Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21 (2005), 49-54 www.emis.de/journals ISSN 1786-0091

SOME SUBCLASSES OF α -UNIFORMLY CONVEX FUNCTIONS

MUGUR ACU

ABSTRACT. In this paper we define some subclass of α - uniformly convex functions with respect to a convex domain included in right half plane D.

1. INTRODUCTION

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$A = \{ f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0 \},\$$

 $\mathcal{H}_u(U) = \{f \in \mathcal{H}(U) : f \text{ is univalent in } U\}$ and $S = \{f \in A : f \text{ is univalent in } U\}$. Let consider the integral operator $L_a : A \to A$ defined as:

(1)
$$f(z) = L_a F(z) = \frac{1+a}{z^a} \int_0^z F(t) \cdot t^{a-1} dt, \quad a \in \mathbb{C}, \quad \text{Re } a \ge 0.$$

In the case a = 1, 2, 3, ... this operator was introduced by S.D. Bernardi and it was studied by many authors in different general cases.

Let D^n be the Sălăgean differential operator (see [10]) defined as:

$$D^n \colon A \to A, \quad n \in \mathbb{N} \text{ and } D^0 f(z) = f(z)$$

 $D^1 f(z) = Df(z) = z f'(z), \quad D^n f(z) = D(D^{n-1} f(z)).$

2. Preliminary results

Definition 2.1 ([4]). Let $\alpha \in [0,1]$ and $f \in A$. We say that f is α - uniformly convex function if:

$$\operatorname{Re}\left\{ (1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) \right\}$$
$$\geq \left| (1-\alpha) \left(\frac{zf'(z)}{f(z)} - 1\right) + \alpha \frac{zf''(z)}{f'(z)} \right| , \ z \in U.$$

We denote this class with UM_{α} .

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Alexander integral operator, Briot-Bouquet differential subordination, Ruscheweyh operator.

MUGUR ACU

Figure 1

Remark 2.1. Geometric interpretation: $f \in UM_{\alpha}$ if and only if

$$J(\alpha,f;z) = (1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)$$

take all values in the parabolic region $\Omega = \{w : |w-1| \leq \text{Re } w\} = \{w = u+iv : v^2 \leq 2u-1\}$. We have $UM_0 = SP$, where the class SP was introduced by F. Ronning in [9] and $UM_{\alpha} \subset M_{\alpha}$, where M_{α} is the well know class of α - convex functions introduced by P.T. Mocanu in [8].

Definition 2.2 ([1]). Let $\alpha \in [0,1]$ and $n \in \mathbb{N}$. We say that $f \in A$ is in the class $UD_{n,\alpha}(\beta,\gamma), \beta \geq 0, \gamma \in [-1,1), \beta + \gamma \geq 0$ if

$$\begin{split} \operatorname{Re}\left[(1-\alpha)\frac{D^{n+1}f(z)}{D^nf(z)} + \alpha\frac{D^{n+2}f(z)}{D^{n+1}f(z)}\right] \\ & \geq \beta \left|(1-\alpha)\frac{D^{n+1}f(z)}{D^nf(z)} + \alpha\frac{D^{n+2}f(z)}{D^{n+1}f(z)} - 1\right| + \gamma. \end{split}$$

Remark 2.2. Geometric interpretation: $f \in UD_{n,\alpha}(\beta,\gamma)$ if and only if

$$J_n(\alpha, f; z) = (1 - \alpha) \frac{D^{n+1}f(z)}{D^n f(z)} + \alpha \frac{D^{n+2}f(z)}{D^{n+1}f(z)}$$

take all values in the convex domain included in right half plane $D_{\beta,\gamma}$, where $D_{\beta,\gamma}$ is an elliptic region for $\beta > 1$, a parabolic region for $\beta = 1$, a hyperbolic region for $0 < \beta < 1$, the half plane $u > \gamma$ for $\beta = 0$. (Figure 1.)

We have $UD_{0,\alpha}(1,0) = UM_{\alpha}$.

The next theorem is result of the so called "admissible functions method" introduced by P.T. Mocanu and S.S. Miller (see [5], [6], [7]). **Theorem 2.1.** Let h convex in U and $\operatorname{Re}[\beta h(z) + \delta] > 0$, $z \in U$. If $p \in \mathcal{H}(U)$ with p(0) = h(0) and p satisfied the Briot-Bouquet differential subordination $p(z) + \frac{zp'(z)}{\beta p(z) + \delta} \prec h(z)$, then $p(z) \prec h(z)$.

Definition 2.3 ([3]). The function $f \in A$ is *n*-starlike with respect to convex domain included in right half plane D if the differential expression $\frac{D^{n+1}f(z)}{D^n f(z)}$ takes values in the domain D.

If we consider q(z) an univalent function with q(0) = 1, Re q(z) > 0, q'(0) > 0 which maps the unit disc U into the convex domain D we have:

$$\frac{D^{n+1}f(z)}{D^n f(z)} \prec q(z).$$

We note by $S_n^*(q)$ the set of all these functions.

3. Main results

Let q(z) be an univalent function with q(0) = 1, q'(0) > 0, which maps the unit disc U into a convex domain included in right half plane D.

Definition 3.1. Let $f \in A$ and $\alpha \in [0, 1]$. We say that f is α -uniform convex function with respect to D, if

$$J(\alpha, f; z) = (1 - \alpha) \frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec q(z).$$

We denote this class with $UM_{\alpha}(q)$.

Remark 3.1. Geometric interpretation: $f \in UM_{\alpha}(q)$ if and only if $J(\alpha, f; z)$ take all values in the convex domain included in right half plan D.

Remark 3.2. We have $UM_{\alpha}(q) \subset M_{\alpha}$, where M_{α} is the well know class of α -convex function. If we take $D = \Omega$ (see Remark 2.1) we obtain the class UM_{α} .

Remark 3.3. From the above definition it easily results that $q_1(z) \prec q_2(z)$ implies $UM_{\alpha}(q_1) \subset UM_{\alpha}(q_2)$.

Theorem 3.1. For all $\alpha, \alpha' \in [0, 1]$ with $\alpha < \alpha'$ we have $UM_{\alpha'}(q) \subset UM_{\alpha}(q)$.

Proof. From $f \in UM_{\alpha'}(q)$ we have

(2)
$$J(\alpha', f; z) = (1 - \alpha') \frac{zf'(z)}{f(z)} + \alpha' \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec q(z),$$

where q(z) is univalent in U with q(0) = 1, q'(0) > 0, and maps the unit disc U into the convex domain included in right half plane D.

With notation $\frac{zf'(z)}{f(z)} = p(z)$, where $p(z) = 1 + p_1 z + \dots$ we have:

$$J(\alpha', f; z) = p(z) + \alpha' \cdot \frac{zp'(z)}{p(z)}.$$

From (2) we have $p(z) + \alpha' \cdot \frac{zp'(z)}{p(z)} \prec q(z)$ with p(0) = q(0) and Re q(z) > 0, $z \in U$.

MUGUR ACU

In this conditions from Theorem 2.1, with $\delta = 0$, we obtain $p(z) \prec q(z)$, or p(z) take all values in D.

If we consider the function $g: [0, \alpha'] \to \mathbb{C}$, $g(u) = p(z) + u \cdot \frac{zp'(z)}{p(z)}$, with $g(0) = p(z) \in D$ and $g(\alpha') = J(\alpha', f; z) \in D$. Since the geometric image of $g(\alpha)$ is on the segment obtained by the union of the geometric image of g(0) and $g(\alpha')$, we have $g(\alpha) \in D$ or $p(z) + \alpha \frac{zp'(z)}{p(z)} \in D$.

Thus $J(\alpha, f; z)$ take all values in D, or $J(\alpha, f; z) \prec q(z)$. This means $f \in UM_{\alpha}(q)$.

Theorem 3.2. If $F(z) \in UM_{\alpha}(q)$ then $f(z) = L_a(F)(z) \in S_0^*(q)$, where L_a is the integral operator defined by (1) and $\alpha \in [0, 1]$.

Proof. From (1) we have

$$(1+a)F(z) = af(z) + zf'(z).$$
With notation $\frac{zf'(z)}{f(z)} = p(z)$, where $p(z) = 1 + p_1 z + \dots$ we have
 $\frac{zF'(z)}{F(z)} = p(z) + \frac{zp'(z)}{p(z) + a}.$

If we denote $\frac{zF'(z)}{F(z)} = h(z)$, with h(0) = 1, we have from $F(z) \in UM_{\alpha}(q)$ (see Definition 3.1):

$$h(z) + \alpha \cdot \frac{zh'(z)}{h(z)} \prec q(z)$$

where q(z) is univalent un U with q(0) = 1, q'(z) > 0 and maps the unit disc U into the convex domain included in right half plane D.

From Theorem 2.1 we obtain $h(z) \prec q(z)$ or $p(z) + \frac{zp'(z)}{p(z) + a} \prec q(z)$. Using the hypothesis and the construction of the function q(z) we obtain from

Theorem 2.1 $\frac{zf'(z)}{f(z)} = p(z) \prec q(z)$ or $f(z) \in S_0^*(q) \subset S^*$.

Definition 3.2. Let $f \in A$, $\alpha \in [0, 1]$ and $n \in \mathbb{N}$. We say that f is $\alpha - n$ -uniformly convex function with respect to D if

$$J_n(\alpha, f; z) = (1 - \alpha) \frac{D^{n+1}f(z)}{D^n f(z)} + \alpha \frac{D^{n+2}f(z)}{D^{n+1}f(z)} \prec q(z).$$

We denote this class with $UD_{n,\alpha}(q)$.

Remark 3.4. Geometric interpretation: $f \in UD_{n,\alpha}(q)$ if and only if $J_n(\alpha, f; z)$ take all values in the convex domain included in right half plane D.

Remark 3.5. We have $UD_{0,\alpha}(q) = UM_{\alpha}(q)$ and if in the above definition we consider $D = D_{\beta,\gamma}$ (see Remark 2.2) we obtain the class $UD_{n,\alpha}(\beta,\gamma)$.

Remark 3.6. It is easy to see that $q_1(z) \prec q_2(z)$ implies $UD_{n,\alpha}(q_1) \subset UD_{n,\alpha}(q_2)$.

Theorem 3.3. For all $\alpha, \alpha' \in [0, 1]$ with $\alpha < \alpha'$ we have $UD_{n,\alpha'}(q) \subset UD_{n,\alpha}(q)$.

52

Proof. From $f \in UD_{n,\alpha'}(q)$ we have:

(3)
$$J_n(\alpha', f; z) = (1 - \alpha') \frac{D^{n+1}f(z)}{D^n f(z)} + \alpha' \frac{D^{n+2}f(z)}{D^{n+1}f(z)} \prec q(z)$$

where q(z) is univalent in U with q(0) = 1, q'(0) > 0, and maps the unit disc U into the convex domain included in right half plane D.

With notation $\frac{D^{n+1}f(z)}{D^n f(z)} = p(z)$, where $p(z) = 1 + p_1 z + \dots$ we have

$$J_n(\alpha', f; z) = p(z) + \alpha' \cdot \frac{zp'(z)}{p(z)}.$$

From (3) we have $p(z) + \alpha' \cdot \frac{zp'(z)}{p(z)} \prec q(z)$ with p(0) = q(0) and Re q(z) > 0, $z \in U$. In this condition from Theorem 2.1 we obtain $p(z) \prec q(z)$, or p(z) take all values in D.

If we consider the function

$$g\colon [0,\alpha']\to \mathbb{C}, \quad g(u)=p(z)+u\cdot \frac{zp'(z)}{p(z)},$$

with $g(0) = p(z) \in D$ and $g(\alpha') = J_n(\alpha', f; z) \in D$, it easy to see that

$$g(\alpha) = p(z) + \alpha \frac{zp'(z)}{p(z)} \in D.$$

Thus we have $J_n(\alpha, f; z) \prec q(z)$ or $f \in UD_{n,\alpha}(q)$.

Theorem 3.4. If $F(z) \in UD_{n,\alpha}(q)$ then $f(z) = L_a(F)(z) \in S_n^*(q)$, where L_a is the integral operator defined by (1).

Proof. From (1) we have (1+a)F(z) = af(z) + zf'(z). By means of the application of the linear operator D^{n+1} we obtain:

$$(1+a)D^{n+1}F(z) = aD^{n+1}f(z) + D^{n+1}(zf'(z))$$

or

$$(1+a)D^{n+1}F(z) = aD^{n+1}f(z) + D^{n+2}f(z).$$

With notation $\frac{D^{n+1}f(z)}{D^n f(z)} = p(z)$, where $p(z) = 1 + p_1 z + \dots$, we have:

$$\frac{D^{n+1}F(z)}{D^nF(z)} = p(z) + \frac{1}{p(z)+a} \cdot zp'(z).$$

If we denote $\frac{D^{n+1}F(z)}{D^nF(z)} = h(z)$, with h(0) = 1, we have from $F \in UD_{n,\alpha}(q)$:

$$h(z) + \alpha \frac{zh'(z)}{h(z)} \prec q(z)$$

where q(z) is univalent in U with q(0) = 1, q'(0) > 0, and maps the unit disc U into the convex domain included in right half plane D.

From Theorem 2.1 we obtain $h(z) \prec q(z)$ or $p(z) + \frac{zp'(z)}{p(z) + a} \prec q(z)$. Using the hypothesis we obtain from Theorem 2.1 $p(z) \prec q(z)$ or $f(z) \in S_n^*(q)$.

MUGUR ACU

Remark 3.7. If we consider $D = D_{\beta,\gamma}$ in Theorem 3.3 and Theorem 3.4 we obtain the main results from [1] and if we take $D = D_{\beta,\gamma}$ and $\alpha = 0$ in Theorem 3.4 we obtain the Theorem 3.1 from [2].

References

- [1] M. Acu. On a subclass of α -uniform convex functions. submitted.
- [2] M. Acu and D. Blezu. A preserving property of a Libera type operator. *Filomat*, (14):13–18, 2000.
- [3] D. Blezu. On the n-uniformly close to convex functions with respect to a convex domain. Gen. Math., 9(3-4):3-14, 2001.
- [4] I. Magdaş. On α -uniformly convex functions. Mathematica, 43(66)(2):211–218 (2003), 2001.
- [5] S. S. Miller and P. T. Mocanu. Differential subordinations and univalent functions. *Michigan Math. J.*, 28(2):157–172, 1981.
- [6] S. S. Miller and P. T. Mocanu. On some classes of first-order differential subordinations. Michigan Math. J., 32(2):185–195, 1985.
- S. S. Miller and P. T. Mocanu. Univalent solutions of Briot-Bouquet differential equations. J. Differential Equations, 56(3):297–309, 1985.
- [8] P. T. Mocanu. Une propriété de convexité généralisée dans la théorie de la représentation conforme. Mathematica (Cluj), 11 (34):127–133, 1969.
- [9] F. Rønning. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Skłodowska Sect. A, 45:117–122 (1992), 1991.
- [10] G. Ş. Sălăgean. On some classes of univalent functions. In Seminar of geometric function theory, volume 82 of Preprint, pages 142–158. Univ. "Babeş-Bolyai", Cluj, 1983.

Received March 24, 2004.

DEPARTMENT OF MATHEMATICS, UNIVERSITY LUCIAN BLAGA OF SIBIU, STR. DR. I. RAȚIU, NO. 5-7, 550012 - SIBIU, ROMANIA *E-mail address*: acu_mugur@yahoo.com