WARPED PRODUCT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

ADELA MIHAI

Abstract

B.Y. Chen [5] established a sharp inequality for the warping function of a warped product submanifold in a Riemannian space form in terms of the squared mean curvature. Later, in [4], he studied warped product submanifolds in complex hyperbolic spaces.

In the present paper, we establish an inequality between the warping function f (intrinsic structure) and the squared mean curvature $\|H\|^{2}$ and the holomorphic sectional curvature c (extrinsic structures) for warped product submanifolds $M_{1} \times{ }_{f} M_{2}$ in any generalized complex space form $\widetilde{M}(c, \alpha)$.

Introduction

The notion of warped product plays some important role in differential geometry as well as in physics [3]. For instance, the best relativistic model of the Schwarzschild space-time that describes the out space around a massive star or a black hole is given as a warped product.

One of the most fundamental problems in the theory of submanifolds is the immersibility (or non-immersibility) of a Riemannian manifold in a Euclidean space (or, more generally, in a space form). According to a well-known theorem on Nash, every Riemannian manifold can be isometrically immersed in some Euclidean spaces with sufficiently high codimension.

Nash's theorem implies, in particular, that every warped product $M_{1} \times_{f} M_{2}$ can be immersed as a Riemannian submanifold in some Euclidean space. Moreover, many important submanifolds in real and complex space forms are expressed as a warped product submanifold.

Every Riemannian manifold of constant curvature c can be locally expressed as a warped product whose warping function satisfies $\Delta f=c f$. For example, $S^{n}(1)$ is locally isometric to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times \cos t S^{n-1}(1), \mathbf{E}^{n}$ is locally isometric to $(0, \infty) \times_{x}$ $S^{n-1}(1)$ and $H^{n}(-1)$ is locally isometric to $\mathbf{R} \times e^{x} \mathbf{E}^{n-1}$ (see [3]).

[^0]
1. Preliminaries

Let \widetilde{M} be an almost Hermitian manifold with almost complex structure J and Riemannian metric g. One denotes by $\widetilde{\nabla}$ the operator of covariant differentiation with respect to g on \widetilde{M}.

Definition 1.1. If the almost complex structure J satisfies

$$
\left(\widetilde{\nabla}_{X} J\right) Y+\left(\widetilde{\nabla}_{Y} J\right) X=0
$$

for any vector fields X and Y on \widetilde{M}, then the manifold \widetilde{M} is called a nearly-Kaehler manifold [10].

Remark 1.2. The above condition is equivalent to

$$
\left(\widetilde{\nabla}_{X} J\right) X=0, \quad \forall X \in \Gamma T \widetilde{M}
$$

For an almost complex structure J on the manifold M, the Nijenhuis tensor field is defined by

$$
N_{J}(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y],
$$

for any vector fields X, Y tangent to M, where [,] is the Lie bracket.
A necessary and sufficient condition for a nearly-Kaehler manifold to be Kaehler is the vanishing of the Nijenhuis tensor N_{J}. Any 4-dimensional nearly-Kaehler manifold is a Kaehler manifold.

Example 1.3. Let S^{6} be the 6 -dimensional unit sphere defined as follows. Let \mathbf{E}^{7} be the set of all purely imaginary Cayley numbers. Then \mathbf{E}^{7} is a 7 -dimensional subspace of the Cayley algebra C. Let $\left\{1=e_{0}, e_{1}, \ldots, e_{6}\right\}$ be a basis of the Cayley algebra, 1 being the unit element of C. If $X=\sum_{i=0}^{6} x^{i} e_{i}$ and $Y=\sum_{i=0}^{6} y^{i} e_{i}$ are two elements of \mathbf{E}^{7}, one defines the scalar product in \mathbf{E}^{7} by

$$
<X, Y>=\sum_{i=0}^{6} x^{i} y^{i}
$$

and the vector product by

$$
X \times Y=\sum_{i \neq j} x^{i} y^{j} e_{i} * e_{j}
$$

* being the multiplication operation of C.

Consider the 6-dimensional unit sphere S^{6} in \mathbf{E}^{7} :

$$
S^{6}=\left\{X \in \mathbf{E}^{7} \mid<X, X>=1\right\} .
$$

The scalar product in \mathbf{E}^{7} induces the natural metric tensor field g on S^{6}. The tangent space $T_{X} S^{6}$ at $X \in S^{6}$ can naturally be identified with the subspace of \mathbf{E}^{7} orthogonal to X. Define the endomorphism J_{X} on $T_{X} S^{6}$ by

$$
J_{X} Y=X \times Y, \text { for } Y \in T_{X} S^{6}
$$

It is easy to see that

$$
g\left(J_{X} Y, J_{X} Z\right)=g(Y, Z), Y, Z \in T_{X} S^{6}
$$

The correspondence $X \mapsto J_{X}$ defines a tensor field J such that $J^{2}=-I$. Consequently, S^{6} admits an almost Hermitian structure (J, g). This structure is a non-Kaehlerian nearly-Kaehlerian structure (its Betti numbers of even order are $0)$.

We will consider a class of almost Hermitian manifolds, called RK-manifolds, which contains nearly-Kaehler manifolds.
Definition 1.4 ([9]). An RK-manifold (\widetilde{M}, J, g) is an almost Hermitian manifold for which the curvature tensor \widetilde{R} is invariant by J, i.e.

$$
\widetilde{R}(J X, J Y, J Z, J W)=\widetilde{R}(X, Y, Z, W)
$$

for any $X, Y, Z, W \in \Gamma T \widetilde{M}$.
An almost Hermitian manifold \widetilde{M} is of pointwise constant type if for any $p \in \widetilde{M}$ and $X \in T_{p} \widetilde{M}$ we have $\lambda(X, Y)=\lambda(X, Z)$, where

$$
\lambda(X, Y)=\widetilde{R}(X, Y, J X, J Y)-\widetilde{R}(X, Y, X, Y)
$$

and Y and Z are unit tangent vectors on \widetilde{M} at p, orthogonal to X and $J X$, i.e. $g(X, X)=g(Y, Y)=1, g(X, Y)=g(J X, Y)=g(X, Z)=g(J X, Z)=0$.

The manifold \widetilde{M} is said to be of constant type if for any unit $X, Y \in \Gamma T \widetilde{M}$ with $g(X, Y)=g(J X, Y)=0, \lambda(X, Y)$ is a constant function.

Recall the following result [9].
Theorem 1.5. Let \widetilde{M} be an RK-manifold. Then \widetilde{M} is of pointwise constant type if and only if there exists a function α on \widetilde{M} such that

$$
\lambda(X, Y)=\alpha\left[g(X, X) g(Y, Y)-(g(X, Y))^{2}-(g(X, J Y))^{2}\right]
$$

for any $X, Y \in \Gamma T \widetilde{M}$.
Moreover, \widetilde{M} is of constant type if and only if the above equality holds good for a constant α.

In this case, α is the constant type of \widetilde{M}.
Definition 1.6. A generalized complex space form is an RK-manifold of constant holomorphic sectional curvature and of constant type.

We will denote a generalized complex space form by $\widetilde{M}(c, \alpha)$, where c is the constant holomorphic sectional curvature and α the constant type, respectively.

Each complex space form is a generalized complex space form. The converse statement is not true. The sphere S^{6} endowed with the standard nearly-Kaehler structure is an example of generalized complex space form which is not a complex space form.

Let $\widetilde{M}(c, \alpha)$ be a generalized complex space form of constant holomorphic sectional curvature c and of constant type α. Then the curvature tensor \widetilde{R} of $\widetilde{M}(c, \alpha)$ has the following expression [9]:

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & \frac{c+3 \alpha}{4}[g(Y, Z) X-g(X, Z) Y] \tag{1.1}\\
& +\frac{c-\alpha}{4}[g(X, J Z) J Y-g(Y, J Z) J X+2 g(X, J Y) J Z]
\end{align*}
$$

Let M be an n-dimensional submanifold of a $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature c and constant type α. One denotes by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$, and ∇ the Riemannian connection of M, respectively.

Also, let h be the second fundamental form and R the Riemann curvature tensor of M. Then the equation of Gauss is given by

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & R(X, Y, Z, W) \\
& +g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)) \tag{1.2}
\end{align*}
$$

for any vectors X, Y, Z, W tangent to M.
Let $p \in M$ and $\left\{e_{1}, \ldots, e_{n}, \ldots, e_{2 m}\right\}$ an orthonormal basis of the tangent space $T_{p} \widetilde{M}(c, \alpha)$, such that e_{1}, \ldots, e_{n} are tangent to M at p. We denote by H the mean curvature vector, that is

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) \tag{1.3}
\end{equation*}
$$

Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m\} . \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \tag{1.5}
\end{equation*}
$$

For any tangent vector field X to M, we put $J X=P X+F X$, where $P X$ and $F X$ are the tangential and normal components of $J X$, respectively. We denote by

$$
\begin{equation*}
\|P\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(P e_{i}, e_{j}\right) \tag{1.6}
\end{equation*}
$$

Let M be a Riemannian n-manifold and $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal frame field on M. For a differentiable function f on M, the Laplacian Δf of f is defined by

$$
\begin{equation*}
\Delta f=\sum_{j=1}^{n}\left\{\left(\nabla_{e_{j}} e_{j}\right) f-e_{j} e_{j} f\right\} \tag{1.7}
\end{equation*}
$$

We recall the following result of Chen for later use.
Lemma 1.7 ([1]). Let $n \geq 2$ and a_{1}, \ldots, a_{n}, b real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right)
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n}
$$

2. Warped product submanifolds

Chen established a sharp relationship between the warping function f of a warped product $M_{1} \times{ }_{f} M_{2}$ isometrically immersed in a real space form $\widetilde{M}(c)$ and the squared mean curvature $\|H\|^{2}$ (see [5]). In [7], we established a relationship between the warping function f of a warped product $M_{1} \times{ }_{f} M_{2}$ isometrically immersed in a complex space form $\widetilde{M}(c)$ and the squared mean curvature $\|H\|^{2}$.

Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and f a positive differentiable function on M_{1}. The warped product of M_{1} and M_{2} is the Riemannian manifold

$$
M_{1} \times_{f} M_{2}=\left(M_{1} \times M_{2}, g\right)
$$

where $g=g_{1}+f^{2} g_{2}$ (see, for instance, [5]).
Let $x: M_{1} \times_{f} M_{2} \rightarrow \widetilde{M}(c, \alpha)$ be an isometric immersion of a warped product $M_{1} \times_{f} M_{2}$ into a generalized complex space form $\widetilde{M}(c, \alpha)$. We denote by h the second fundamental form of x and $H_{i}=\frac{1}{n_{i}}$ trace h_{i}, where trace h_{i} is the trace of h restricted to M_{i} and $n_{i}=\operatorname{dim} M_{i}(i=1,2)$.

For a warped product $M_{1} \times{ }_{f} M_{2}$, we denote by \mathcal{D}_{1} and \mathcal{D}_{2} the distributions given by the vectors tangent to leaves and fibres, respectively. Thus, \mathcal{D}_{1} is obtained from the tangent vectors of M_{1} via the horizontal lift and \mathcal{D}_{2} by tangent vectors of M_{2} via the vertical lift.

Let $M_{1} \times{ }_{f} M_{2}$ be a warped product submanifold of a generalized complex space form $\widetilde{M}(c, \alpha)$ of constant holomorphic sectional curvature c and constant type α.

Since $M_{1} \times{ }_{f} M_{2}$ is a warped product, it is known that

$$
\begin{equation*}
\nabla_{X} Z=\nabla_{Z} X=\frac{1}{f}(X f) Z \tag{2.1}
\end{equation*}
$$

for any vector fields X, Z tangent to M_{1}, M_{2}, respectively.
If X and Z are unit vector fields, it follows that the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

$$
\begin{equation*}
K(X \wedge Z)=g\left(\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right)=\frac{1}{f}\left\{\left(\nabla_{X} X\right) f-X^{2} f\right\} \tag{2.2}
\end{equation*}
$$

We choose a local orthonormal frame

$$
\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m}\right\}
$$

such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to $M_{1}, e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2}, e_{n+1} is parallel to the mean curvature vector H.

Then, using (2.2), we get

$$
\begin{equation*}
\frac{\Delta f}{f}=\sum_{j=1}^{n_{1}} K\left(e_{j} \wedge e_{s}\right) \tag{2.3}
\end{equation*}
$$

for each $s \in\left\{n_{1}+1, \ldots, n\right\}$.
From the equation of Gauss, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-n(n-1) \frac{c+3 \alpha}{4}-3\|P\|^{2} \frac{c-\alpha}{4} \tag{2.4}
\end{equation*}
$$

We set

$$
\begin{equation*}
\delta=2 \tau-n(n-1) \frac{c+3 \alpha}{4}-3\|P\|^{2} \frac{c-\alpha}{4}-\frac{n^{2}}{2}\|H\|^{2} \tag{2.5}
\end{equation*}
$$

Then, (2.4) can be written as

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\delta+\|h\|^{2}\right) \tag{2.6}
\end{equation*}
$$

With respect to the above orthonormal frame, (2.6) takes the following form:

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left\{\delta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right\}
$$

If we put $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n_{1}} h_{i i}^{n+1}$ and $a_{3}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1}$, the above equation becomes

$$
\begin{aligned}
\left(\sum_{i=1}^{3} a_{i}\right)^{2} & =2\left\{\delta+\sum_{i=1}^{3} a_{i}^{2}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right. \\
& \left.--\sum_{2 \leq j \neq k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq t \leq n} h_{s s}^{n+1} h_{t t}^{n+1}\right\} .
\end{aligned}
$$

Thus a_{1}, a_{2}, a_{3} satisfy the Lemma of Chen (for $n=3$), i.e.

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right) .
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$. In the case under consideration, this means

$$
\begin{align*}
& \sum_{1 \leq j<k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}+\sum_{n_{1}+1 \leq s<t \leq n} h_{s s}^{n+1} h_{t t}^{n+1} \tag{2.7}\\
& \geq \frac{\delta}{2}+\sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m} \sum_{\alpha, \beta=1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} .
\end{align*}
$$

Equality holds if and only if

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{n+1}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1} \tag{2.8}
\end{equation*}
$$

Using again the Gauss equation, we have

$$
\begin{align*}
n_{2} \frac{\Delta f}{f}= & \tau-\sum_{1 \leq j<k \leq n_{1}} K\left(e_{j} \wedge e_{k}\right)-\sum_{n_{1}+1 \leq s<t \leq n} K\left(e_{s} \wedge e_{t}\right)= \tag{2.9}\\
= & \tau-\frac{n_{1}\left(n_{1}-1\right)(c+3 \alpha)}{8}-\sum_{r=n+1}^{2 m} \sum_{1 \leq j<k \leq n_{1}}\left(h_{j j}^{r} h_{k k}^{r}-\left(h_{j k}^{r}\right)^{2}\right) \\
& -3 \frac{c-\alpha}{4} \sum_{1 \leq j<k \leq n_{1}} g^{2}\left(J e_{j}, e_{k}\right)-\frac{n_{2}\left(n_{2}-1\right)(c+3 \alpha)}{8} \\
- & \sum_{r=n+1}^{2 m} \sum_{n_{1}+1 \leq s<t \leq n}\left(h_{s s}^{r} h_{t t}^{r}-\left(h_{s t}^{r}\right)^{2}\right)-3 \frac{c-\alpha}{4} \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(J e_{s}, e_{t}\right) .
\end{align*}
$$

Combining (2.7) and (2.9) and taking account of (2.3), we obtain

$$
\begin{align*}
& n_{2} \frac{\Delta f}{f} \leq \tau- \frac{n(n-1)(c+3 \alpha)}{8}+n_{1} n_{2} \frac{c+3 \alpha}{4}-\frac{\delta}{2} \tag{2.10}\\
&-3 \frac{c-\alpha}{4} \sum_{1 \leq j<k \leq n_{1}} g^{2}\left(J e_{j}, e_{k}\right)-3 \frac{c-\alpha}{4} \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(J e_{s}, e_{t}\right) \\
& \quad-\sum_{1 \leq j \leq n_{1} ; n_{1}+1 \leq t \leq n}\left(h_{j t}^{n+1}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m} \sum_{\alpha, \beta=1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2}
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{r=n+2}^{2 m} \sum_{1 \leq j<k \leq n_{1}}\left(\left(h_{j k}^{r}\right)^{2}-h_{j j}^{r} h_{k k}^{r}\right)+\sum_{r=n+2}^{2 m} \sum_{n_{1}+1 \leq s<t \leq n}\left(\left(h_{s t}^{r}\right)^{2}-h_{s s}^{r} h_{t t}^{r}\right) \\
& = \\
& \tau-\frac{n(n-1)(c+3 \alpha)}{8}+n_{1} n_{2} \frac{c+3 \alpha}{4}-\frac{\delta}{2}-\sum_{r=n+1}^{2 m} \sum_{1 \leq j \leq n_{1} ; n_{1}+1 \leq t \leq n}\left(h_{j t}^{r}\right)^{2} \\
& \quad-3 \frac{c-\alpha}{4} \sum_{1 \leq j<k \leq n_{1}} g^{2}\left(J e_{j}, e_{k}\right)-3 \frac{c-\alpha}{4} \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(J e_{s}, e_{t}\right) \\
& \quad-\frac{1}{2} \sum_{r=n+2}^{2 m}\left(\sum_{j=1}^{n_{1}} h_{j j}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m}\left(\sum_{t=n_{1}+1}^{n} h_{t t}^{r}\right)^{2} \\
& \leq \tau-\frac{n(n-1)(c+3 \alpha)}{8}+n_{1} n_{2} \frac{c+3 \alpha}{4}-\frac{\delta}{2}-3 \frac{c-\alpha}{4} \sum_{1 \leq j<k \leq n_{1}} g^{2}\left(J e_{j}, e_{k}\right) \\
& \\
& \quad-3 \frac{c-\alpha}{4} \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(J e_{s}, e_{t}\right) .
\end{aligned}
$$

The equality sign of (2.10) holds if and only if

$$
\begin{equation*}
h_{j t}^{r}=0, \quad 1 \leq j \leq n_{1}, n_{1}+1 \leq t \leq n, n+1 \leq r \leq 2 m, \tag{2.10.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{r}=\sum_{t=n_{1}+1}^{n} h_{t t}^{r}=0, \quad n+2 \leq r \leq 2 m . \tag{2.10.2}
\end{equation*}
$$

Obviously (2.10.1) is equivalent to the mixed totally geodesicness of the warped product $M_{1} \times_{f} M_{2}$ (i.e. $h(X, Z)=0$, for any X in \mathcal{D}_{1} and Z in \mathcal{D}_{2}) and (2.8) and (2.10.2) imply $n_{1} H_{1}=n_{2} H_{2}$.

Using (2.5), we finally obtain
Lemma 2.1. Let $x: M_{1} \times_{f} M_{2} \rightarrow \widetilde{M}(c, \alpha)$ be an isometric immersion of an n dimensional warped product into a $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{4 n_{2}} \sum_{1 \leq i \leq n_{1}} \sum_{n_{1}+1 \leq s \leq n} g^{2}\left(J e_{i}, e_{s}\right) \tag{2.11}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, i=1,2$, and Δ is the Laplacian operator of M_{1}.
From the above Lemma, it follows
Theorem 2.2. Let $x: M_{1} \times_{f} M_{2} \rightarrow \widetilde{M}(c, \alpha)$ be an isometric immersion of an n dimensional warped product into a $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. Then:
i) If $c<\alpha$, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c+3 \alpha}{4} \tag{2.12}
\end{equation*}
$$

Moreover, the equality case of (2.12) holds identically if and only if x is a mixed totally geodesic immersion, $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors and $J \mathcal{D}_{1} \perp \mathcal{D}_{2}$.
ii) If $c=\alpha$, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c+3 \alpha}{4} \tag{2.13}
\end{equation*}
$$

Moreover, the equality case of (2.13) holds identically if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}(i=1,2)$, are the partial mean curvature vectors.
iii) If $c>\alpha$, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c+3 \alpha}{4}+3 \frac{c-\alpha}{8}\|P\|^{2} . \tag{2.14}
\end{equation*}
$$

Moreover, the equality case of (2.14) holds identically if and only if x is a mixed totally geodesic immersion, $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors and both M_{1} and M_{2} are totally real submanifolds.

A submanifold N in a Kaehler manifold \widetilde{M} is called a $C R$-submanifold if there exists on N a holomorphic distribution \mathcal{D} whose orthogonal complementary distribution \mathcal{D}^{\perp} is a totally real distribution, i.e., $J \mathcal{D}_{x}^{\perp} \subset T_{p}^{\perp} N$.

A CR-submanifold of a Kaehler manifold \widetilde{M} is called a $C R$-product if it is a Riemannian product of a Kaehler submanifold and a totally real submanifold.

There do not exist warped product CR-submanifolds of the form $M_{\perp} \times{ }_{f} M_{\top}$, with M_{\perp} a totally real submanifold and M_{\top} a complex submanifold, other then CR-products. A CR-warped product is a warped product CR-submanifold of the form $M_{\top} \times_{f} M_{\perp}$, by reversing the two factors [2].

Obviously, any CR-warped product submanifold, in particular any CR-product, satisfies $J \mathcal{D}_{1} \perp \mathcal{D}_{2}$.

Corollary 2.3. Let M be an n-dimensional $C R$-warped product submanifold of a $2 m$-dimensional generalized complex space form $\widetilde{M}(c, \alpha)$. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c+3 \alpha}{4} \tag{2.15}
\end{equation*}
$$

Moreover, the equality case of (2.15) holds identically if and only if x is a mixed totally geodesic immersion, $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

We derive the following non-existence results.
Corollary 2.4. Let $\widetilde{M}(c, \alpha)$ be a generalized complex space form, M_{1} an n_{1} dimensional Riemannian manifold and f a differentiable function on M_{1}. If there is a point $p \in M_{1}$ such that $(\Delta f)(p)>n_{1} \frac{c+3 \alpha}{4} f(p)$, then there do not exist any minimal CR-warped product submanifold $M_{1} \times{ }_{f} M_{2}$ in $\widetilde{M}(c, \alpha)$.

Corollary 2.5. Let $\widetilde{M}(c, \alpha)$ be a generalized complex space form, with $c>\alpha$, M_{1} an n_{1}-dimensional totally real submanifold of $\widetilde{M}(c, \alpha)$ and f a differentiable function on M_{1}. If there is a point $p \in M_{1}$ such that $(\Delta f)(p)>n_{1} \frac{c+3 \alpha}{4} f(p)$, then there do not exist any totally real submanifold M_{2} in $\widetilde{M}(c, \alpha)$ such that $M_{1} \times{ }_{f} M_{2}$ be a minimal warped product submanifold in $\widetilde{M}(c, \alpha)$.

References

[1] B.-Y. Chen. Some pinching and classification theorems for minimal submanifolds. Arch. Math., 60(6):568-578, 1993.
[2] B.-Y. Chen. Geometry of warped product CR-submanifolds in Kaehler manifolds. Monatsh. Math., 133(3):177-195, 2001.
[3] B.-Y. Chen. Geometry of warped products as Riemannian submanifolds and related problems. Soochow J. Math., 28(2):125-156, 2002.
[4] B.-Y. Chen. Non-immersion theorems for warped products in complex hyperbolic spaces. Proc. Japan Acad., Ser. A, 78(6):96-100, 2002.
[5] B.-Y. Chen. On isometric minimal immersions from warped products into real space forms. Proc. Edinb. Math. Soc., II. Ser., 45(3):579-587, 2002.
[6] K. Matsumoto and I. Mihai. Warped product submanifolds in Sasakian space forms. SUT J. Math., 38(2):135-144, 2002.
[7] A. Mihai. Warped product submanifolds in complex space forms. Acta Sci. Math., 70:419-427, 2004.
[8] S. Nölker. Isometric immersions of warped products. Differ. Geom. Appl., 6(1):1-30, 1996.
[9] F. Urbano. CR-Submanifolds of Nearly-Kaehler Manifolds. Doctoral thesis, Granada, 1980.
[10] K. Yano and M. Kon. Structures on manifolds, volume 3 of Series in Pure Mathematics. World Scientific, Singapore, 1984.

Received October 26, 2004.

Faculty of Mathematics,
University of Bucharest,
Str. Academiei 14,
010014 Bucharest, Romania
E-mail address: adela@math.math.unibuc.ro

[^0]: 2000 Mathematics Subject Classification. 53C40, 53C15, 53C42.
 Key words and phrases. Generalized complex space forms, warped products, CR-warped products, CR-products, warping function.

 Supported by a JSPS postdoctoral fellowship.

