SOME SUBCLASSES OF α-UNIFORMLY CONVEX FUNCTIONS

MUGUR ACU

Abstract. In this paper we define some subclass of α - uniformly convex functions with respect to a convex domain included in right half plane D.

1. Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$
A=\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\}
$$

$\mathcal{H}_{u}(U)=\{f \in \mathcal{H}(U): f$ is univalent in $U\}$ and $S=\{f \in A: f$ is univalent in $U\}$.
Let consider the integral operator $L_{a}: A \rightarrow A$ defined as:

$$
\begin{equation*}
f(z)=L_{a} F(z)=\frac{1+a}{z^{a}} \int_{0}^{z} F(t) \cdot t^{a-1} d t, \quad a \in \mathbb{C}, \quad \operatorname{Re} a \geq 0 \tag{1}
\end{equation*}
$$

In the case $a=1,2,3, \ldots$ this operator was introduced by S.D. Bernardi and it was studied by many authors in different general cases.

Let D^{n} be the Sălăgean differential operator (see [10]) defined as:

$$
\begin{gathered}
D^{n}: A \rightarrow A, \quad n \in \mathbb{N} \text { and } D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z), \quad D^{n} f(z)=D\left(D^{n-1} f(z)\right)
\end{gathered}
$$

2. Preliminary results

Definition 2.1 ([4]). Let $\alpha \in[0,1]$ and $f \in A$. We say that f is α - uniformly convex function if:

$$
\begin{aligned}
& \operatorname{Re}\left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\} \\
& \quad \geq\left|(1-\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, z \in U
\end{aligned}
$$

We denote this class with $U M_{\alpha}$.

[^0]

Figure 1

Remark 2.1. Geometric interpretation: $f \in U M_{\alpha}$ if and only if

$$
J(\alpha, f ; z)=(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

take all values in the parabolic region $\Omega=\{w:|w-1| \leq \operatorname{Re} w\}=\left\{w=u+i v: v^{2} \leq\right.$ $2 u-1\}$. We have $U M_{0}=S P$, where the class $S P$ was introduced by F. Ronning in [9] and $U M_{\alpha} \subset M_{\alpha}$, where M_{α} is the well know class of α - convex functions introduced by P.T. Mocanu in [8].
Definition 2.2 ([1]). Let $\alpha \in[0,1]$ and $n \in \mathbb{N}$. We say that $f \in A$ is in the class $U D_{n, \alpha}(\beta, \gamma), \beta \geq 0, \gamma \in[-1,1), \beta+\gamma \geq 0$ if

$$
\begin{aligned}
& \operatorname{Re}\left[(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)}\right] \\
& \qquad \quad \geq \beta\left|(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)}-1\right|+\gamma
\end{aligned}
$$

Remark 2.2. Geometric interpretation: $f \in U D_{n, \alpha}(\beta, \gamma)$ if and only if

$$
J_{n}(\alpha, f ; z)=(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)}
$$

take all values in the convex domain included in right half plane $D_{\beta, \gamma}$, where $D_{\beta, \gamma}$ is an elliptic region for $\beta>1$, a parabolic region for $\beta=1$, a hyperbolic region for $0<\beta<1$, the half plane $u>\gamma$ for $\beta=0$. (Figure 1.)

We have $U D_{0, \alpha}(1,0)=U M_{\alpha}$.
The next theorem is result of the so called "admissible functions method" introduced by P.T. Mocanu and S.S. Miller (see [5], [6], [7]).

Theorem 2.1. Let h convex in U and $\operatorname{Re}[\beta h(z)+\delta]>0$, $z \in U$. If $p \in$ $\mathcal{H}(U)$ with $p(0)=h(0)$ and p satisfied the Briot-Bouquet differential subordination $p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\delta} \prec h(z)$, then $p(z) \prec h(z)$.

Definition 2.3 ([3]). The function $f \in A$ is n-starlike with respect to convex domain included in right half plane D if the differential expression $\frac{D^{n+1} f(z)}{D^{n} f(z)}$ takes values in the domain D.

If we consider $q(z)$ an univalent function with $q(0)=1$, $\operatorname{Re} q(z)>0, q^{\prime}(0)>0$ which maps the unit disc U into the convex domain D we have:

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec q(z)
$$

We note by $S_{n}^{*}(q)$ the set of all these functions.

3. Main Results

Let $q(z)$ be an univalent function with $q(0)=1, q^{\prime}(0)>0$, which maps the unit disc U into a convex domain included in right half plane D.
Definition 3.1. Let $f \in A$ and $\alpha \in[0,1]$. We say that f is α-uniform convex function with respect to D, if

$$
J(\alpha, f ; z)=(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec q(z)
$$

We denote this class with $U M_{\alpha}(q)$.
Remark 3.1. Geometric interpretation: $f \in U M_{\alpha}(q)$ if and only if $J(\alpha, f ; z)$ take all values in the convex domain included in right half plan D.

Remark 3.2. We have $U M_{\alpha}(q) \subset M_{\alpha}$, where M_{α} is the well know class of α-convex function. If we take $D=\Omega$ (see Remark 2.1) we obtain the class $U M_{\alpha}$.
Remark 3.3. From the above definition it easily results that $q_{1}(z) \prec q_{2}(z)$ implies $U M_{\alpha}\left(q_{1}\right) \subset U M_{\alpha}\left(q_{2}\right)$.

Theorem 3.1. For all $\alpha, \alpha^{\prime} \in[0,1]$ with $\alpha<\alpha^{\prime}$ we have $U M_{\alpha^{\prime}}(q) \subset U M_{\alpha}(q)$.
Proof. From $f \in U M_{\alpha^{\prime}}(q)$ we have

$$
\begin{equation*}
J\left(\alpha^{\prime}, f ; z\right)=\left(1-\alpha^{\prime}\right) \frac{z f^{\prime}(z)}{f(z)}+\alpha^{\prime}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec q(z), \tag{2}
\end{equation*}
$$

where $q(z)$ is univalent in U with $q(0)=1, q^{\prime}(0)>0$, and maps the unit disc U into the convex domain included in right half plane D.

With notation $\frac{z f^{\prime}(z)}{f(z)}=p(z)$, where $p(z)=1+p_{1} z+\ldots$ we have:

$$
J\left(\alpha^{\prime}, f ; z\right)=p(z)+\alpha^{\prime} \cdot \frac{z p^{\prime}(z)}{p(z)}
$$

From (2) we have $p(z)+\alpha^{\prime} \cdot \frac{z p^{\prime}(z)}{p(z)} \prec q(z)$ with $p(0)=q(0)$ and $\operatorname{Re} q(z)>0$, $z \in U$.

In this conditions from Theorem 2.1, with $\delta=0$, we obtain $p(z) \prec q(z)$, or $p(z)$ take all values in D.

If we consider the function $g:\left[0, \alpha^{\prime}\right] \rightarrow \mathbb{C}, g(u)=p(z)+u \cdot \frac{z p^{\prime}(z)}{p(z)}$, with $g(0)=$ $p(z) \in D$ and $g\left(\alpha^{\prime}\right)=J\left(\alpha^{\prime}, f ; z\right) \in D$. Since the geometric image of $g(\alpha)$ is on the segment obtained by the union of the geometric image of $g(0)$ and $g\left(\alpha^{\prime}\right)$, we have $g(\alpha) \in D$ or $p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} \in D$.

Thus $J(\alpha, f ; z)$ take all values in D, or $J(\alpha, f ; z) \prec q(z)$. This means $f \in$ $U M_{\alpha}(q)$.

Theorem 3.2. If $F(z) \in U M_{\alpha}(q)$ then $f(z)=L_{a}(F)(z) \in S_{0}^{*}(q)$, where L_{a} is the integral operator defined by (1) and $\alpha \in[0,1]$.

Proof. From (1) we have

$$
(1+a) F(z)=a f(z)+z f^{\prime}(z)
$$

With notation $\frac{z f^{\prime}(z)}{f(z)}=p(z)$, where $p(z)=1+p_{1} z+\ldots$ we have

$$
\frac{z F^{\prime}(z)}{F(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)+a}
$$

If we denote $\frac{z F^{\prime}(z)}{F(z)}=h(z)$, with $h(0)=1$, we have from $F(z) \in U M_{\alpha}(q)$ (see Definition 3.1):

$$
h(z)+\alpha \cdot \frac{z h^{\prime}(z)}{h(z)} \prec q(z),
$$

where $q(z)$ is univalent un U with $q(0)=1, q^{\prime}(z)>0$ and maps the unit disc U into the convex domain included in right half plane D.

From Theorem 2.1 we obtain $h(z) \prec q(z)$ or $p(z)+\frac{z p^{\prime}(z)}{p(z)+a} \prec q(z)$.
Using the hypothesis and the construction of the function $q(z)$ we obtain from Theorem 2.1 $\frac{z f^{\prime}(z)}{f(z)}=p(z) \prec q(z)$ or $f(z) \in S_{0}^{*}(q) \subset S^{*}$.

Definition 3.2. Let $f \in A, \alpha \in[0,1]$ and $n \in \mathbb{N}$. We say that f is α - n-uniformly convex function with respect to D if

$$
J_{n}(\alpha, f ; z)=(1-\alpha) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha \frac{D^{n+2} f(z)}{D^{n+1} f(z)} \prec q(z)
$$

We denote this class with $U D_{n, \alpha}(q)$.
Remark 3.4. Geometric interpretation: $f \in U D_{n, \alpha}(q)$ if and only if $J_{n}(\alpha, f ; z)$ take all values in the convex domain included in right half plane D.
Remark 3.5. We have $U D_{0, \alpha}(q)=U M_{\alpha}(q)$ and if in the above definition we consider $D=D_{\beta, \gamma}$ (see Remark 2.2) we obtain the class $U D_{n, \alpha}(\beta, \gamma)$.
Remark 3.6. It is easy to see that $q_{1}(z) \prec q_{2}(z)$ implies $U D_{n, \alpha}\left(q_{1}\right) \subset U D_{n, \alpha}\left(q_{2}\right)$.
Theorem 3.3. For all $\alpha, \alpha^{\prime} \in[0,1]$ with $\alpha<\alpha^{\prime}$ we have $U D_{n, \alpha^{\prime}}(q) \subset U D_{n, \alpha}(q)$.

Proof. From $f \in U D_{n, \alpha^{\prime}}(q)$ we have:

$$
\begin{equation*}
J_{n}\left(\alpha^{\prime}, f ; z\right)=\left(1-\alpha^{\prime}\right) \frac{D^{n+1} f(z)}{D^{n} f(z)}+\alpha^{\prime} \frac{D^{n+2} f(z)}{D^{n+1} f(z)} \prec q(z), \tag{3}
\end{equation*}
$$

where $q(z)$ is univalent in U with $q(0)=1, q^{\prime}(0)>0$, and maps the unit disc U into the convex domain included in right half plane D.

With notation $\frac{D^{n+1} f(z)}{D^{n} f(z)}=p(z)$, where $p(z)=1+p_{1} z+\ldots$ we have

$$
J_{n}\left(\alpha^{\prime}, f ; z\right)=p(z)+\alpha^{\prime} \cdot \frac{z p^{\prime}(z)}{p(z)}
$$

From (3) we have $p(z)+\alpha^{\prime} \cdot \frac{z p^{\prime}(z)}{p(z)} \prec q(z)$ with $p(0)=q(0)$ and $\operatorname{Re} q(z)>0$, $z \in U$. In this condition from Theorem 2.1 we obtain $p(z) \prec q(z)$, or $p(z)$ take all values in D.

If we consider the function

$$
g:\left[0, \alpha^{\prime}\right] \rightarrow \mathbb{C}, \quad g(u)=p(z)+u \cdot \frac{z p^{\prime}(z)}{p(z)}
$$

with $g(0)=p(z) \in D$ and $g\left(\alpha^{\prime}\right)=J_{n}\left(\alpha^{\prime}, f ; z\right) \in D$, it easy to see that

$$
g(\alpha)=p(z)+\alpha \frac{z p^{\prime}(z)}{p(z)} \in D
$$

Thus we have $J_{n}(\alpha, f ; z) \prec q(z)$ or $f \in U D_{n, \alpha}(q)$.
Theorem 3.4. If $F(z) \in U D_{n, \alpha}(q)$ then $f(z)=L_{a}(F)(z) \in S_{n}^{*}(q)$, where L_{a} is the integral operator defined by (1).

Proof. From (1) we have $(1+a) F(z)=a f(z)+z f^{\prime}(z)$. By means of the application of the linear operator D^{n+1} we obtain:

$$
(1+a) D^{n+1} F(z)=a D^{n+1} f(z)+D^{n+1}\left(z f^{\prime}(z)\right)
$$

or

$$
(1+a) D^{n+1} F(z)=a D^{n+1} f(z)+D^{n+2} f(z)
$$

With notation $\frac{D^{n+1} f(z)}{D^{n} f(z)}=p(z)$, where $p(z)=1+p_{1} z+\ldots$, we have:

$$
\frac{D^{n+1} F(z)}{D^{n} F(z)}=p(z)+\frac{1}{p(z)+a} \cdot z p^{\prime}(z)
$$

If we denote $\frac{D^{n+1} F(z)}{D^{n} F(z)}=h(z)$, with $h(0)=1$, we have from $F \in U D_{n, \alpha}(q)$:

$$
h(z)+\alpha \frac{z h^{\prime}(z)}{h(z)} \prec q(z),
$$

where $q(z)$ is univalent in U with $q(0)=1, q^{\prime}(0)>0$, and maps the unit disc U into the convex domain included in right half plane D.

From Theorem 2.1 we obtain $h(z) \prec q(z)$ or $p(z)+\frac{z p^{\prime}(z)}{p(z)+a} \prec q(z)$.
Using the hypothesis we obtain from Theorem $2.1 p(z) \prec q(z)$ or $f(z) \in S_{n}^{*}(q)$.

Remark 3.7. If we consider $D=D_{\beta, \gamma}$ in Theorem 3.3 and Theorem 3.4 we obtain the main results from [1] and if we take $D=D_{\beta, \gamma}$ and $\alpha=0$ in Theorem 3.4 we obtain the Theorem 3.1 from [2].

References

[1] M. Acu. On a subclass of α-uniform convex functions. submitted.
[2] M. Acu and D. Blezu. A preserving property of a Libera type operator. Filomat, (14):13-18, 2000.
[3] D. Blezu. On the n-uniformly close to convex functions with respect to a convex domain. Gen. Math., 9(3-4):3-14, 2001.
[4] I. Magdaş. On α-uniformly convex functions. Mathematica, 43(66)(2):211-218 (2003), 2001.
[5] S. S. Miller and P. T. Mocanu. Differential subordinations and univalent functions. Michigan Math. J., 28(2):157-172, 1981.
[6] S. S. Miller and P. T. Mocanu. On some classes of first-order differential subordinations. Michigan Math. J., 32(2):185-195, 1985.
[7] S. S. Miller and P. T. Mocanu. Univalent solutions of Briot-Bouquet differential equations. J. Differential Equations, 56(3):297-309, 1985.
[8] P. T. Mocanu. Une propriété de convexité généralisée dans la théorie de la représentation conforme. Mathematica (Cluj), 11 (34):127-133, 1969.
[9] F. Rønning. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Sktodowska Sect. A, 45:117-122 (1992), 1991.
[10] G. Ş. Sălăgean. On some classes of univalent functions. In Seminar of geometric function theory, volume 82 of Preprint, pages 142-158. Univ. "Babeş-Bolyai", Cluj, 1983.

Received March 24, 2004.

Department of Mathematics,
University Lucian Blaga of Sibiu,
Str. Dr. I. Raṭiu, No. 5-7,
550012 - Sibiu, Romania
E-mail address: acu_mugur@yahoo.com

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. Alexander integral operator, Briot-Bouquet differential subordination, Ruscheweyh operator.

