Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 21 (2005), 79-87 www.emis.de/journals ISSN 1786-0091

WARPED PRODUCT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

ADELA MIHAI

ABSTRACT. B.Y. Chen [5] established a sharp inequality for the warping function of a warped product submanifold in a Riemannian space form in terms of the squared mean curvature. Later, in [4], he studied warped product submanifolds in complex hyperbolic spaces.

In the present paper, we establish an inequality between the warping function f (intrinsic structure) and the squared mean curvature $||H||^2$ and the holomorphic sectional curvature c (extrinsic structures) for warped product submanifolds $M_1 \times_f M_2$ in any generalized complex space form $\widetilde{M}(c, \alpha)$.

INTRODUCTION

The notion of *warped product* plays some important role in differential geometry as well as in physics [3]. For instance, the best relativistic model of the Schwarzschild space-time that describes the out space around a massive star or a black hole is given as a warped product.

One of the most fundamental problems in the theory of submanifolds is the immersibility (or non-immersibility) of a Riemannian manifold in a Euclidean space (or, more generally, in a space form). According to a well-known theorem on Nash, every Riemannian manifold can be isometrically immersed in some Euclidean spaces with sufficiently high codimension.

Nash's theorem implies, in particular, that every warped product $M_1 \times_f M_2$ can be immersed as a Riemannian submanifold in some Euclidean space. Moreover, many important submanifolds in real and complex space forms are expressed as a warped product submanifold.

Every Riemannian manifold of constant curvature c can be locally expressed as a warped product whose warping function satisfies $\Delta f = cf$. For example, $S^n(1)$ is locally isometric to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times_{\cos t} S^{n-1}(1)$, \mathbf{E}^n is locally isometric to $(0, \infty) \times_x S^{n-1}(1)$ and $H^n(-1)$ is locally isometric to $\mathbf{R} \times_{e^x} \mathbf{E}^{n-1}$ (see [3]).

²⁰⁰⁰ Mathematics Subject Classification. 53C40, 53C15, 53C42.

 $Key\ words\ and\ phrases.$ Generalized complex space forms, warped products, CR-warped products, CR-products, warping function.

Supported by a JSPS postdoctoral fellowship.

ADELA MIHAI

1. Preliminaries

Let \widetilde{M} be an almost Hermitian manifold with almost complex structure J and Riemannian metric g. One denotes by $\widetilde{\nabla}$ the operator of covariant differentiation with respect to g on \widetilde{M} .

Definition 1.1. If the almost complex structure J satisfies

$$(\nabla_X J)Y + (\nabla_Y J)X = 0,$$

for any vector fields X and Y on \widetilde{M} , then the manifold \widetilde{M} is called a *nearly-Kaehler* manifold [10].

Remark 1.2. The above condition is equivalent to

$$(\widetilde{\nabla}_X J)X = 0, \quad \forall X \in \Gamma T M.$$

For an almost complex structure J on the manifold M, the Nijenhuis tensor field is defined by

$$N_J(X,Y) = [JX, JY] - J[JX,Y] - J[X, JY] - [X,Y],$$

for any vector fields X, Y tangent to M, where [,] is the Lie bracket.

A necessary and sufficient condition for a nearly-Kaehler manifold to be Kaehler is the vanishing of the Nijenhuis tensor N_J . Any 4-dimensional nearly-Kaehler manifold is a Kaehler manifold.

Example 1.3. Let S^6 be the 6-dimensional unit sphere defined as follows. Let \mathbf{E}^7 be the set of all purely imaginary Cayley numbers. Then \mathbf{E}^7 is a 7-dimensional subspace of the Cayley algebra C. Let $\{1 = e_0, e_1, \ldots, e_6\}$ be a basis of the Cayley algebra, 1 being the unit element of C. If $X = \sum_{i=0}^{6} x^i e_i$ and $Y = \sum_{i=0}^{6} y^i e_i$ are two elements of \mathbf{E}^7 , one defines the scalar product in \mathbf{E}^7 by

$$\langle X, Y \rangle = \sum_{i=0}^{6} x^{i} y^{i},$$

and the *vector product* by

$$X \times Y = \sum_{i \neq j} x^i y^j e_i * e_j,$$

* being the multiplication operation of C.

Consider the 6-dimensional unit sphere S^6 in \mathbf{E}^7 :

$$S^6 = \{ X \in \mathbf{E}^7 \mid \langle X, X \rangle = 1 \}.$$

The scalar product in \mathbf{E}^7 induces the natural metric tensor field g on S^6 . The tangent space $T_X S^6$ at $X \in S^6$ can naturally be identified with the subspace of \mathbf{E}^7 orthogonal to X. Define the endomorphism J_X on $T_X S^6$ by

$$J_X Y = X \times Y$$
, for $Y \in T_X S^6$.

It is easy to see that

$$g(J_XY, J_XZ) = g(Y, Z), \ Y, Z \in T_XS^6.$$

The correspondence $X \mapsto J_X$ defines a tensor field J such that $J^2 = -I$. Consequently, S^6 admits an almost Hermitian structure (J,g). This structure is a non-Kaehlerian nearly-Kaehlerian structure (its Betti numbers of even order are 0).

80

We will consider a class of almost Hermitian manifolds, called *RK-manifolds*, which contains nearly-Kaehler manifolds.

Definition 1.4 ([9]). An *RK-manifold* (M, J, g) is an almost Hermitian manifold for which the curvature tensor \widetilde{R} is invariant by J, i.e.

$$R(JX, JY, JZ, JW) = R(X, Y, Z, W),$$

for any $X, Y, Z, W \in \Gamma T M$.

An almost Hermitian manifold \widetilde{M} is of *pointwise constant type* if for any $p \in \widetilde{M}$ and $X \in T_p \widetilde{M}$ we have $\lambda(X, Y) = \lambda(X, Z)$, where

$$\lambda(X,Y) = \widetilde{R}(X,Y,JX,JY) - \widetilde{R}(X,Y,X,Y)$$

and Y and Z are unit tangent vectors on \widetilde{M} at p, orthogonal to X and JX, i.e. $g(X, X) = g(Y, Y) = 1, \ g(X, Y) = g(JX, Y) = g(X, Z) = g(JX, Z) = 0.$

The manifold M is said to be of *constant type* if for any unit $X, Y \in \Gamma T M$ with g(X,Y) = g(JX,Y) = 0, $\lambda(X,Y)$ is a constant function.

Recall the following result [9].

Theorem 1.5. Let \widetilde{M} be an RK-manifold. Then \widetilde{M} is of pointwise constant type if and only if there exists a function α on \widetilde{M} such that

$$\lambda(X,Y) = \alpha[g(X,X)g(Y,Y) - (g(X,Y))^2 - (g(X,JY))^2],$$

for any $X, Y \in \Gamma T M$.

Moreover, \widetilde{M} is of constant type if and only if the above equality holds good for a constant α .

In this case, α is the *constant type* of M.

Definition 1.6. A generalized complex space form is an RK-manifold of constant holomorphic sectional curvature and of constant type.

We will denote a generalized complex space form by $M(c, \alpha)$, where c is the constant holomorphic sectional curvature and α the constant type, respectively.

Each complex space form is a generalized complex space form. The converse statement is not true. The sphere S^6 endowed with the standard nearly-Kaehler structure is an example of generalized complex space form which is not a complex space form.

Let $M(c, \alpha)$ be a generalized complex space form of constant holomorphic sectional curvature c and of constant type α . Then the curvature tensor \widetilde{R} of $\widetilde{M}(c, \alpha)$ has the following expression [9]:

(1.1)
$$\widetilde{R}(X,Y)Z = \frac{c+3\alpha}{4} [g(Y,Z)X - g(X,Z)Y] \\ + \frac{c-\alpha}{4} [g(X,JZ)JY - g(Y,JZ)JX + 2g(X,JY)JZ].$$

Let M be an *n*-dimensional submanifold of a 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature c and constant type α . One denotes by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_pM, p \in M$, and ∇ the Riemannian connection of M, respectively. Also, let h be the second fundamental form and R the Riemann curvature tensor of M. Then the equation of Gauss is given by

(1.2)
$$R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)),$$

for any vectors X, Y, Z, W tangent to M.

Let $p \in M$ and $\{e_1, \ldots, e_n, \ldots, e_{2m}\}$ an orthonormal basis of the tangent space $T_p \widetilde{M}(c, \alpha)$, such that e_1, \ldots, e_n are tangent to M at p. We denote by H the mean curvature vector, that is

(1.3)
$$H(p) = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i).$$

Also, we set

(1.4)
$$h_{ij}^r = g(h(e_i, e_j), e_r), \quad i, j \in \{1, \dots, n\}, r \in \{n+1, \dots, 2m\}.$$

and

(1.5)
$$||h||^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j)).$$

For any tangent vector field X to M, we put JX = PX + FX, where PX and FX are the tangential and normal components of JX, respectively. We denote by

(1.6)
$$||P||^2 = \sum_{i,j=1}^n g^2(Pe_i, e_j).$$

Let M be a Riemannian *n*-manifold and $\{e_1, \ldots, e_n\}$ be an orthonormal frame field on M. For a differentiable function f on M, the Laplacian Δf of f is defined by

(1.7)
$$\Delta f = \sum_{j=1}^{n} \{ (\nabla_{e_j} e_j) f - e_j e_j f \}.$$

We recall the following result of Chen for later use.

Lemma 1.7 ([1]). Let $n \ge 2$ and a_1, \ldots, a_n, b real numbers such that

$$\left(\sum_{i=1}^{n} a_i\right)^2 = (n-1)\left(\sum_{i=1}^{n} a_i^2 + b\right)$$

Then $2a_1a_2 \ge b$, with equality holding if and only if

 $a_1 + a_2 = a_3 = \ldots = a_n.$

2. WARPED PRODUCT SUBMANIFOLDS

Chen established a sharp relationship between the warping function f of a warped product $M_1 \times_f M_2$ isometrically immersed in a real space form $\widetilde{M}(c)$ and the squared mean curvature $||H||^2$ (see [5]). In [7], we established a relationship between the warping function f of a warped product $M_1 \times_f M_2$ isometrically immersed in a complex space form $\widetilde{M}(c)$ and the squared mean curvature $||H||^2$. Let (M_1, g_1) and (M_2, g_2) be two Riemannian manifolds and f a positive differentiable function on M_1 . The warped product of M_1 and M_2 is the Riemannian manifold

$$M_1 \times_f M_2 = (M_1 \times M_2, g)_f$$

where $g = g_1 + f^2 g_2$ (see, for instance, [5]).

Let $x: M_1 \times_f M_2 \to \widetilde{M}(c, \alpha)$ be an isometric immersion of a warped product $M_1 \times_f M_2$ into a generalized complex space form $\widetilde{M}(c, \alpha)$. We denote by h the second fundamental form of x and $H_i = \frac{1}{n_i} \operatorname{trace} h_i$, where trace h_i is the trace of h restricted to M_i and $n_i = \dim M_i$ (i = 1, 2).

For a warped product $M_1 \times_f M_2$, we denote by \mathcal{D}_1 and \mathcal{D}_2 the distributions given by the vectors tangent to leaves and fibres, respectively. Thus, \mathcal{D}_1 is obtained from the tangent vectors of M_1 via the horizontal lift and \mathcal{D}_2 by tangent vectors of M_2 via the vertical lift.

Let $M_1 \times_f M_2$ be a warped product submanifold of a generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature c and constant type α .

Since $M_1 \times_f M_2$ is a warped product, it is known that

(2.1)
$$\nabla_X Z = \nabla_Z X = \frac{1}{f} (Xf) Z,$$

for any vector fields X, Z tangent to M_1, M_2 , respectively.

If X and Z are unit vector fields, it follows that the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

(2.2)
$$K(X \wedge Z) = g(\nabla_Z \nabla_X X - \nabla_X \nabla_Z X, Z) = \frac{1}{f} \{ (\nabla_X X) f - X^2 f \}.$$

We choose a local orthonormal frame

$$\{e_1,\ldots,e_n,e_{n+1},\ldots,e_{2m}\},\$$

such that e_1, \ldots, e_{n_1} are tangent to $M_1, e_{n_1+1}, \ldots, e_n$ are tangent to M_2, e_{n+1} is parallel to the mean curvature vector H.

Then, using (2.2), we get

(2.3)
$$\frac{\Delta f}{f} = \sum_{j=1}^{n_1} K(e_j \wedge e_s),$$

for each $s \in \{n_1 + 1, \dots, n\}$.

From the equation of Gauss, we have

(2.4)
$$n^2 \|H\|^2 = 2\tau + \|h\|^2 - n(n-1)\frac{c+3\alpha}{4} - 3\|P\|^2 \frac{c-\alpha}{4}.$$

We set

(2.5)
$$\delta = 2\tau - n(n-1)\frac{c+3\alpha}{4} - 3\|P\|^2 \frac{c-\alpha}{4} - \frac{n^2}{2}\|H\|^2.$$

Then, (2.4) can be written as

(2.6)
$$n^2 ||H||^2 = 2(\delta + ||h||^2)$$

With respect to the above orthonormal frame, (2.6) takes the following form:

$$\left(\sum_{i=1}^{n} h_{ii}^{n+1}\right)^2 = 2\left\{\delta + \sum_{i=1}^{n} (h_{ii}^{n+1})^2 + \sum_{i \neq j} (h_{ij}^{n+1})^2 + \sum_{r=n+2}^{2m} \sum_{i,j=1}^{n} (h_{ij}^r)^2\right\}.$$

If we put $a_1 = h_{11}^{n+1}$, $a_2 = \sum_{i=2}^{n_1} h_{ii}^{n+1}$ and $a_3 = \sum_{t=n_1+1}^{n} h_{tt}^{n+1}$, the above equation becomes

$$\left(\sum_{i=1}^{3} a_{i}\right)^{2} = 2\left\{\delta + \sum_{i=1}^{3} a_{i}^{2} + \sum_{1 \le i \ne j \le n} (h_{ij}^{n+1})^{2} + \sum_{r=n+2}^{2m} \sum_{i,j=1}^{n} (h_{ij}^{r})^{2} - \sum_{2 \le j \ne k \le n_{1}} h_{jj}^{n+1} h_{kk}^{n+1} - \sum_{n_{1}+1 \le s \ne t \le n} h_{ss}^{n+1} h_{tt}^{n+1}\right\}.$$

Thus a_1, a_2, a_3 satisfy the Lemma of Chen (for n = 3), i.e.

$$\left(\sum_{i=1}^{3} a_i\right)^2 = 2\left(b + \sum_{i=1}^{3} a_i^2\right).$$

Then $2a_1a_2 \ge b$, with equality holding if and only if $a_1 + a_2 = a_3$. In the case under consideration, this means

$$(2.7) \qquad \sum_{1 \le j < k \le n_1} h_{jj}^{n+1} h_{kk}^{n+1} + \sum_{n_1+1 \le s < t \le n} h_{ss}^{n+1} h_{tt}^{n+1} \\ \ge \frac{\delta}{2} + \sum_{1 \le \alpha < \beta \le n} (h_{\alpha\beta}^{n+1})^2 + \frac{1}{2} \sum_{r=n+2}^{2m} \sum_{\alpha,\beta=1}^n (h_{\alpha\beta}^r)^2.$$

Equality holds if and only if

(2.8)
$$\sum_{i=1}^{n} h_{ii}^{n+1} = \sum_{t=n_1+1}^{n} h_{tt}^{n+1}$$

Using again the Gauss equation, we have

$$(2.9) \quad n_2 \frac{\Delta f}{f} = \tau - \sum_{1 \le j < k \le n_1} K(e_j \land e_k) - \sum_{n_1 + 1 \le s < t \le n} K(e_s \land e_t) = \\ = \tau - \frac{n_1(n_1 - 1)(c + 3\alpha)}{8} - \sum_{r=n+1}^{2m} \sum_{1 \le j < k \le n_1} (h_{jj}^r h_{kk}^r - (h_{jk}^r)^2) \\ - 3\frac{c - \alpha}{4} \sum_{1 \le j < k \le n_1} g^2 (Je_j, e_k) - \frac{n_2(n_2 - 1)(c + 3\alpha)}{8} \\ - \sum_{r=n+1}^{2m} \sum_{n_1 + 1 \le s < t \le n} (h_{ss}^r h_{tt}^r - (h_{st}^r)^2) - 3\frac{c - \alpha}{4} \sum_{n_1 + 1 \le s < t \le n} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_s, e_t) + \frac{1}{2} \sum_{n_1 < t \le n_1} g^2 (Je_$$

Combining (2.7) and (2.9) and taking account of (2.3), we obtain

$$(2.10) \quad n_2 \frac{\Delta f}{f} \le \tau - \frac{n(n-1)(c+3\alpha)}{8} + n_1 n_2 \frac{c+3\alpha}{4} - \frac{\delta}{2} \\ - 3\frac{c-\alpha}{4} \sum_{1 \le j < k \le n_1} g^2 (Je_j, e_k) - 3\frac{c-\alpha}{4} \sum_{n_1+1 \le s < t \le n} g^2 (Je_s, e_t) \\ - \sum_{1 \le j \le n_1; n_1+1 \le t \le n} (h_{jt}^{n+1})^2 - \frac{1}{2} \sum_{r=n+2}^{2m} \sum_{\alpha,\beta=1}^n (h_{\alpha\beta}^r)^2$$

84

$$\begin{split} &+ \sum_{r=n+2}^{2m} \sum_{1 \le j < k \le n_1} ((h_{jk}^r)^2 - h_{jj}^r h_{kk}^r) + \sum_{r=n+2}^{2m} \sum_{n_1+1 \le s < t \le n} ((h_{st}^r)^2 - h_{ss}^r h_{tt}^r) \\ &= \tau - \frac{n(n-1)(c+3\alpha)}{8} + n_1 n_2 \frac{c+3\alpha}{4} - \frac{\delta}{2} - \sum_{r=n+1}^{2m} \sum_{1 \le j \le n_1; n_1+1 \le t \le n} (h_{jt}^r)^2 \\ &- 3\frac{c-\alpha}{4} \sum_{1 \le j < k \le n_1} g^2 (Je_j, e_k) - 3\frac{c-\alpha}{4} \sum_{n_1+1 \le s < t \le n} g^2 (Je_s, e_t) \\ &- \frac{1}{2} \sum_{r=n+2}^{2m} \left(\sum_{j=1}^{n_1} h_{jj}^r \right)^2 - \frac{1}{2} \sum_{r=n+2}^{2m} \left(\sum_{t=n_1+1}^n h_{tt}^r \right)^2 \\ &\le \tau - \frac{n(n-1)(c+3\alpha)}{8} + n_1 n_2 \frac{c+3\alpha}{4} - \frac{\delta}{2} - 3\frac{c-\alpha}{4} \sum_{1 \le j < k \le n_1} g^2 (Je_j, e_k) \\ &- 3\frac{c-\alpha}{4} \sum_{n_1+1 \le s < t \le n} g^2 (Je_s, e_t) \end{split}$$

The equality sign of (2.10) holds if and only if

(2.10.1) $h_{jt}^r = 0, \quad 1 \le j \le n_1, n_1 + 1 \le t \le n, n+1 \le r \le 2m,$

and

(2.10.2)
$$\sum_{i=1}^{n_1} h_{ii}^r = \sum_{t=n_1+1}^n h_{tt}^r = 0, \quad n+2 \le r \le 2m.$$

Obviously (2.10.1) is equivalent to the mixed totally geodesicness of the warped product $M_1 \times_f M_2$ (i.e. h(X, Z) = 0, for any X in \mathcal{D}_1 and Z in \mathcal{D}_2) and (2.8) and (2.10.2) imply $n_1H_1 = n_2H_2$.

Using (2.5), we finally obtain

Lemma 2.1. Let $x: M_1 \times_f M_2 \to \widetilde{M}(c, \alpha)$ be an isometric immersion of an ndimensional warped product into a 2*m*-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. Then:

(2.11)
$$\frac{\Delta f}{f} \le \frac{n^2}{4n_2} \|H\|^2 + n_1 \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{4n_2} \sum_{1 \le i \le n_1} \sum_{n_1+1 \le s \le n} g^2 (Je_i, e_s).$$

where $n_i = \dim M_i$, i = 1, 2, and Δ is the Laplacian operator of M_1 .

From the above Lemma, it follows

Theorem 2.2. Let $x: M_1 \times_f M_2 \to \widetilde{M}(c, \alpha)$ be an isometric immersion of an ndimensional warped product into a 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. Then:

i) If $c < \alpha$, then

(2.12)
$$\frac{\Delta f}{f} \le \frac{n^2}{4n_2} \|H\|^2 + n_1 \frac{c+3\alpha}{4}.$$

Moreover, the equality case of (2.12) holds identically if and only if x is a mixed totally geodesic immersion, $n_1H_1 = n_2H_2$, where H_i , i = 1, 2, are the partial mean curvature vectors and $JD_1 \perp D_2$.

ii) If
$$c = \alpha$$
, then

(2.13)
$$\frac{\Delta f}{f} \le \frac{n^2}{4n_2} \|H\|^2 + n_1 \frac{c+3\alpha}{4}$$

Moreover, the equality case of (2.13) holds identically if and only if x is a mixed totally geodesic immersion and $n_1H_1 = n_2H_2$, where H_i (i = 1, 2), are the partial mean curvature vectors.

iii) If $c > \alpha$, then

(2.14)
$$\frac{\Delta f}{f} \le \frac{n^2}{4n_2} \|H\|^2 + n_1 \frac{c+3\alpha}{4} + 3\frac{c-\alpha}{8} \|P\|^2.$$

Moreover, the equality case of (2.14) holds identically if and only if x is a mixed totally geodesic immersion, $n_1H_1 = n_2H_2$, where H_i , i = 1, 2, are the partial mean curvature vectors and both M_1 and M_2 are totally real submanifolds.

A submanifold N in a Kaehler manifold \overline{M} is called a *CR-submanifold* if there exists on N a holomorphic distribution \mathcal{D} whose orthogonal complementary distribution \mathcal{D}^{\perp} is a totally real distribution, i.e., $J\mathcal{D}_x^{\perp} \subset T_p^{\perp}N$.

A CR-submanifold of a Kaehler manifold M is called a *CR-product* if it is a Riemannian product of a Kaehler submanifold and a totally real submanifold.

There do not exist warped product CR-submanifolds of the form $M_{\perp} \times_f M_{\top}$, with M_{\perp} a totally real submanifold and M_{\top} a complex submanifold, other then CR-products. A *CR-warped product* is a warped product CR-submanifold of the form $M_{\top} \times_f M_{\perp}$, by reversing the two factors [2].

Obviously, any CR-warped product submanifold, in particular any CR-product, satisfies $J\mathcal{D}_1 \perp \mathcal{D}_2$.

Corollary 2.3. Let M be an n-dimensional CR-warped product submanifold of a 2m-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. Then:

(2.15)
$$\frac{\Delta f}{f} \le \frac{n^2}{4n_2} \|H\|^2 + n_1 \frac{c+3\alpha}{4}.$$

Moreover, the equality case of (2.15) holds identically if and only if x is a mixed totally geodesic immersion, $n_1H_1 = n_2H_2$, where H_i , i = 1, 2, are the partial mean curvature vectors.

We derive the following non-existence results.

Corollary 2.4. Let $M(c, \alpha)$ be a generalized complex space form, M_1 an n_1 dimensional Riemannian manifold and f a differentiable function on M_1 . If there is a point $p \in M_1$ such that $(\Delta f)(p) > n_1 \frac{c+3\alpha}{4} f(p)$, then there do not exist any minimal CR-warped product submanifold $M_1 \times_f M_2$ in $\widetilde{M}(c, \alpha)$.

Corollary 2.5. Let $M(c, \alpha)$ be a generalized complex space form, with $c > \alpha$, M_1 an n_1 -dimensional totally real submanifold of $\widetilde{M}(c, \alpha)$ and f a differentiable function on M_1 . If there is a point $p \in M_1$ such that $(\Delta f)(p) > n_1 \frac{c+3\alpha}{4} f(p)$, then there do not exist any totally real submanifold M_2 in $\widetilde{M}(c, \alpha)$ such that $M_1 \times_f M_2$ be a minimal warped product submanifold in $\widetilde{M}(c, \alpha)$.

86

References

- B.-Y. Chen. Some pinching and classification theorems for minimal submanifolds. Arch. Math., 60(6):568–578, 1993.
- B.-Y. Chen. Geometry of warped product CR-submanifolds in Kaehler manifolds. Monatsh. Math., 133(3):177–195, 2001.
- [3] B.-Y. Chen. Geometry of warped products as Riemannian submanifolds and related problems. Soochow J. Math., 28(2):125–156, 2002.
- B.-Y. Chen. Non-immersion theorems for warped products in complex hyperbolic spaces. Proc. Japan Acad., Ser. A, 78(6):96–100, 2002.
- B.-Y. Chen. On isometric minimal immersions from warped products into real space forms. Proc. Edinb. Math. Soc., II. Ser., 45(3):579–587, 2002.
- [6] K. Matsumoto and I. Mihai. Warped product submanifolds in Sasakian space forms. SUT J. Math., 38(2):135–144, 2002.
- [7] A. Mihai. Warped product submanifolds in complex space forms. Acta Sci. Math., 70:419–427, 2004.
- [8] S. Nölker. Isometric immersions of warped products. Differ. Geom. Appl., 6(1):1–30, 1996.
- [9] F. Urbano. CR-Submanifolds of Nearly-Kaehler Manifolds. Doctoral thesis, Granada, 1980.
- [10] K. Yano and M. Kon. Structures on manifolds, volume 3 of Series in Pure Mathematics. World Scientific, Singapore, 1984.

Received October 26, 2004.

Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania *E-mail address*: adela@math.math.unibuc.ro