Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
 21 (2005), 25-32
 www.emis.de/journals
 ISSN 1786-0091

ON THE PERIOD OF SEQUENCES IN $C L_{n}$

ERDAL KARADUMAN

Abstract

In this paper we investigate the period of 2-step sequences and 3 -step sequences in $C L_{n}$, the chain with n elements.

1. Introduction

The study of Fibonacci sequences in groups began with the earlier work of Wall [14] where the ordinary Fibonacci sequences in cyclic groups were investigated. In the mid eighties Wilcox extended the problem to Abelian groups [15]. Prolific cooperation of Campbell, Doostie and Robertson expanded the theory to some finite simple groups [4]. Aydın and Smith proved in [2] that the lengths of ordinary 2-step Fibonacci sequences are equal to the lengths of ordinary 2-step Fibonacci recurrences in finite nilpotent groups of nilpotency class 4 and a prime exponent. The theory has been generalized in $[5,6,11]$ to the 3 -step Fibonacci sequences in finite nilpotent groups of nilpotency class $2,3, n$ and exponent p, respectively. Then it is shown in [1] that the period of 2-step general Fibonacci sequence is equal to the length of fundamental period of the 2 -step general recurrence constructed by two generating elements of the group of exponent p and nilpotency class 2 . In the recent years, there has been much interest in applications of Fibonacci numbers and sequences. Karaduman and Aydın obtained 2-step General Fibonacci sequences in finite nilpotent groups of nilpotency class 4 and exponent p [8]. Karaduman and Yavuz proved that the periods of the 2-step Fibonacci recurrences in finite nilpotent groups of nilpotency class 5 and a prime exponent are $p \cdot k(p)$, for $2<p \leq 2927$, where p is prime and $k(p)$ is the periods of ordinary 2 -step Fibonacci sequences [9].

A k-nacci sequence in a finite group is a sequence of group elements

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{n}, \ldots
$$

for which, given an initial (seed) set $x_{0}, x_{1}, x_{2}, \ldots, x_{j-1}$, each element is defined by

$$
x_{n}= \begin{cases}x_{0} x_{1} x_{2} \cdots x_{n-1} & \text { for } j \leq n<k \tag{1}\\ x_{n-k} x_{n-k+1} \cdots x_{n-1} & \text { for } n \geq k\end{cases}
$$

We also require that the initial elements of the sequence,

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{j-1}
$$

[^0]generate the group, thus forcing the k-nacci sequence to reflect the structure of the group. The k-nacci sequence of a group generated by $x_{0}, x_{1}, x_{2}, \ldots, x_{j-1}$ is denoted by $F_{k}\left(G ; x_{0}, x_{1}, \ldots, x_{j-1}\right)$.

2-step Fibonacci sequence in the integers modulo m can be written as

$$
F_{2}\left(Z_{m} ; 0,1\right)
$$

We call a 2-step Fibonacci sequence of a group elements a Fibonacci sequence of a finite group. A finite group G is k-nacci sequenceable if there exists a k-nacci sequence of G such that every element of the group appears in the sequence.

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the repeating subsequence is called period of the sequence. For example, the sequence $a, b, c, d, e, b, c, d, e, b, c, d, e, \cdots$ is periodic after the initial element a and has period 4. A sequence of group elements is simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the sequence $a, b, c, d, e, f, a, b, c, d, e, f, a, b, c, d, e, f, \cdots$ is simply periodic with period 6.

Semigroup presentations have been studied over a long period, usually as a means of providing examples of semigroups. In [10], B.H. Neumann introduced an enumeration method for finitely presented semigruops analogous to the Todd-Coxeter coset enumeration process for group [13]. For about semigroup presentations see [12].

Let p denote the period of sequences in $C L_{n}$, which is a commutative semigroup with n elements, where $n \in N$. In this paper we prove that the period of 2-step sequences in $C L_{n}$ is

$$
p=(n-2) n+1
$$

and the period of 3 -step sequences in $C L_{n}$ is

$$
p= \begin{cases}{\left[\left|\frac{n}{2}-1\right|\right] n+1,} & \text { if } n \text { is even } \\ {\left[\left|\frac{n}{2}-1\right|\right] n+2,} & \text { if } n \text { is odd }\end{cases}
$$

where $\left[\left|\frac{n}{2}-1\right|\right]$ is the integer part of $\left|\frac{n}{2}-1\right|$. Let A be an alphabet. We denote by A^{+}the free semigroup on A consisting of all non-empty words over A. A semigroup presentation is an ordered pair of $\langle A \mid R\rangle$, where $R \subseteq A^{+} X A^{+}$A semigroup S is said to be defined by the semi group presentation $<A \mid R>$ if S is isomorphic to A^{+} / ρ, where ρ is the congruence on A^{+}generated by R. Let u and v be two words in A^{+}. We write $u \equiv v$ if u and v are identical words, and write $u=v$ if $(u, v) \in \rho$, that is v is obtained from u by applying relations from R, or equivalently there is a finite sequence

$$
u \equiv \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n} \equiv v
$$

of words from A^{+}in which every α_{i} is obtained from α_{i-1} by applying a relation from R (see [7, Proposition 1.5.9]). If both A and R are finite sets then $<A \mid R>$ is said to be a finite presentation. If a semigroup S can be defined by a finite presentation then S is said to be finitely presented.

Let $Y_{n}=\left\{y_{1}, y_{2}, y_{3}, \ldots, y_{n}\right\}$ and let $C L_{n}=\left\{Y_{1}, Y_{2}, Y_{3}, \ldots Y_{n}\right\}$. Consider the set-theorical union \cup as a binary operation. With respect to this operation, $C L_{n}$ is a commutative semigroup of idempotents, and Y_{n} is the zero element of $C L_{n}$. We call $C L_{n}$ the chain of order n.

Now, we give the following Theorem giving information about the presentation of $C L_{n}$.

Theorem 1. The presentation

$$
P_{n}=<a_{1}, a_{2}, a_{3}, \ldots, a_{n} \mid a_{1}^{2}=a_{1}, a_{i} a_{i+1}^{2} a_{i}=a_{i+1}(1 \leq i \leq n-1)>
$$

defines the chain $C L_{n}$ of order n and we have $a_{i} a_{j}=a_{j}$ and $a_{j} a_{i}=a_{j}$, for $1 \leq i<j \leq n$.
Proof. Let ϕ be the homomorphism from H_{n}, the semigroup defined by P_{n}, into $C L_{n}$ defined by $a_{i} \rightarrow Y_{i}$. It is clear that ϕ is onto, and so $C L_{n}$ is homomorphic image of H_{n}. Now we show that the order of H_{n} is n.

From the relations $a_{1} a_{2}^{2} a_{1}=a_{2}$ and $a_{1}^{2}=a_{1}$, we have

$$
a_{1} a_{2}=a_{1}\left(a_{1} a_{2}^{2} a_{1}\right)=a_{1} a_{2}^{2} a_{1}=a_{2}
$$

and

$$
a_{2} a_{1}=\left(a_{1} a_{2}^{2} a_{1}\right) a_{1}=a_{1} a_{2}^{2} a_{1}=a_{2} .
$$

It follows that $a_{2}^{2}=\left(a_{1} a_{2}\right)\left(a_{2} a_{1}\right)=a_{2}$ If we continue inductively, we obtain the followings:

$$
a_{i} a_{i+1}=a_{i+1}, a_{i+1} a_{i}=a_{i+1}
$$

and

$$
a_{i+1}^{2}=a_{i+1}(1 \leq i \leq n-1)
$$

For $1 \leq i<j \leq n$, we show that $a_{i} a_{j}=a_{j}$ and $a_{j} a_{i}=a_{j}$. For this end, we use induction on $j-i$. For $j-i=1$, we have just shown. Assume that, for $j-i=k$, we have $a_{i} a_{i+k}=a_{i+k}$. For $j-i=k+1$, it follows from

$$
a_{i+k} a_{(i+k)+1}=a_{(i+k)+1}
$$

that

$$
a_{i} a_{j} \equiv a_{i} a_{i+k+1}=a_{i}\left(a_{i+k} a_{i+k+1}\right) \equiv\left(a_{i} a_{i+k}\right) a_{i+k+1}=a_{i+k} a_{i+k+1}=a_{i+k+1} \equiv a_{j}
$$

as required. Similarly, we show that $a_{j} a_{i}=a_{j}$, for $1 \leq i<j \leq n$, as follow.
For this again, we use induction on $j-i$. For $j-i=1$, we have just shown. Assume that, for $j-i=k$, we have $a_{j} a_{i}=a_{i+k} a_{i}=a_{i+k}$. For $j-i=k+1$, it follows from $a_{(i+k)+1} a_{i+k}=a_{(i+k)+1}$ that
$a_{j} a_{i} \equiv a_{i+k+1} a_{i}=\left(a_{i+k} a_{i+k+1}\right) a_{i} \equiv a_{i+k+1}\left(a_{i+k} a_{i}\right)=a_{i+k+1} a_{i+k}=a_{i+k+1} \equiv a_{j}$
as required.
Therefore, for every word $w \in A^{+}$where $A=\left\{a_{1}, a_{2}, a_{3}, \ldots a_{n}\right\}$, there exists a generator $a_{i} \in A$ such that the relation $w=a_{i}$ holds in the semigroup H_{n} defined by P_{n}, and hence the order of H_{n} is n. Therefore P_{n} defines $C L_{n}$.

The same proof of this Theorem has been given in [3].
If we define the sequences in $C L_{n}$ as in formula (1), it is clear that the sequences is periodic and $p=n$. Now we define 2 -step sequences in $C L_{n}$ as $x_{i}=x_{i-n} x_{i-(n-1)}$ and 3 -step sequences in $C L_{n}$ as $x_{i}=x_{i-n} x_{i-(n-1)} x_{i-(n-2)}$, for $i>n$.
Theorem 2. Let

$$
P_{n}=<a_{1}, a_{2}, a_{3}, \ldots, a_{n} \mid a_{1}^{2}=a_{1}, a_{i} a_{i+1}^{2} a_{i}=a_{i+1}(1 \leq i \leq n-1)>
$$

be presentation of $C L_{n}$.
i. 2-step sequences in $C L_{n}$ is periodic and the period of the sequence is equal to

$$
p=(n-2) n+1
$$

ii. 3-step sequences in $C L_{n}$ is periodic and the period of the sequence is equal to

$$
p= \begin{cases}{\left[\left|\frac{n}{2}-1\right|\right] n+1,} & \text { if } n \text { is even } \\ {\left[\left|\frac{n}{2}-1\right|\right] n+2,} & \text { if } n \text { is odd }\end{cases}
$$

Proof. i. The first n terms of sequence are $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. For simplicity, we use indices instead of generating elements of $C L_{n}$ in our process. Since $x_{i}=$ $x_{i-n} x_{i-(n-1)}$, for $i>n$, we have

$$
\begin{gathered}
x_{n+1}=x_{2}=2, \\
x_{n+2}=x_{3}=3, \\
x_{n+3}=x_{4}=4, \\
\vdots \\
x_{n+n-1}=x_{n}=x_{2 n-1}=n, \\
x_{2 n}=x_{n}=n, \\
x_{2 n+1}=x_{3}=3, \\
\vdots \\
x_{3 n+1}=x_{4}=4, \\
\vdots \\
x_{(n-2) n+1}=x_{n-1}=n-1, \\
x_{(n-2) n+2}=x_{n}=n,
\end{gathered}
$$

from defining relations in $C L_{n}$. It follows that $x_{j}=n$ for $l . n-(l-1) \leq j \leq l . n$, where $1 \leq l \leq(n-2)$. We also have $x_{j}=n$ and $x_{l . n+1}=x_{(l-1) n+2}$ Since the elements succeeding

$$
x_{(n-2) n+1}, x_{(n-2) n+2},
$$

depend on $n-1, n$ for their values, we have

$$
x_{(n-2) n+m}=x_{n}=n
$$

for $m>1$. So, 2 -step sequences in $C L_{n}$ is periodic and the period of the sequence is equal to

$$
p=(n-2) n+1
$$

ii. The first n terms of sequence are $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$. For simplicity, we use indices instead of generating elements of $C L_{n}$ in our process. It is clear that the period of the sequence is 2 when $n=2$. Firstly, we consider the case of n is even, $n>2$. Since $x_{i}=x_{i-n} x_{i-(n-1)} x_{i-(n-2)}$, for $i>n$, we have

$$
\begin{gathered}
x_{n+1}=\prod_{j=n+1-n}^{n+1-(n-2)} x_{j}=x_{3}=3, \\
x_{n+2}=\prod_{j=n+1-(n-1)}^{n+1-(n-3)} x_{j}=x_{4}=4,
\end{gathered}
$$

$$
\begin{aligned}
& x_{2 n-2}=\prod_{j=n-2}^{n} x_{j}=x_{n}=n, \\
& x_{2 n-1}=\prod_{j=n-1}^{n+1} x_{j}=x_{n}=n, \\
& x_{2 n}=\prod_{j=n}^{n+2} x_{j}=x_{n}=n, \\
& x_{2 n+1}=\prod_{j=n+1}^{n+3} x_{j}=x_{n+3}=5, \\
& x_{2 n+2}=\prod_{j=n+2}^{n+4} x_{j}=x_{n+4}=6, \\
& x_{2 n+3}=\prod_{j=n+3}^{n+5} x_{j}=x_{n+5}=7, \\
& x_{3 n}=\prod_{j=2 n}^{2 n+2} x_{j}=x_{2 n+2}=n, \\
& x_{3 n+1}=\prod_{j=2 n+1}^{2 n+3} x_{j}=x_{2 n+3}=7, \\
& x_{\left[\left|\frac{n}{2}-1\right|\right] n}=\prod_{j=\left[\left|\frac{n}{2}-1\right|\right] n-n}^{\left[\left|\frac{n}{2}-1\right|\right] n-(n-2)} x_{j}=x_{n}=n, \\
& x_{\left[\left|\frac{n}{2}-1\right|\right] n+1}=\prod_{j=\left[\left|\frac{n}{2}-1\right|\right] n-(n-1)}^{\left[\left|\frac{n}{2}-1\right|\right] n-(n-3)} x_{j}=x_{n-1}=n-1, \\
& x_{\left[\left|\frac{n}{2}-1\right|\right] n+2}=\prod_{j=\left[\left|\frac{n}{2}-1\right|\right] n-(n-2)}^{\left[\left|\frac{n}{2}-1\right|\right] n-(n-4)} x_{j}=x_{n}=n,
\end{aligned}
$$

from defining relations in $C L_{n}$. Since the elements succeeding

$$
x_{\left[\left|\frac{n}{2}-1\right|\right] n}, x_{\left[\left|\frac{n}{2}-1\right|\right] n+1}, x_{\left[\left|\frac{n}{2}-1\right|\right] n+2}, \cdots
$$

depend on $n, n-1$, and n for their values, we have

$$
x_{\left[\left|\frac{n}{2}-1\right|\right] n+m}=x_{n}=n
$$

for $m>1$. So, 3 -step sequences in $C L_{n}$ is periodic and the period of the sequence is equal to

$$
p=\left[\left|\frac{n}{2}-1\right|\right] n+1
$$

when n is even. Now we consider the case of n is odd. Since

$$
x_{i}=x_{i-n} x_{i-(n-1)} x_{i-(n-2)}
$$

for $i>n$, we have

$$
\begin{aligned}
& x_{n+1}=\prod_{j=n+1-n}^{n+1-(n-2)} x_{j}=x_{3}=3, \\
& x_{n+2}=\prod_{j=n+1-(n-1)}^{n+1-(n-3)} x_{j}=x_{4}=4, \\
& x_{2 n-2}=\prod_{j=n-2}^{n} x_{j}=x_{n}=n, \\
& x_{2 n-1}=\prod_{j=n-1}^{n+1} x_{j}=x_{n}=n, \\
& x_{2 n}=\prod_{j=n}^{n+2} x_{j}=x_{n}=n, \\
& x_{2 n+1}=\prod_{j=n+1}^{n+3} x_{j}=x_{n+3}=5, \\
& x_{2 n+2}=\prod_{j=n+2}^{n+4} x_{j}=x_{n+4}=6, \\
& x_{2 n+3}=\prod_{j=n+2}^{n+5} x_{j}=x_{n+5}=7, \\
& x_{3 n}=\prod_{j=2 n}^{2 n+2} x_{j}=x_{2 n+2}=n, \\
& x_{3 n+1}=\prod_{j=2 n+1}^{2 n+3} x_{j}=x_{2 n+3}=7, \\
& x_{\left[\left|\frac{n}{2}-1\right|\right] n}=\prod_{j=\left[\left|\frac{n}{2}-1\right|\right] n-(n-3)}^{\left[\left|\frac{n}{2}-1\right|\right] n-(n-5)} x_{j}=x_{n}=n
\end{aligned}
$$

$$
\begin{gathered}
x_{\left[\left|\frac{n}{2}-1\right|\right] n+1}=\prod_{j=\left[\left|\frac{n}{2}-1\right|\right] n-(n-4)}^{\left[\left|\frac{n}{2}-1\right|\right] n-(n-6)} x_{j}=n-2 \\
x_{\left[\left|\frac{n}{2}-1\right|\right] n+2}=\prod_{j=\left[\left|\frac{n}{2}-1\right|\right] n-(n-5)}^{\left[\left|\frac{n}{2}-1\right|\right] n-(n-7)} x_{j}=n-1 \\
x_{\left[\left|\frac{n}{2}-1\right|\right] n+3}=\prod_{j=\left[\left|\frac{n}{2}-1\right|\right] n-(n-6)}^{\left[\left|\frac{n}{2}-1\right|\right] n-(n-8)} x_{j}=n
\end{gathered}
$$

from defining relations in $C L_{n}$. Since the elements succeeding

$$
x_{\left[\left|\frac{n}{2}-1\right|\right] n+1}, x_{\left[\left|\frac{n}{2}-1\right|\right] n+2}, x_{\left[\left|\frac{n}{2}-1\right|\right] n+3}, \ldots,
$$

depend on $n-2, n-1$, and n for their values, we have

$$
x_{\left[\left|\frac{n}{2}-1\right|\right] n+m}=n
$$

for $m>2$. So, 3 -step sequences in $C L_{n}$ is periodic and the period of the sequence is equal to

$$
p=\left[\left|\frac{n}{2}-1\right|\right] n+2 \text {. }
$$

when n is odd.

References

[1] H. Aydın and R. Dikici. General Fibonacci sequences in finite groups. Fibonacci Quart., 36(3):216-221, 1998.
[2] H. Aydın and G. C. Smith. Finite p-quotients of some cyclically presented groups. J. London Math. Soc. (2), 49(1):83-92, 1994.
[3] H. Ayık, M. Minisker, and B. Vatansever. Minimal presentations and embedding into inefficient semigroups. Algebra Coloquium, 10, 2003.
[4] C. M. Campbell, H. Doostie, and E. F. Robertson. Fibonacci length of generating pairs in groups. In Applications of Fibonacci numbers, Vol. 3 (Pisa, 1988), pages 27-35. Kluwer Acad. Publ., Dordrecht, 1990.
[5] R. Dikici and G. C. Smith. Recurrences in finite groups. Turkish J. Math., 19(3):321-329, 1995.
[6] R. Dikici and G. C. Smith. Fibonacci sequences in finite nilpotent groups. Turkish J. Math., 21(2):133-142, 1997.
[7] J. M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, 1995. Oxford Science Publications.
[8] E. Karaduman and H. Aydın. General 2-step Fibonacci sequences in nilpotent groups of exponent p and nilpotency class 4. Appl. Math. Comput., 141(2-3):491-497, 2003.
[9] E. Karaduman and U. Yavuz. On the period of Fibonacci sequences in nilpotent groups. Appl. Math. Comput., 142(2-3):321-332, 2003.
[10] B. Neumann. Some remarks on semigroup presentations. Can. J. Math., 19:1018-1026, 1968.
[11] E. Özkan. 3-step Fibonacci sequences in nilpotent groups. Appl. Math. Comput., 144(2-3):517-527, 2003.
[12] E. F. Robertson and Y. Ünlü. On semigroup presentations. Proc. Edinburgh Math. Soc. (2), 36(1):55-68, 1993.
[13] J. A. Todd and H. S. M. Coxeter. A practical method for enumerating cosets of a finite abstract group. Proc. Edinb. Math. Soc., 5:26-34, 1936.
[14] D. D. Wall. Fibonacci series modulo m. Amer. Math. Monthly, 67:525-532, 1960.
[15] H. J. Wilcox. Fibonacci sequences of period n in groups. Fibonacci Quart., 24(4):356-361, 1986.

Received May 25, 2004; revised September 13, 2004.

Department of Mathematics,
Faculty of Art and Science,
Atatürk University,
25240 Erzurum, TURKEY
E-mail address: eduman@atauni.edu.tr

[^0]: 2000 Mathematics Subject Classification. 11B39.
 Key words and phrases. Fibonacci sequences, period, semigroup.

