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WARPED PRODUCT SUBMANIFOLDS IN GENERALIZED
COMPLEX SPACE FORMS

ADELA MIHAI

ABSTRACT. B.Y. Chen [5] established a sharp inequality for the warping func-
tion of a warped product submanifold in a Riemannian space form in terms
of the squared mean curvature. Later, in [4], he studied warped product sub-
manifolds in complex hyperbolic spaces.

In the present paper, we establish an inequality between the warping func-
tion f (intrinsic structure) and the squared mean curvature ||H||? and the
holomorphic sectional curvature ¢ (extrinsic structures) for warped product
submanifolds M; x y M2 in any generalized complex space form M(c7 a).

INTRODUCTION

The notion of warped product plays some important role in differential geom-
etry as well as in physics [3]. For instance, the best relativistic model of the
Schwarzschild space-time that describes the out space around a massive star or
a black hole is given as a warped product.

One of the most fundamental problems in the theory of submanifolds is the
immersibility (or non-immersibility) of a Riemannian manifold in a Euclidean space
(or, more generally, in a space form). According to a well-known theorem on Nash,
every Riemannian manifold can be isometrically immersed in some Euclidean spaces
with sufficiently high codimension.

Nash’s theorem implies, in particular, that every warped product M; x y My can
be immersed as a Riemannian submanifold in some Euclidean space. Moreover,
many important submanifolds in real and complex space forms are expressed as a
warped product submanifold.

Every Riemannian manifold of constant curvature ¢ can be locally expressed as
a warped product whose warping function satisfies Af = c¢f. For example, S™(1)
is locally isometric to (=%, %) Xcos¢ S" (1), E" is locally isometric to (0,00) X,
S7=1(1) and H"(—1) is locally isometric to R X E"~1 (see [3]).
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1. PRELIMINARIES

Let M be an almost Hermitian manifold with almost complex structure J and
Riemannian metric g. One denotes by V the operator of covariant differentiation
with respect to g on M.

Definition 1.1. If the almost complex structure J satisfies
(VxJ)Y + (VyJ)X =0,
for any vector fields X and Y on M , then the manifold M is called a nearly-Kaehler
manifold [10].
Remark 1.2. The above condition is equivalent to
(VxJ)X =0, VX eTTM.

For an almost complex structure J on the manifold M, the Nijenhuis tensor field
is defined by
N;(X,Y)=[JX,JY]|-JJX, Y] - JX,JY] - [X,Y],

for any vector fields X, Y tangent to M, where [,] is the Lie bracket.

A necessary and sufficient condition for a nearly-Kaehler manifold to be Kaehler
is the vanishing of the Nijenhuis tensor N;. Any 4-dimensional nearly-Kaehler
manifold is a Kaehler manifold.

Ezample 1.3. Let S® be the 6-dimensional unit sphere defined as follows. Let E”
be the set of all purely imaginary Cayley numbers. Then E7 is a 7-dimensional
subspace of the Cayley algebra C. Let {1 = eq,e1,...,es} be a basis of the Cayley
algebra, 1 being the unit element of C. If X = Z?:o 2'e; and Y = Z?:o y'e; are
two elements of E”, one defines the scalar product in E7 by

6
< XY >= Zziyi,
i=0
and the wvector product by
XxY = inyjei * €5,

1#]

% being the multiplication operation of C.
Consider the 6-dimensional unit sphere S in E7:

SO ={XeE"| <X, X >=1}

The scalar product in E7 induces the natural metric tensor field g on S5. The
tangent space Tx .S% at X € S% can naturally be identified with the subspace of E7
orthogonal to X. Define the endomorphism .Jx on TxS% by

JxY =X xY, for Y € TxSS.
It is easy to see that
g(IxY,IxZ)=g(Y,Z), Y,Z € TxS°.
The correspondence X — Jx defines a tensor field J such that J2 = —I. Con-
sequently, S® admits an almost Hermitian structure (J,g). This structure is a

non-Kaehlerian nearly-Kaehlerian structure (its Betti numbers of even order are
0).
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We will consider a class of almost Hermitian manifolds, called RK-manifolds,
which contains nearly-Kaehler manifolds.

Definition 1.4 ([9]). An RK-manifold (M, J,g) is an almost Hermitian manifold
for which the curvature tensor R is invariant by J, i.e.

R(JX,JY,JZ,JW) = R(X,Y, Z,W),
for any X,Y, Z,W € IT'TM. N N
An almost Hermitian manifold M is of pointwise constant type if for any p € M
and X € T,M we have \(X,Y) = A\(X, Z), where

ANX,Y) = R(X,Y,JX,JY) - R(X,Y,X,Y)

and Y and Z are unit tangent vectors on M at p, orthogonal to X and JX, i.e.
9(X, X)=g(Y\Y) =1,9(X,Y) =g(JX,Y) = g(X,Z) = g(JX, Z) = 0.

The manifold M is said to be of constant type if for any unit X, Y € TTM with
g(X,Y)=9g(JX,Y) =0, A(X,Y) is a constant function.

Recall the following result [9].

Theorem 1.5. Let M be an RK-manifold. Then M is of pointwise constant type
if and only if there exists a function o on M such that

MX,Y) = alg(X, X)g(Y,Y) - (9(X,Y))* — (9(X, JY))?],

for any X, Y gVFTM.
Moreover, M is of constant type if and only if the above equality holds good for
a constant o.

In this case, « is the constant type of M.

Definition 1.6. A generalized complex space form is an RK-manifold of constant
holomorphic sectional curvature and of constant type.

We will denote a generalized complex space form by M (¢, ), where ¢ is the
constant holomorphic sectional curvature and « the constant type, respectively.

Each complex space form is a generalized complex space form. The converse
statement is not true. The sphere S® endowed with the standard nearly-Kaehler
structure is an example of generalized complex space form which is not a complex
space form.

Let M(c,«) be a generalized complex space form of constant holomorphic sec-
tional curvature ¢ and of constant type o. Then the curvature tensor R of M (¢, @)
has the following expression [9]:

Rix,v)z = <3

9(Y,Z2)X — g(X, 2)Y]
(1.1)

C—«

+ [9(X,JZ2)JY —g(Y,JZ)JX + 29(X,JY)J Z].

Let M be an n-dimensional submanifold of a 2m-dimensional generalized com-
plex space form M (¢, ) of constant holomorphic sectional curvature ¢ and constant
type a. One denotes by K () the sectional curvature of M associated with a plane
section m C T,M,p € M, and V the Riemannian connection of M, respectively.
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Also, let h be the second fundamental form and R the Riemann curvature tensor
of M. Then the equation of Gauss is given by

R(X,Y,Z, W)= R(X,Y,Z, W)
for any vectors X,Y, Z, W tangent to M.

Let p € M and {eq,...,en,...,e2,} an orthonormal basis of the tangent space

TPM(C, a), such that ey, ..., e, are tangent to M at p. We denote by H the mean
curvature vector, that is

(1.2)

1 n

1. H(p)=— iy €5).
(1.3) (p) n;h(eza@)
Also, we set
(1.4) hi; = g(h(eisej),er), 4,5 €{1l,...,n},re{n+1,...,2m}.
and
(1.5) IRl1* =D glhles, e5), hles, e5)).

i,j=1

For any tangent vector field X to M, we put JX = PX 4+ FX, where PX and FX
are the tangential and normal components of JX, respectively. We denote by

2
(1.6) IPI* =" g°(Peise;).
ij=1

Let M be a Riemannian n-manifold and {ey,...,e,} be an orthonormal frame
field on M. For a differentiable function f on M, the Laplacian Af of f is defined
by

(17) Af =2 (Ve f = ejeifh

We recall the following result of Chen for later use.

Lemma 1.7 ([1]). Letn > 2 and aq,...,an,b real numbers such that

(Zal) =(n-1) (Zaerb)

Then 2ayas > b, with equality holding if and only if

a)+ax =a3 =...=ay.

2. WARPED PRODUCT SUBMANIFOLDS

Chen established a sharp relationship between the warping function f of a warped
product M7 X y My isometrically immersed in a real space form M (c) and the squared
mean curvature ||H||? (see [5]). In [7], we established a relationship between the
warping function f of a warped product M; x; M, isometrically immersed in a

complex space form M (c) and the squared mean curvature | H||?.
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Let (Mj,¢91) and (Ms, g2) be two Riemannian manifolds and f a positive differ-
entiable function on M;. The warped product of M; and Ms is the Riemannian
manifold

M1 Xf M2 = (Ml X M27g),
where g = g1 + f2g2 (see, for instance, [5]).

Let x: My xy My — ]T/f(c, «) be an isometric immersion of a warped product
My x; M, into a generalized complex space form M (¢,). We denote by h the
second fundamental form of x and H; = n%_trace h;, where trace h; is the trace of h
restricted to M; and n; = dim M; (i = 1, 2).

For a warped product M; xy Mj, we denote by D; and D, the distributions
given by the vectors tangent to leaves and fibres, respectively. Thus, D; is obtained
from the tangent vectors of M; via the horizontal lift and D2 by tangent vectors of
M> via the vertical lift.

Let M, x ¢ Mj be a warped product submanifold of a generalized complex space
form M (¢, @) of constant holomorphic sectional curvature ¢ and constant type «.

Since My x y My is a warped product, it is known that
1
f
for any vector fields X, Z tangent to My, M, respectively.

If X and Z are unit vector fields, it follows that the sectional curvature K (X A Z)
of the plane section spanned by X and Z is given by

(2.1) VxZ=V;X=—-(Xf)Z,

1
(2.2) K(XNZ)=g(VzVxX —-VxVzX,Z)= ?{(VXX)f — X2f}.
We choose a local orthonormal frame
{e1,..  en,enity- - €am 1},
such that ey,...,en, are tangent to Mi, e,,+1,...,€, are tangent to Ma, enyq is

parallel to the mean curvature vector H.
Then, using (2.2), we get

Af &
(2.3) Tf =Y K(ej Ne),
j=1

for each s € {n1 +1,...,n}.
From the equation of Gauss, we have

3 —
(2.4) R HIP = 27 + )2 — n(n - 1) S22 -3 PPl
We set
3 _ 2
(2.5) 5=2r —nln— )20 3PP - P,

Then, (2.4) can be written as
(2.6) n?[| H* = 2(5 + [|2]%).
With respect to the above orthonormal frame, (2.6) takes the following form:

(ih?i+l> -9 5+i(hz—&-l)2+2(h?j—&-l)2+ Zm i(h:j)z
i=1

i=1 i#£] r=n+21,j=1
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If we put ay = iy as = S0, b and a3 = > 41 R the above equation
becomes

@) s 5+Za+ T e S S

1<i#j<n r=n+24,j=1

n+1lzn+1 n+1n+1
- z : hjj hkk - E hss htt

2<j#k<ni ni+1<s#t<n

Thus ay, as, as satisfy the Lemma of Chen (for n = 3), i.e

(Z) - <b+z>

Then 2ajas > b, with equality holding if and only if a; +as = a3. In the case under
consideration, this means

(G D N R et D SR ouy s

1<j<k<n n1+1<s<t<n

SIe 3 mreg 3 S

1<a<f<n r=n+2a,f=1

Equality holds if and only if

ny n

(2.8) Sonptt= > hpth

=1 t=ni+1

Using again the Gauss equation, we have

(2.9) mﬂ:P S Klejhe)— >, Kleshe)=

f 1<j<k<n n1+1<s<t<n

2m

~m(n -1 c+3a
1! Y k- ()

r=n+11<j<k<n;

c—a na(ng — 1)(c + 3a)
-3 1 Z g*(Jej,er) —

, 8
1<j<k<ny

2m
YooY L - -3 Y gesen).

r=n+ln;+1<s<t<n n1+1<s<t<n

Combining (2.7) and (2.9) and taking account of (2.3), we obtain

A? n(n—l)(c—|—3a) c+ 3« 1)
. < -
(2 10) N9 T 3 ning 1 B

c—a : c—a 9
-3 1 Z g°(Jej,er) —3 1 Z g-(Jes, er)

1<j<k<n, ni+1<s<t<n

SR OGS o ol

1§j§nl;n1+1§t<n r=n+2 a,f=1
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+ 3 Y ) -rhy+ Y Y (W)P - kL)

r=n+21<j<k<n; r=n+2n;+1<s<t<n
2m
n(n —1)(c+ 3a) c+3a 6 2
=7— S + ning i g g (h)

r=n+11<j<n;;ni1+1<t<n

c—a 5 c—a 9
-3 1 Z g°(Jej,er) —3 : Z g°(Jes, er)

1<j<k<n, ni+1<s<t<n
2 2
1 2m ny 1 2m n
T T
SY(S) LS (s w
r=n+2 j=1 r=n+2 \t=n;+1
< n(n—l)(c+3a)+ c+3a ¢ N Z 27 )
— nin - == €€
ST 3 12— 5 . g 5 €k
1<j<k<n,
c—
-3 1 Z g*(Jes, er).
n1+1<s<t<n
The equality sign of (2.10) holds if and only if
(2.10.1) hiy=0, 1<j<ni;,n+1<t<nn+1<r<2m,
and
ni n
(2.10.2) b= Y hjy=0, n+2<r<2m.
=1 t=n1+1

Obviously (2.10.1) is equivalent to the mixed totally geodesicness of the warped
product My x ¢ My (i.e. h(X,Z) =0, for any X in D; and Z in D;) and (2.8) and
(2.10.2) imply ny Hy = no Ho.

Using (2.5), we finally obtain

Lemma 2.1. Let x: My xy My — Z/\Z(c7 «) be an isometric immersion of an n-
dimensional warped product into a 2m-dimensional generalized complex space form

M(e, ). Then:

Af  n? c+3a _c—a
(2.11) 7§72||H||2+n1 3 Yo Y FPJeie).

1<i<n; n1+1<s<n
where n; = dim M;,i = 1,2, and A is the Laplacian operator of M.

From the above Lemma, it follows

Theorem 2.2. Let x: My xy My — M(c, a) be an isometric immersion of an n-
dimensional warped product into a 2m-dimensional generalized complex space form
M(e, ). Then:
i) If ¢ < «, then

Af n? c+ 3a
2.12 = < —||H|? :
(212) <
Moreover, the equality case of (2.12) holds identically if and only if x is a mized
totally geodesic immersion, n1Hi1 = noHs, where H;, 1 = 1,2, are the partial mean
curvature vectors and JDy L Ds.
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it) If c = «, then

Af n?
2.13 —Z < —||H|?
(213) < HIE
Moreover, the equality case of (2.138) holds identically if and only if x is a mized
totally geodesic immersion and n1Hy = noHo, where H; (i = 1,2), are the partial
mean curvature vectors.
iii) If ¢ > «, then

Af n?
2.14 = < ||H|]?
(2.14) 7S n2|| |7 +m
Moreover, the equality case of (2.14) holds identically if and only if x is a mized
totally geodesic immersion, n1H1 = noHs, where H;,© = 1,2, are the partial mean
curvature vectors and both My and My are totally real submanifolds.

c+ 3a
1

c+30¢+30—
4 8

«
1P|

A submanifold N in a Kaehler manifold M is called a CR-submanifold if there
exists on N a holomorphic distribution D whose orthogonal complementary distri-
bution D= is a totally real distribution, i.e., J’Dj C TPLN.

A CR-submanifold of a Kaehler manifold M is called a CR-product if it is a
Riemannian product of a Kaehler submanifold and a totally real submanifold.

There do not exist warped product CR-submanifolds of the form M, x; M,
with M, a totally real submanifold and Mt a complex submanifold, other then
CR-products. A CR-warped product is a warped product CR-submanifold of the
form M+ xy M, by reversing the two factors [2].

Obviously, any CR-warped product submanifold, in particular any CR-product,
satisfies JD; L Ds.

Corollary 2.3. Let M be an n-dimensional CR-warped product submanifold of a
2m-dimensional generalized complex space form M (c,a). Then:

Af n? c+ 3a
2.15 < —||H|>? .
(2.15) < TP
Moreover, the equality case of (2.15) holds identically if and only if x is a mized
totally geodesic tmmersion, na Hy = noHsy, where H; i = 1,2, are the partial mean
curvature vectors.

We derive the following non-existence results.

Corollary 2.4. Let M(c7 a) be a generalized complex space form, M; an ni-
dimensional Riemannian manifold and f a differentiable function on My. If there
is a point p € My such that (Af)(p) > ni1 <532 f(p), then there do not exist any

minimal CR-warped product submanifold My x ¢ My in ]Tl/(c7 ).

Corollary 2.5. Let J/\Z(c7 a) be a generalized complex space form, with ¢ > «,

My an nq-dimensional totally real submanifold of M(c,a) and f a differentiable
function on M. If there is a point p € My such that (Af)(p) > ny<E22 f(p), then

there do not exist any totally real submanifold My in M (c, ) such that My x ¢ My
be a minimal warped product submanifold in M(c, ).
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