Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21 (2005), 25-32 www.emis.de/journals ISSN 1786-0091

ON THE PERIOD OF SEQUENCES IN CL_n

ERDAL KARADUMAN

ABSTRACT. In this paper we investigate the period of 2-step sequences and 3-step sequences in CL_n , the chain with n elements.

1. INTRODUCTION

The study of Fibonacci sequences in groups began with the earlier work of Wall [14] where the ordinary Fibonacci sequences in cyclic groups were investigated. In the mid eighties Wilcox extended the problem to Abelian groups [15]. Prolific cooperation of Campbell, Doostie and Robertson expanded the theory to some finite simple groups [4]. Aydin and Smith proved in [2] that the lengths of ordinary 2-step Fibonacci sequences are equal to the lengths of ordinary 2-step Fibonacci recurrences in finite nilpotent groups of nilpotency class 4 and a prime exponent. The theory has been generalized in [5,6,11] to the 3-step Fibonacci sequences in finite nilpotent groups of nilpotency class 2,3, n and exponent p, respectively. Then it is shown in [1] that the period of 2-step general Fibonacci sequence is equal to the length of fundamental period of the 2-step general recurrence constructed by two generating elements of the group of exponent p and nilpotency class 2. In the recent years, there has been much interest in applications of Fibonacci numbers and sequences. Karaduman and Aydın obtained 2-step General Fibonacci sequences in finite nilpotent groups of nilpotency class 4 and exponent p [8]. Karaduman and Yavuz proved that the periods of the 2-step Fibonacci recurrences in finite nilpotent groups of nilpotency class 5 and a prime exponent are $p \cdot k(p)$, for 2 ,where p is prime and k(p) is the periods of ordinary 2-step Fibonacci sequences [9].

A k-nacci sequence in a finite group is a sequence of group elements

 $x_0, x_1, x_2, \ldots, x_n, \ldots$

for which, given an initial (seed) set $x_0, x_1, x_2, \ldots, x_{j-1}$, each element is defined by

(1)
$$x_n = \begin{cases} x_0 x_1 x_2 \cdots x_{n-1} & \text{for } j \le n < k \\ x_{n-k} x_{n-k+1} \cdots x_{n-1} & \text{for } n \ge k \end{cases}$$

We also require that the initial elements of the sequence,

$$x_0, x_1, x_2, \ldots, x_{j-1}$$

²⁰⁰⁰ Mathematics Subject Classification. 11B39.

Key words and phrases. Fibonacci sequences, period, semigroup.

ERDAL KARADUMAN

generate the group, thus forcing the k-nacci sequence to reflect the structure of the group. The k-nacci sequence of a group generated by $x_0, x_1, x_2, \ldots, x_{j-1}$ is denoted by $F_k(G; x_0, x_1, \ldots, x_{j-1})$.

2-step Fibonacci sequence in the integers modulo m can be written as

 $F_2(Z_m; 0, 1).$

We call a 2-step Fibonacci sequence of a group elements a Fibonacci sequence of a finite group. A finite group G is k-nacci sequenceable if there exists a k-nacci sequence of G such that every element of the group appears in the sequence.

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the repeating subsequence is called period of the sequence. For example, the sequence $a, b, c, d, e, b, c, d, e, b, c, d, e, \cdots$ is periodic after the initial element a and has period 4. A sequence of group elements is simply periodic with period k if the first kelements in the sequence form a repeating subsequence. For example, the sequence $a, b, c, d, e, f, a, b, c, d, e, f, a, b, c, d, e, f, \cdots$ is simply periodic with period 6.

Semigroup presentations have been studied over a long period, usually as a means of providing examples of semigroups. In [10], B.H. Neumann introduced an enumeration method for finitely presented semigruops analogous to the Todd-Coxeter coset enumeration process for group [13]. For about semigroup presentations see [12].

Let p denote the period of sequences in CL_n , which is a commutative semigroup with n elements, where $n \in N$. In this paper we prove that the period of 2-step sequences in CL_n is

$$p = (n-2)n+1$$

and the period of 3-step sequences in CL_n is

$$p = \begin{cases} \left[\left| \frac{n}{2} - 1 \right| \right] n + 1, & \text{if } n \text{ is even} \\ \\ \left[\left| \frac{n}{2} - 1 \right| \right] n + 2, & \text{if } n \text{ is odd} \end{cases}$$

where $\lfloor \frac{n}{2} - 1 \rfloor$ is the integer part of $\lfloor \frac{n}{2} - 1 \rfloor$. Let A be an alphabet. We denote by A^+ the free semigroup on A consisting of all non-empty words over A. A semigroup presentation is an ordered pair of $\langle A \mid R \rangle$, where $R \subseteq A^+XA^+$ A semigroup S is said to be defined by the semi group presentation $\langle A \mid R \rangle$ if S is isomorphic to A^+/ρ , where ρ is the congruence on A^+ generated by R. Let u and v be two words in A^+ . We write $u \equiv v$ if u and v are identical words, and write u = v if $(u, v) \in \rho$, that is v is obtained from u by applying relations from R, or equivalently there is a finite sequence

$$u \equiv \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n \equiv v$$

of words from A^+ in which every α_i is obtained from α_{i-1} by applying a relation from R(see [7, Proposition 1.5.9]). If both A and R are finite sets then $\langle A | R \rangle$ is said to be a *finite presentation*. If a semigroup S can be defined by a finite presentation then S is said to be *finitely presented*.

Let $Y_n = \{y_1, y_2, y_3, \ldots, y_n\}$ and let $CL_n = \{Y_1, Y_2, Y_3, \ldots, Y_n\}$. Consider the set-theorical union \cup as a binary operation. With respect to this operation, CL_n is a commutative semigroup of idempotents, and Y_n is the zero element of CL_n . We call CL_n the chain of order n.

Now, we give the following Theorem giving information about the *presentation* of CL_n .

Theorem 1. The presentation

$$P_n = \langle a_1, a_2, a_3, \dots, a_n | a_1^2 = a_1, a_i a_{i+1}^2 a_i = a_{i+1} (1 \le i \le n-1) \rangle$$

defines the chain CL_n of order n and we have $a_ia_j = a_j$ and $a_ja_i = a_j$, for $1 \le i < j \le n$.

Proof. Let ϕ be the homomorphism from H_n , the semigroup defined by P_n , into CL_n defined by $a_i \to Y_i$. It is clear that ϕ is onto, and so CL_n is homomorphic image of H_n . Now we show that the order of H_n is n.

From the relations $a_1a_2^2a_1 = a_2$ and $a_1^2 = a_1$, we have

$$a_1a_2 = a_1(a_1a_2^2a_1) = a_1a_2^2a_1 = a_2$$

and

$$a_2a_1 = (a_1a_2^2a_1)a_1 = a_1a_2^2a_1 = a_2.$$

It follows that $a_2^2 = (a_1 a_2)(a_2 a_1) = a_2$ If we continue inductively, we obtain the followings:

$$a_i a_{i+1} = a_{i+1}, a_{i+1} a_i = a_{i+1}$$

and

$$a_{i+1}^2 = a_{i+1} (1 \le i \le n-1).$$

For $1 \le i < j \le n$, we show that $a_i a_j = a_j$ and $a_j a_i = a_j$. For this end, we use induction on j - i. For j - i = 1, we have just shown. Assume that, for j - i = k, we have $a_i a_{i+k} = a_{i+k}$. For j - i = k + 1, it follows from

$$a_{i+k}a_{(i+k)+1} = a_{(i+k)+1}$$

that

$$a_{i}a_{j} \equiv a_{i}a_{i+k+1} = a_{i}(a_{i+k}a_{i+k+1}) \equiv (a_{i}a_{i+k})a_{i+k+1} = a_{i+k}a_{i+k+1} = a_{i+k+1} \equiv a_{j}$$

as required. Similarly, we show that $a_j a_i = a_j$, for $1 \le i < j \le n$, as follow. For this again, we use induction on j - i. For j - i = 1, we have just shown. Assume that, for j - i = k, we have $a_j a_i = a_{i+k} a_i = a_{i+k}$. For j - i = k + 1, it follows from $a_{(i+k)+1} a_{i+k} = a_{(i+k)+1}$ that

$$a_j a_i \equiv a_{i+k+1} a_i = (a_{i+k} a_{i+k+1}) a_i \equiv a_{i+k+1} (a_{i+k} a_i) = a_{i+k+1} a_{i+k} = a_{i+k+1} \equiv a_j$$

as required.

Therefore, for every word $w \in A^+$ where $A = \{a_1, a_2, a_3, \ldots, a_n\}$, there exists a generator $a_i \in A$ such that the relation $w = a_i$ holds in the semigroup H_n defined by P_n , and hence the order of H_n is n. Therefore P_n defines CL_n .

The same proof of this Theorem has been given in [3].

If we define the sequences in CL_n as in formula (1), it is clear that the sequences is periodic and p = n. Now we define 2-step sequences in CL_n as $x_i = x_{i-n}x_{i-(n-1)}$ and 3-step sequences in CL_n as $x_i = x_{i-n}x_{i-(n-1)}x_{i-(n-2)}$, for i > n.

Theorem 2. Let

 $P_n = \langle a_1, a_2, a_3, \dots, a_n \mid a_1^2 = a_1, a_i a_{i+1}^2 a_i = a_{i+1} (1 \le i \le n-1) \rangle$

be presentation of CL_n .

i. 2-step sequences in CL_n is periodic and the period of the sequence is equal to

$$p = (n-2)n+1,$$

ii. 3-step sequences in CL_n is periodic and the period of the sequence is equal to

$$p = \begin{cases} \left[\left| \frac{n}{2} - 1 \right| \right] n + 1, & \text{if } n \text{ is even} \\ \\ \left[\left| \frac{n}{2} - 1 \right| \right] n + 2, & \text{if } n \text{ is odd} \end{cases}$$

Proof. i. The first n terms of sequence are $a_1, a_2, a_3, \ldots, a_n$. For simplicity, we use indices instead of generating elements of CL_n in our process. Since $x_i = x_{i-n}x_{i-(n-1)}$, for i > n, we have

$$\begin{aligned} x_{n+1} &= x_2 = 2, \\ x_{n+2} &= x_3 = 3, \\ x_{n+3} &= x_4 = 4, \\ &\vdots \\ x_{n+n-1} &= x_n = x_{2n-1} = n, \\ x_{2n} &= x_n = n, \\ x_{2n+1} &= x_3 = 3, \\ &\vdots \\ x_{3n+1} &= x_4 = 4, \\ &\vdots \\ x_{(n-2)n+1} &= x_{n-1} = n - 1, \\ x_{(n-2)n+2} &= x_n = n, \end{aligned}$$

from defining relations in CL_n . It follows that $x_j = n$ for $l.n - (l-1) \le j \le l.n$, where $1 \le l \le (n-2)$. We also have $x_j = n$ and $x_{l.n+1} = x_{(l-1)n+2}$ Since the elements succeeding

$$x_{(n-2)n+1}, x_{(n-2)n+2},$$

depend on n-1, n for their values, we have

$$x_{(n-2)n+m} = x_n = n$$

for m > 1. So, 2-step sequences in CL_n is periodic and the period of the sequence is equal to

$$p = (n-2)n + 1.$$

ii. The first *n* terms of sequence are $a_1, a_2, a_3, \ldots, a_n$. For simplicity, we use indices instead of generating elements of CL_n in our process. It is clear that the period of the sequence is 2 when n = 2. Firstly, we consider the case of *n* is even, n > 2. Since $x_i = x_{i-n}x_{i-(n-1)}x_{i-(n-2)}$, for i > n, we have

$$x_{n+1} = \prod_{\substack{j=n+1-n \\ j=n+1-(n-3)}}^{n+1-(n-2)} x_j = x_3 = 3,$$

$$x_{n+2} = \prod_{\substack{j=n+1-(n-1) \\ j=n+1-(n-1)}}^{n+1-(n-2)} x_j = x_4 = 4,$$

28

$$\begin{array}{l} \vdots \\ x_{2n-2} = \prod_{j=n-2}^{n} x_j = x_n = n, \\ x_{2n-1} = \prod_{j=n-1}^{n+1} x_j = x_n = n, \\ x_{2n-1} = \prod_{j=n-1}^{n+2} x_j = x_n = n, \\ x_{2n} = \prod_{j=n+2}^{n+2} x_j = x_{n+3} = 5, \\ x_{2n+2} = \prod_{j=n+2}^{n+4} x_j = x_{n+4} = 6, \\ x_{2n+3} = \prod_{j=n+3}^{n+5} x_j = x_{n+5} = 7, \\ \vdots \\ x_{3n} = \prod_{j=2n}^{2n+2} x_j = x_{2n+2} = n, \\ x_{3n+1} = \prod_{j=2n+1}^{2n+3} x_j = x_{2n+3} = 7, \\ \vdots \\ x_{[\lfloor \frac{n}{2} - 1 \rfloor]n} = \prod_{j=\lfloor \lfloor \frac{n}{2} - 1 \rfloor]n - (n-2)}^{2n+3} x_j = x_n = n, \\ x_{[\lfloor \frac{n}{2} - 1 \rfloor]n+1} = \prod_{j=\lfloor \lfloor \frac{n}{2} - 1 \rfloor]n - (n-4)}^{[\lfloor \frac{n}{2} - 1 \rfloor]n - (n-4)} x_j = x_n = n, \\ x_{[\lfloor \frac{n}{2} - 1 \rfloor]n+2} = \prod_{j=\lfloor \frac{n}{2} - 1 \rfloor]n - (n-4)}^{2n+2} x_j = x_n = n, \end{array}$$

from defining relations in CL_n . Since the elements succeeding

$$x_{[|\frac{n}{2}-1|]n}, x_{[|\frac{n}{2}-1|]n+1}, x_{[|\frac{n}{2}-1|]n+2}, \dots,$$

depend on n, n-1, and n for their values, we have

$$x_{\left[\left|\frac{n}{2}-1\right|\right]n+m} = x_n = n$$

for m > 1. So, 3-step sequences in CL_n is periodic and the period of the sequence is equal to

$$p = \left[\left| \frac{n}{2} - 1 \right| \right] n + 1$$

when n is even. Now we consider the case of n is odd. Since

$$x_i = x_{i-n} x_{i-(n-1)} x_{i-(n-2)}$$

for i > n, we have

$$\begin{aligned} x_{n+1} &= \prod_{j=n+1-n}^{n+1-(n-2)} x_j = x_3 = 3, \\ x_{n+2} &= \prod_{j=n+1-(n-3)}^{n+1-(n-3)} x_j = x_4 = 4, \\ &\vdots \\ x_{2n-2} &= \prod_{j=n-2}^{n} x_j = x_n = n, \\ x_{2n-1} &= \prod_{j=n-1}^{n+1} x_j = x_n = n, \\ x_{2n} &= \prod_{j=n+1}^{n+2} x_j = x_n = n, \\ x_{2n+1} &= \prod_{j=n+2}^{n+3} x_j = x_{n+3} = 5, \\ x_{2n+2} &= \prod_{j=n+2}^{n+4} x_j = x_{n+4} = 6, \\ x_{2n+3} &= \prod_{j=n+2}^{n+5} x_j = x_{n+5} = 7, \\ &\vdots \\ x_{3n} &= \prod_{j=2n}^{2n+2} x_j = x_{2n+2} = n, \\ x_{3n+1} &= \prod_{j=2n+1}^{2n+3} x_j = x_{2n+3} = 7, \\ &\vdots \\ x_{[\lfloor \frac{n}{2} - 1 \rfloor]_n} &= \prod_{j=\lfloor \frac{n}{2} - 1 \rfloor]_{n-(n-5)}}^{2n+1} x_j = x_n = n \end{aligned}$$

$$x_{[|\frac{n}{2}-1|]n+1} = \prod_{\substack{j=[|\frac{n}{2}-1|]n-(n-6)\\ j=[\frac{n}{2}-1|]n-(n-4)}}^{[|\frac{n}{2}-1|]n-(n-6)} x_j = n-2,$$

$$x_{[|\frac{n}{2}-1|]n+2} = \prod_{\substack{j=[|\frac{n}{2}-1|]n-(n-5)\\ j=[\frac{n}{2}-1|]n-(n-6)}}^{[|\frac{n}{2}-1|]n-(n-6)} x_j = n-1,$$

from defining relations in CL_n . Since the elements succeeding

 $x_{\left[\left|\frac{n}{2}-1\right|\right]n+1}, x_{\left[\left|\frac{n}{2}-1\right|\right]n+2}, x_{\left[\left|\frac{n}{2}-1\right|\right]n+3}, \cdots,$

depend on n-2, n-1, and n for their values, we have

$$x_{[|\frac{n}{2}-1|]n+m} = r$$

for m > 2. So, 3-step sequences in CL_n is periodic and the period of the sequence is equal to

$$p = \left[\left| \frac{n}{2} - 1 \right| \right] n + 2.$$

when n is odd.

References

- H. Aydın and R. Dikici. General Fibonacci sequences in finite groups. Fibonacci Quart., 36(3):216–221, 1998.
- [2] H. Aydın and G. C. Smith. Finite p-quotients of some cyclically presented groups. J. London Math. Soc. (2), 49(1):83–92, 1994.
- [3] H. Ayık, M. Minisker, and B. Vatansever. Minimal presentations and embedding into inefficient semigroups. Algebra Coloquium, 10, 2003.
- [4] C. M. Campbell, H. Doostie, and E. F. Robertson. Fibonacci length of generating pairs in groups. In Applications of Fibonacci numbers, Vol. 3 (Pisa, 1988), pages 27–35. Kluwer Acad. Publ., Dordrecht, 1990.
- [5] R. Dikici and G. C. Smith. Recurrences in finite groups. *Turkish J. Math.*, 19(3):321–329, 1995.
- [6] R. Dikici and G. C. Smith. Fibonacci sequences in finite nilpotent groups. *Turkish J. Math.*, 21(2):133–142, 1997.
- [7] J. M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford University Press, New York, 1995. Oxford Science Publications.
- [8] E. Karaduman and H. Aydın. General 2-step Fibonacci sequences in nilpotent groups of exponent p and nilpotency class 4. Appl. Math. Comput., 141(2-3):491-497, 2003.
- [9] E. Karaduman and U. Yavuz. On the period of Fibonacci sequences in nilpotent groups. Appl. Math. Comput., 142(2-3):321–332, 2003.
- [10] B. Neumann. Some remarks on semigroup presentations. Can. J. Math., 19:1018–1026, 1968.
- [11] E. Özkan. 3-step Fibonacci sequences in nilpotent groups. Appl. Math. Comput., 144(2-3):517-527, 2003.
- [12] E. F. Robertson and Y. Ünlü. On semigroup presentations. Proc. Edinburgh Math. Soc. (2), 36(1):55–68, 1993.
- [13] J. A. Todd and H. S. M. Coxeter. A practical method for enumerating cosets of a finite abstract group. Proc. Edinb. Math. Soc., 5:26–34, 1936.
- [14] D. D. Wall. Fibonacci series modulo m. Amer. Math. Monthly, 67:525-532, 1960.
- [15] H. J. Wilcox. Fibonacci sequences of period n in groups. Fibonacci Quart., 24(4):356–361, 1986.

 \square

ERDAL KARADUMAN

Received May 25, 2004; revised September 13, 2004.

DEPARTMENT OF MATHEMATICS, FACULTY OF ART AND SCIENCE, ATATÜRK UNIVERSITY, 25240 ERZURUM, TURKEY *E-mail address:* eduman@atauni.edu.tr