subset of exploded real numbers. For any real number x there exists
one exploded real number which is called exploded x or the exploded of x. Moreover, the set of exploded
x is called the set of exploded real numbers.

Postulate of unambiguity:
For any pair of real numbers x and y, their explodeds are equal if and only if x is equal to y.

Postulate of ordering:
For any pair of real numbers x and y, the exploded x is less than exploded y if and only if x is less than
y.

Postulate of super-addition:
For any pair of real numbers x and y, the super-sum of their explodeds is exploded of their sum.

Postulate of super-multiplication:
For any pair of real numbers x and y, the super-product of their explodeds is the exploded of their
product.

Requirement of equality for exploded real numbers:
If x and y are real numbers then x as an exploded real number equals to y as an exploded real number
if they are equal in the traditional sense.

Requirement of ordering for exploded real numbers:
If x and y are real numbers then x as an exploded real number is less than y as an exploded real number
if x is less than y in the traditional sense.

Requirement of monotonity of super-addition:
If u and v are arbitrary exploded real numbers and u is less than v then, for any exploded real number
w, u superplus w is less than v superplus w.

Requirement of monotonity of super-multiplication:
If u and v are arbitrary exploded real numbers and u is less than v then, for any positive exploded real
number w, u super- multiplied by w is less than v super-multiplied by w.

Definition 1. The explosion of real numbers in a contracted sense: for any real number x, its exploded is

(1.1) x = (sgn x)
(
area th{|x|}+

i

2
[|x|]

[|x|] + 1

)
, x ∈ R.
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Clearly,

Im x =
1
2

n

|n|+ 1
, where n is an integer number and (Re x ) · (Im x ) ≥ 0.

Theorem 2. The mapping x → x is mutually unambiguous.

Proof. Obviously, if x = y ⇒ x = y (Re x = Re y and Im x = Im y )
Conversely, we assume that x = y . Hence,

(2.1) (sgn x) area th{|x|} = (sgn y) area th{|y|}

and

(2.2) (sgn x)
[|x|]

[|x|] + 1
= (sgn y)

[|y|]
[|y|] + 1

.

By (2.2) the cases |x| ≥ 1 and |y| < 1; |x| < 1 and |y| ≥ 1 are not allowed so we have the following two cases

a) 0 ≤ |x|, |y| < 1

or

b) |x|, |y| ≥ 1,

only.
In the case a) exception of x = y = 0, |x| < 1 and y = 0; x = 0 and |y| < 1 is not allowed. (See (2.1).)

Otherwise we can see that {|x|} and {|y|} are positive numbers, so (2.1) gives that sgn x = sgn y.
In the case b) we have that [|x|]

[|x|]+1 and [|y|]
[|y|]+1 are positive numbers so, (2.2) gives that sgn x = sgn y.

Collecting these, for all allowed cases of the pairs x, y we obtain

(2.3) sgn x = sgn y.

Using (2.3) we can see that (2.2) yields

(2.4) [|x|] = [|y|].

Using (2.3) again by (2.1) we get

(2.5) {|x|} = {|y|}.

By (2.4) and (2.5) we have that |x| = |y| and finally (2.3) gives that x = y. ¥

Remark. Theorem 2 shows that the Postulate of unambiguity is fulfilled.

Theorem 3. If u is a complex number such that Imu = 1
2

n
|n|+1 , n = 0,±1,±2, . . . and (Re u) · (Im u) ≥ 0,

then
Im u

1
2−| Im u| + th Re u = u.

Proof. It is easy to see that

(3.2)
Imu

1
2 − | Im u| = n

is valid. First let be n = 1, 2, 3, . . .. Now we have that Re u ≥ 0 and by (1.1)

n + th Re u = area th(th Reu) +
i

2
n

n + 1
= Re u + i Im u = u.
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For n = 0, u is a real number, so Re u = u. Using (1.1) we have:

th u = (sgn u) area th{| th u|} = (sgn u) area th | th u| =

= (sgn u) area th(th |u|) = (sgn u)|u| = u.

Finally, for n = −1,−2,−3 we have that Re u ≤ 0 and by (1.1)

n + th Re u = −
(
area th(− thRe u) +

i

2
|n|

|n|+ 1

)
= Reu + i Im u = u.

¥
Theorem 3 and (1.2) yield

Corollary 4. The complex number u is an exploded real number in a contracted sense, if and only if
Im u = 1

2
n

|n|+1 , n = 0,±1,±2, . . ., and (Re u) · (Im u) ≥ 0.

We denote the set of exploded real numbers, in a contracted sense, by R .

R = {u ∈ C : u = Re u + i Im u, Imu =
1
2

n

|n|+ 1
, n is integer and (Re u) · (Im u) ≥ 0.}

Definition 5. For any set S ⊆ R, the exploded S is: S = {u ∈ C : u = x such that x ∈ S}. Considering
the open interval (−1, 1) by Definitions 1 and 5 we obtain

Corollary 6. (−1, 1) = R.
So, we can see that the Postulate of extension is fulfilled.

Definition 7. The compression of exploded real numbers: for any exploded real number u, its compressed
is

(7.1) u =
Im u

1
2 − | Imu| + th Re u, u ∈ R .

By (3.1) and (7.1) we have the identity

(7.2) (u ) = u, u ∈ R .

Definition 8. For set S ⊆ R , the compressed of S is: S = {x ∈ R : x = u , such that u ∈ S}.

Theorem 9. For any real number x the identity

(9.1) (x ) = x, x ∈ R

holds.
Definitions 5 and 8 with (7.2) and (9.1) yield

Corollary 10.

(10.1) (S ) = S, S ⊆ R

and

(10.2) (S ) = S, S ⊆
|

R
|

.
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Definition 11. For any x, y ∈ R we say that x
R
< y if Im x < Im y or if Im x = Im y then Re x < Re y .

Definition 12. For any x, y ∈ R we say that x
R
> y if y

R
< x .

Theorem 13. For any x the inequality x
R
< y holds if and only if x < y.

Proof.

Necessity. Let us assume that x
R
< y . By Definition 11 we consider two cases:

Case 1. Im x < Im y , that is, by (1.1) we have

(13.1) (sgn x)
[|x|]

[|x|] + 1
< (sgn y)

[|y|]
[|y|] + 1

Now, if x ≥ y then considering the monotonity of the function f(x) = (sgn x) [|x|]
[|x|]+1 we have that f(x) ≥ f(y)

which contradicts (13.1). So, x < y.
Case 2. Im x = Im y and Re x < Re y . Now we have (2.2) and

(13.2) (sgn x) area th{|x|} < (sgn y) area th{|y|}

moreover, x and y are not integer numbers. If x = 0 then y > 0, if y = 0 then x < 0. Otherwise, area th{|x|},
area th{|y|} > 0. Inequality sgn x > sgn y is not allowed.

If sgn x < sgn y then x < y, obviously.
If sgn x = sgn y = 1, then (2.2) yields that [x] = [y] and (13.2) gives that {x} < {y}, so 0 < x < y.
If sgn x = sgn y = −1, then (2.2) yields that [|x|] = [|y|] and the identity [|x|] = −([x] + 1) shows that

[x] = [y]. Inequality (13.2) gives that {|x|} > {|y|}. Hence, by identity {|x|} = −({x} − 1) we have that
{x} < {y}. So, x < y < 0 is obtained.
Collecting the cases we have

(13.3) x < y.

Sufficiency. Let us assume that x < y. Considering the monotonity of the function f(x) = (sgn x) [|x|]
[|x|]+1 ,

we have

(13.4) (sgn x)
[|x|]

[|x|] + 1
< (sgn y)

[|y|]
[|y|] + 1

or

(13.5) (sgn x)
[|x|]

[|x|] + 1
= (sgn y)

[|y|]
[|y|] + 1

.

In case of (13.4), Definition 11 and (1.1) show that x
R
< y .

In case of (13.5) the cases |x| ≥ 1 and |y| < 1; |x| < 1 and |y| ≥ 1 are not allowed. So, we have the following
two cases

a) 0 ≤ |x|, |y| < 1

or

b) |x|, |y| ≥ 1,

only.
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In the case a) if x = 0 then y > 0, if y = 0 then x < 0. Otherwise, 0 < |x|, |y| < 1. Clearly,
[|x|] = [|y|] = 0, so {|x|} = |x|, {|y|} = |y|. The inequality x < y implies that sgn x ≤ sgn y.

If sgn x < sgn y then −1 < x < 0 < y < 1. So,

(sgn x) area th{|x|} < 0 < (sgn x) area th{|y|}

and Definition 11 by (1.1) gives that x < y .
If sgn x = sgn y = 1 then 0 < x < y < 1. So,

0 < (sgnx) area th{|x|} < (sgn y) area th{|y|}

and Definition 11 by (1.1) gives that x < y .
If sgn x = sgn y = −1, then −1 < x < y < 0. Hence, 0 < |y| < |x| < 1 and 0 < {|y|} < {|x|} < 1. So

0 > (sgn y) area th{|y|} > (sgnx) area th{|x|} > −1

and Definition 11 by (1.1) gives that x < y .
In the case b) (13.5) yields

[|x|] = [|y|].
Integer x and y are not allowed.

If sgn x = sgn y = 1, then the identity {|x|} = x − [|x|] by x < y implies that {|x|} < {|y|}. Hence,
(sgn x) area th{|x|} < (sgn y)(area th{|y|}). So, Definition 11 by (1.1) gives that x < y .

The case sgn x = 1 and sgn y = −1 is not allowed.
If sgn x = −1 and sgn y = 1 then (sgn x) area th{|x|} < (sgn y)(area th{|y|}). So Definition 11 by (1.1)

gives that x < y .
If sgn x = sgn y = −1, then identity {|x|} = −x − [|x|]. So, inequality x < y implies −x > −y > 1.

Hence, {|x|} > {|y|}. So, (sgn x) area th{|x|} < (sgn y) area th{|y|} and Definition 11 by (1.1) gives that x
< y .

Remark. Theorem 13 shows that the Postulate of ordering is fulfilled.

Theorem 14. If x, y ∈ R then x
R
< y ⇐⇒ x < y.

Proof. Identity (7.2) and Theorem 13 show that x
R
< y ⇐⇒ x < y . By (7.1) we have that x = th x and

y = th y. Using the strict monotonity of the function th we have that x < y ⇐⇒ x < y.

Remark. Theorem 14 shows that the Requirement of ordering is fulfilled.

Remark 15. By Theorem 14 we may use u < v instead of u
R
< v for any u, v ∈ R . Theorem 13 with

identity (7.2) gives

Theorem 16. (Monotonity of compression) For any u, v ∈ R the inequality u < v holds if and only if
u < v. Moreover, Theorem 13 yields the following corollaries:

Corollary 17. The relation ”<” is irreflixive, anti- symmetrical and transitive.

Corollary 18. (Trichotomity)) For any x, y ∈ R from among relations x < y , x = y and x > y one
and only one is true.

Definition 19. (Super-addition) For any x, y ∈ R, the super-sum of x and y is

(19.1) x −©−\

/

/

\
+ y = (sgn(x + y))

(
area th{|x + y|}+

i

2
[|x + y|]

[|x + y|] + 1

)
.
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By Definition 1 the identity

(19.2) x −©−\

/

/

\
+ y = x + y , x, y ∈ R (See Postulate of super − addition)

is obvious.

Definition 20. (Super-multiplication) For any x, y ∈ R, the super-multiplication of x and y is

(20.1) x −©−\

/

/

\
· y = (sgn(x · y))(area th{|x · y|}+

i

2
[|x · y|]

[|x · y|] + 1
.

By Definition 1 the identity

(20.2) x −©−\

/

/

\
· y = x · y , x, y ∈ R (See Postulate of super −multiplication)

is obvious.

Remark 21. Using identities (19.2) and (20.2) we find that the field (R, +, ·) is isomorphic with the
algebraic structure ( R , −©−\

/

/

\
+ ,−©−\

/

/

\
· ); so the latter is also a field with the operations super-addition and

super-multiplication. By (19.1) we can see that the additive unit element of R is 0 = 0. The additive
inverse element of x is −x for which, by (1.1), the identity

(21.1) −x = −x , x ∈ R

holds. By (20.1) we can see that the multiplicative unit element of R is 1 = i
4 . The multiplicative inverse

element of x 6= 0 is ( 1
x ) .

Remark 22. By (7.1) we have that for any u ∈ R the identity

(22.1) − u = −u, u ∈ R

holds. Moreover, denoting x = u and y = v, the identities (19.2) and (20.2) by (9.1) yield the identities

(22.2) u−©−\

/

/

\
+ v = u+ v (u, v ∈ R )

and

(22.3) u−©−\

/

/

\
· v = u · v (u, v ∈ R ),

respectively.

Definition 23. The exploded real number u is called positive if u > 0 and negative if u < 0. (These are
extensions of the familiar positivity and negativity of real numbers.)

Theorem 24. (Monotonity of super-addition) Let u, v and w be arbitrary exploded real numbers. If u < v
then

u−©−\

/

/

\
· w < v−©−\

/

/

\
+ w.

Proof. Using (22.2), Theorem 16, Theorem 13 and (22.2) again, we have that

u−©−\

/

/

\
+ w = u + w < v + w = v−©−\

/

/

\
+ w.

10



Theorem 25. (Monotonity of super-multiplication) Let u, v be arbitrary and w positive exploded real
numbers. If u < v then u−©−\

/

/

\
· w < v−©−\

/

/

\
· w.

Proof. First, we mention that by Theorem 16 and Definition 23 with Definition (7.1) w > 0 = 0 is
obtained. Moreover, using (22.3), Theorem 16, Theorem 13 and (22.3) again, we have that

u−©−\

/

/

\
· w = u · w < v · w = v−©−\

/

/

\
· w.

Remark 26. Considering Remark 21, Theorem 24 and Theorem 25 we can see that (
|

R
|

,−©−\

/

/

\
+ ,−©−\

/

/

\
· ) is an

ordered field.
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