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ON THE PERIOD OF SEQUENCES IN CLn

ERDAL KARADUMAN

Abstract. In this paper we investigate the period of 2-step sequences and
3-step sequences in CLn, the chain with n elements.

1. Introduction

The study of Fibonacci sequences in groups began with the earlier work of Wall
[14] where the ordinary Fibonacci sequences in cyclic groups were investigated. In
the mid eighties Wilcox extended the problem to Abelian groups [15]. Prolific co-
operation of Campbell, Doostie and Robertson expanded the theory to some finite
simple groups [4]. Aydın and Smith proved in [2] that the lengths of ordinary
2-step Fibonacci sequences are equal to the lengths of ordinary 2-step Fibonacci
recurrences in finite nilpotent groups of nilpotency class 4 and a prime exponent.
The theory has been generalized in [5,6,11] to the 3-step Fibonacci sequences in
finite nilpotent groups of nilpotency class 2,3, n and exponent p, respectively. Then
it is shown in [1] that the period of 2-step general Fibonacci sequence is equal to
the length of fundamental period of the 2-step general recurrence constructed by
two generating elements of the group of exponent p and nilpotency class 2. In the
recent years, there has been much interest in applications of Fibonacci numbers and
sequences. Karaduman and Aydın obtained 2-step General Fibonacci sequences in
finite nilpotent groups of nilpotency class 4 and exponent p [8]. Karaduman and
Yavuz proved that the periods of the 2-step Fibonacci recurrences in finite nilpotent
groups of nilpotency class 5 and a prime exponent are p · k(p), for 2 < p ≤ 2927,
where p is prime and k(p) is the periods of ordinary 2-step Fibonacci sequences [9].

A k-nacci sequence in a finite group is a sequence of group elements

x0, x1, x2, . . . , xn, . . .

for which, given an initial (seed) set x0, x1, x2, . . . , xj−1, each element is defined by

(1) xn =

{
x0x1x2 · · ·xn−1 for j ≤ n < k

xn−kxn−k+1 · · ·xn−1 for n ≥ k
.

We also require that the initial elements of the sequence,

x0, x1, x2, . . . , xj−1,
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generate the group, thus forcing the k-nacci sequence to reflect the structure of the
group. The k-nacci sequence of a group generated by x0, x1, x2, . . . , xj−1 is denoted
by Fk(G; x0, x1, . . . , xj−1).

2-step Fibonacci sequence in the integers modulo m can be written as

F2(Zm; 0, 1).

We call a 2-step Fibonacci sequence of a group elements a Fibonacci sequence of
a finite group. A finite group G is k-nacci sequenceable if there exists a k-nacci
sequence of G such that every element of the group appears in the sequence.

A sequence of group elements is periodic if, after a certain point, it consists
only of repetitions of a fixed subsequence. The number of elements in the re-
peating subsequence is called period of the sequence. For example, the sequence
a, b, c, d, e, b, c, d, e, b, c, d, e, · · · is periodic after the initial element a and has period
4. A sequence of group elements is simply periodic with period k if the first k
elements in the sequence form a repeating subsequence. For example, the sequence
a, b, c, d, e, f, a, b, c, d, e, f, a, b, c, d, e, f, · · · is simply periodic with period 6.

Semigroup presentations have been studied over a long period, usually as a means
of providing examples of semigroups. In [10], B.H. Neumann introduced an enu-
meration method for finitely presented semigruops analogous to the Todd-Coxeter
coset enumeration process for group [13]. For about semigroup presentations see
[12].

Let p denote the period of sequences in CLn, which is a commutative semigroup
with n elements, where n ∈ N . In this paper we prove that the period of 2-step
sequences in CLn is

p = (n− 2)n + 1

and the period of 3-step sequences in CLn is

p =





[∣∣n
2 − 1

∣∣] n + 1, if n is even

[∣∣n
2 − 1

∣∣] n + 2, if n is odd

where
[∣∣n

2 − 1
∣∣] is the integer part of |n2 − 1|. Let A be an alphabet. We denote by

A+ the free semigroup on A consisting of all non-empty words over A. A semigroup
presentation is an ordered pair of < A | R >, where R ⊆ A+XA+ A semigroup S
is said to be defined by the semi group presentation < A | R > if S is isomorphic to
A+/ρ, where ρ is the congruence on A+ generated by R. Let u and v be two words
in A+. We write u ≡ v if u and v are identical words, and write u = v if (u, v) ∈ ρ,
that is v is obtained from u by applying relations from R, or equivalently there is
a finite sequence

u ≡ α1, α2, α3, . . . , αn ≡ v

of words from A+in which every αi is obtained from αi−1 by applying a relation
from R(see [7, Proposition 1.5.9]). If both A and R are finite sets then < A | R >
is said to be a finite presentation. If a semigroup S can be defined by a finite
presentation then S is said to be finitely presented.

Let Yn = {y1, y2, y3, . . . , yn}and let CLn = {Y1, Y2, Y3, . . . Yn}. Consider the
set-theorical union ∪ as a binary operation. With respect to this operation, CLn is
a commutative semigroup of idempotents, and Yn is the zero element of CLn. We
call CLn the chain of order n.
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Now, we give the following Theorem giving information about the presentation
of CLn.

Theorem 1. The presentation

Pn =< a1, a2, a3, . . . , an|a2
1 = a1, aia

2
i+1ai = ai+1(1 ≤ i ≤ n− 1) >

defines the chain CLn of order n and we have aiaj = aj and ajai = aj, for
1 ≤ i < j ≤ n.

Proof. Let φ be the homomorphism from Hn, the semigroup defined by Pn, into
CLn defined by ai → Yi. It is clear that φ is onto, and so CLn is homomorphic
image of Hn. Now we show that the order of Hn is n.

From the relations a1a
2
2a1 = a2 and a2

1 = a1, we have

a1a2 = a1(a1a
2
2a1) = a1a

2
2a1 = a2

and
a2a1 = (a1a

2
2a1)a1 = a1a

2
2a1 = a2.

It follows that a2
2 = (a1a2)(a2a1) = a2 If we continue inductively, we obtain the

followings:
aiai+1 = ai+1, ai+1ai = ai+1

and
a2

i+1 = ai+1(1 ≤ i ≤ n− 1).

For 1 ≤ i < j ≤ n, we show that aiaj = aj and ajai = aj . For this end, we use
induction on j − i. For j − i = 1, we have just shown. Assume that, for j − i = k,
we have aiai+k = ai+k. For j − i = k + 1, it follows from

ai+ka(i+k)+1 = a(i+k)+1

that

aiaj ≡ aiai+k+1 = ai(ai+kai+k+1) ≡ (aiai+k)ai+k+1 = ai+kai+k+1 = ai+k+1 ≡ aj

as required. Similarly, we show that ajai = aj , for 1 ≤ i < j ≤ n, as follow.
For this again, we use induction on j − i. For j − i = 1, we have just shown.

Assume that, for j − i = k, we have ajai = ai+kai = ai+k. For j − i = k + 1, it
follows from a(i+k)+1ai+k = a(i+k)+1 that

ajai ≡ ai+k+1ai = (ai+kai+k+1)ai ≡ ai+k+1(ai+kai) = ai+k+1ai+k = ai+k+1 ≡ aj

as required.
Therefore, for every word w ∈ A+ where A = {a1, a2, a3, . . . an}, there exists a

generator ai ∈ A such that the relation w = ai holds in the semigroup Hn defined
by Pn, and hence the order of Hn is n. Therefore Pn defines CLn.

The same proof of this Theorem has been given in [3]. ¤

If we define the sequences in CLn as in formula (1), it is clear that the sequences
is periodic and p = n. Now we define 2-step sequences in CLn as xi = xi−nxi−(n−1)

and 3-step sequences in CLn as xi = xi−nxi−(n−1)xi−(n−2), for i > n.

Theorem 2. Let

Pn =< a1, a2, a3, . . . , an | a2
1 = a1, aia

2
i+1ai = ai+1(1 ≤ i ≤ n− 1) >

be presentation of CLn.
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i. 2-step sequences in CLn is periodic and the period of the sequence is equal to

p = (n− 2)n + 1,

ii. 3-step sequences in CLn is periodic and the period of the sequence is equal to

p =





[∣∣n
2 − 1

∣∣] n + 1, if n is even

[∣∣n
2 − 1

∣∣] n + 2, if n is odd

Proof. i. The first n terms of sequence are a1, a2, a3, . . . , an. For simplicity, we
use indices instead of generating elements of CLn in our process. Since xi =
xi−nxi−(n−1), for i > n, we have

xn+1 = x2 = 2,

xn+2 = x3 = 3,

xn+3 = x4 = 4,

...
xn+n−1 = xn = x2n−1 = n,

x2n = xn = n,

x2n+1 = x3 = 3,

...
x3n+1 = x4 = 4,

...
x(n−2)n+1 = xn−1 = n− 1,

x(n−2)n+2 = xn = n,

from defining relations in CLn. It follows that xj = n for l.n − (l − 1) ≤ j ≤ l.n,
where 1 ≤ l ≤ (n − 2). We also have xj = n and xl.n+1 = x(l−1)n+2 Since the
elements succeeding

x(n−2)n+1, x(n−2)n+2,

depend on n− 1, n for their values, we have

x(n−2)n+m = xn = n

for m > 1. So, 2-step sequences in CLn is periodic and the period of the sequence
is equal to

p = (n− 2)n + 1.

ii. The first n terms of sequence are a1, a2, a3, . . . , an. For simplicity, we use
indices instead of generating elements of CLn in our process. It is clear that the
period of the sequence is 2 when n = 2. Firstly, we consider the case of n is even,
n > 2. Since xi = xi−nxi−(n−1)xi−(n−2), for i > n, we have

xn+1 =
n+1−(n−2)∏

j=n+1−n

xj = x3 = 3,

xn+2 =
n+1−(n−3)∏

j=n+1−(n−1)

xj = x4 = 4,
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...

x2n−2 =
n∏

j=n−2

xj = xn = n,

x2n−1 =
n+1∏

j=n−1

xj = xn = n,

x2n =
n+2∏

j=n

xj = xn = n,

x2n+1 =
n+3∏

j=n+1

xj = xn+3 = 5,

x2n+2 =
n+4∏

j=n+2

xj = xn+4 = 6,

x2n+3 =
n+5∏

j=n+3

xj = xn+5 = 7,

...

x3n =
2n+2∏

j=2n

xj = x2n+2 = n,

x3n+1 =
2n+3∏

j=2n+1

xj = x2n+3 = 7,

...

x[|n
2−1|]n =

[|n
2−1|]n−(n−2)∏

j=[|n
2−1|]n−n

xj = xn = n,

x[|n
2−1|]n+1 =

[|n
2−1|]n−(n−3)∏

j=[|n
2−1|]n−(n−1)

xj = xn−1 = n− 1,

x[|n
2−1|]n+2 =

[|n
2−1|]n−(n−4)∏

j=[|n
2−1|]n−(n−2)

xj = xn = n,

from defining relations in CLn. Since the elements succeeding

x[|n
2−1|]n, x[|n

2−1|]n+1, x[|n
2−1|]n+2, . . . ,

depend on n, n− 1, and n for their values, we have

x[|n
2−1|]n+m = xn = n
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for m > 1. So, 3-step sequences in CLn is periodic and the period of the sequence
is equal to

p =
[∣∣∣n

2
− 1

∣∣∣
]
n + 1

when n is even. Now we consider the case of n is odd. Since

xi = xi−nxi−(n−1)xi−(n−2)

for i > n, we have

xn+1 =
n+1−(n−2)∏

j=n+1−n

xj = x3 = 3,

xn+2 =
n+1−(n−3)∏

j=n+1−(n−1)

xj = x4 = 4,

...

x2n−2 =
n∏

j=n−2

xj = xn = n,

x2n−1 =
n+1∏

j=n−1

xj = xn = n,

x2n =
n+2∏

j=n

xj = xn = n,

x2n+1 =
n+3∏

j=n+1

xj = xn+3 = 5,

x2n+2 =
n+4∏

j=n+2

xj = xn+4 = 6,

x2n+3 =
n+5∏

j=n+2

xj = xn+5 = 7,

...

x3n =
2n+2∏

j=2n

xj = x2n+2 = n,

x3n+1 =
2n+3∏

j=2n+1

xj = x2n+3 = 7,

...

x[|n
2−1|]n =

[|n
2−1|]n−(n−5)∏

j=[|n
2−1|]n−(n−3)

xj = xn = n
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x[|n
2−1|]n+1 =

[|n
2−1|]n−(n−6)∏

j=[|n
2−1|]n−(n−4)

xj = n− 2,

x[|n
2−1|]n+2 =

[|n
2−1|]n−(n−7)∏

j=[|n
2−1|]n−(n−5)

xj = n− 1,

x[|n
2−1|]n+3 =

[|n
2−1|]n−(n−8)∏

j=[|n
2−1|]n−(n−6)

xj = n,

from defining relations in CLn. Since the elements succeeding

x[|n
2−1|]n+1, x[|n

2−1|]n+2, x[|n
2−1|]n+3, . . . ,

depend on n− 2, n− 1, and n for their values, we have

x[|n
2−1|]n+m = n

for m > 2. So, 3-step sequences in CLn is periodic and the period of the sequence
is equal to

p =
[∣∣∣n

2
− 1

∣∣∣
]
n + 2.

when n is odd. ¤
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