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21 (2005), 113–125
www.emis.de/journals

ISSN 1786-0091

CONTINUED FRACTIONS AND THE GAUSS MAP

BRUCE BATES, MARTIN BUNDER, AND KEITH TOGNETTI

Abstract. We discover properties of the Gauss Map and its iterates using
continued fractions. In particular, we find all fixed points and show that the
graph of an iterate over

ˆ

0,

1

2

˜

is symmetric to the graph of the next higher

iterate over
ˆ

1

2
, 1

˜

.

1. Introduction and Preliminaries

Following on from Corless [1], we consider the Gauss Map defined on the unit
interval by

Definition 1.

G (x) =

{

0, if x = 0
1
x

mod 1 = frac
(

1
x

)

, if 0 < x 6 1.

The notation frac
(

1
x

)

in Definition 1 is shorthand for the fractional part of 1
x
.

This map is shown at Figure 1a.
If x ∈ (0, 1], we can represent it by its continued fraction {0; a1, a2, . . .} where

each ai is a positive integer and i is bounded for rational numbers and unbounded
for irrational numbers. Hence for 1

1+a1
< x 6 1

a1
,

G(x) =
1

x
− a1

= {0; a2, a3, . . .}
(1)

and therefore 0 6 G(x) < 1. It follows that G is continuous for 1
1+a1

< x 6 1
a1

.
Now

lim
x→ 1

1+a1

−

G (x) = 0

whereas
lim

x→ 1
1+a1

+
G (x) = 1.

Thus G is discontinuous at each of the points x = 1
i

for i = 1, 2, 3, . . .. It is useful
to picture the map as being made up of disjoint truncated parts of the hyperbola,
y = 1

x
, displaced vertically downwards by the integer parts,

⌊

1
x

⌋

(See Figure 1a).

2000 Mathematics Subject Classification. 11A55, 37E05.
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Figure 1:   Symmetry Par tners between the  
     First and Second I terates of the Gauss Map 

 
Figure 1a – The First I terate 

 

 
 
 
 

Figure 1b – The Second I terate 
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Definition 2. For x = {a0; a1,a2, . . .} the nth total convergent, Cn is defined as

Cn =
pn

qn

= {a0; a1, a2, . . . , an}
where pn and qn are the numerator and denominator respectively of an irreducible
fraction.

For n ≥ 0, it can be readily shown (for example Khintchine [2]) that

qn = qn−2 + anqn−1(2)
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and

pn = pn−2 + anpn−1(3)

where p−1 = q−2 = 1, p−2 = q−1 = 0. It can also be shown that, for n ≥ −1,

(4) pn−1qn − pnqn−1 = (−1)
n

.

Using Definition 1, we can readily build up expressions for the nth iterate, Gn (x).
In particular,

Gn (0) = Gn−1 (G (0)) = Gn−1 (0) = . . . = G (0) = 0, and

Gn (1) = Gn−1 (G (1)) = Gn−1 (0) = . . . = G (0) = 0.
(5)

That is, Gn (0) = Gn (1) = 0.
The graph of G2 is shown at Figure 1b.

Theorem 3. For x = {0; a1, a2, . . .} ,

Gn (x) = {0; an+1, an+2, . . .}.

Proof. By repeated use of (1) we have

G (x) = {0; a2, a3, . . .},
G2 (x) = {0; a3, a4, . . .},

...

Gn (x) = {0; an+1, an+2, . . .}.
�

Remark 4. Theorem 3 suggests an interesting representation for the continued

fraction expansion of any non-negative number. Since for x ∈ [0, 1] ,
[

1
Gn(x)

]

=

an+1, we have

x =

{

0;

[

1

x

]

,

[

1

G (x)

]

,

[

1

G2 (x)

]

, . . .

}

.

More generally, for x ≥ 0,

(6) x =

{

[x] ;

[

1

frac (x)

]

,

[

1

G (frac (x))

]

,

[

1

G2 (frac (x))

]

, . . .

}

.

If x is rational, that is, x = {a0; a1, a2, . . . , an} for some n, then the above continued

fraction terminates at the (n − 1)th iterate of G.

2. Parts within the Gauss Map and Its Iterates

In this section we introduce the concept of parts within the Gauss map and its
iterates. Parts are useful for two reasons: they help identify symmetry among the
iterates of the map, and; they show the linkages that exist between the Gauss map
and the Stern-Brocot tree. This paper only deals with the first situation, symmetry
within the Gauss map.
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Definition 5. The (j1, j2, . . . , jn)thpart, designated as Gn
j1,...,jn

, is that part of Gn

whose domain is composed of the points

x ∈ [{0; j1, . . . , jn}, {0; j1, . . . , jn, 1})
if n is even, and the points

x ∈ ({0; j1, . . . , jn, 1}, {0; j1, . . . , jn}]
if n is odd.

We designate the half-open interval above (for n even or odd) by Ij1,...,jn
.

Note that in Definition 5, Ij1 ,...,jn
contains all points

x = {0; j1, . . . , jn, an+1, an+2, . . .}.
We have seen that each part in G (x) is discontinuous only at its endpoints. We gen-
eralise this result in Theorem 12 to show that each part in Gn (x) is discontinuous
only at its endpoints.

Example 6.

Ij1 =

(

1

j1 + 1
,

1

j1

]

is the domain of Gj1 , that is, the domain of the jth
1 part.

Definition 7. Lj1,...,jn
and Uj1,...,jn

are the greatest lower and least upper bounds
respectively of Ij1,...,jn

, the domain of the (j1, . . . , jn)th part of the nth iterate,
Gn (x).

Combining Definitions 5 and 7 we have for n odd,

Lj1,...,jn
= {0; j1, j2, . . . , jn, 1}

Uj1,...,jn
= {0; j1, j2, . . . , jn}

(7)

and for n even,

Lj1,...,jn
= {0; j1, j2, . . . , jn}

Uj1,...,jn
= {0; j1, j2, . . . , jn, 1} .

(8)

Definition 8. We define the width of Ij1,...,jn
as

Wj1,...,jn
= Uj1,...,jn

− Lj1,...,jn

Those parts of the Gauss map and its iterates whose domains have the same width
are styled width partners.

By (2) and (3) with x = {0; j1, . . . , jn, an+1, an+2, . . .},
pn + pn−1

qn + qn−1
=

pn−2 + (jn + 1)pn−1

qn−2 + (jn + 1)qn−1

= {0; j1, j2, . . . , jn−1, jn + 1}
= {0; j1, j2, . . . , jn, 1}

=

{

Uj1,...,jn
for n even

Lj1,...,jn
for n odd

(9)

and
pn

qn

= {0; j1, j2, . . . , jn}
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=

{

Uj1,...,jn
for n odd

Lj1,...,jn
for n even.

(10)

Hence for all n, and utilising (4)

W
j1,...,jn

=

∣

∣

∣

∣

pn + pn−1

qn + qn−1
− pn

qn

∣

∣

∣

∣

=
1

qn (qn + qn−1)
(11)

→ 0 as n → ∞.

Example 9. G2
59,1 and G84 are width partners by (11).

3. General Equation of Gn (x)

Theorem 10. Let x = {0; a1, a2, . . .}. Then for n ≥ 0,

Gn (x) =
qnx − pn

pn−1 − qn−1x

where pn

qn
= {0; a1, a2, . . . , an} .

Proof. We prove this by induction. Since q0 = p−1 = 1 and q−1 = p0 = 0, the
theorem holds for n = 0. Now by our induction hypothesis,

Gk+1 (x) =
1

Gk (x)
− ak+1

=
pk−1 − qk−1x

qkx − pk

− ak+1

=
− (pk−1 + ak+1pk − x (qk−1 + ak+1qk))

pk − qkx

=
qk+1x − pk+1

pk − qkx
by (2) and (3)

and so our theorem is proved. �

Corollary 11. Let x = {0; a1, a2, . . .}. Then for n ≥ 0,

{0; an+1, an+2, . . .} =
qnx − pn

pn−1 − qn−1x

where pn

qn
= {0; a1, a2, . . . , an} .

Proof. This follows immediately by Theorems 3 and 10. �

Theorem 12. Gn (x) is discontinuous only at the endpoints of its parts.

Proof. For any x ∈ (Lj1,...,jn
, Uj1,...,jn

) , Theorem 10 holds and Gn
j1,...,jn

(x) is con-
tinuous. For n odd, from (7)

Uj1,...,jn
= {0; j1, j2, . . . , jn} and Gn

j1 ,...,jn
(Uj1,...,jn

) = 0,

Lj1,...,jn
= {0; j1, j2, . . . , jn, 1} and limx→Lj1,...,jn

Gn
j1 ,...,jn

(x) = 1.

Now since {0; j1, j2, . . . , jn, 1} = {0; j1, j2, . . . , jn + 1}, Lj1,...,jn
= Uj1,...,jn−1,jn+1.

But Gn
j1,...,jn−1,jn+1

(

Uj1,...,jn−1,jn+1

)

= 0. Hence at x = {0; j1, j2, . . . , jn, 1} ,

Gn (x) is discontinuous. Similarly, at

x = {0; j1, j2, . . . , jn − 1, 1} = {0; j1, j2, . . . , jn}



118 BRUCE BATES, MARTIN BUNDER, AND KEITH TOGNETTI

Gn (x) is discontinuous.
A similar argument holds for n even. So Gn (x) is continuous except at the

endpoints of its parts. �

4. Fixed Points of Gn (x)

We now show that every part in every iterate possesses a unique fixed point.
Recall that a fixed point of a function, f, is a real number x such that f (x) = x.

Theorem 13. For all n, Gn
j1,j2,...,jn

has a unique fixed point given by

αj1,j2,...,jn
=

{

0; j1, j2, . . . , jn

}

.

Proof. Let x = {0; j1, j2, . . . , jn, an+1, an+2, . . .} be any point in the domain of
Gn

j1,j2,...,jn
. By Theorem 3, Gn

j1,j2,...,jn
(x) = {0; an+1, an+2, . . .} = x if and only if

amn+i = ji for 1 ≤ i ≤ n and m ≥ 1. Thus x =
{

0; j1, j2, . . . , jn

}

is the unique
fixed point of Gn

j1,j2,...,jn
. Note that Gn has an infinite number of fixed points, one

for each of the infinite number of parts in Gn. �

The following theorem gives us an exact expression for the fixed point of each
part of the Gauss Map and its iterates based on convergents.

Theorem 14 (Fixed Point theorem). The fixed point of Gn
j1,j2,...,jn

, designated as
αj1,j2,...,jn

, is

αj1,j2,...,jn
=

pn−1 − qn +
√

q2
n + p2

n−1 + 2qn−1pn + 2 (−1)n−1

2qn−1

=
{

0; j1, j2, . . . , jn

}

where pn−1

qn−1
= {0; j1, j2, . . . , jn−1} and pn

qn
= {0; j1, j2, . . . , jn}.

Proof. Let x be the fixed point of Corollary 11 and Theorem 13, that is,

x =
qnx − pn

pn−1 − qn−1x

Solving for x, and ensuring that x is non-negative, we have

(12) x =
pn−1 − qn +

√

(qn − pn−1)
2

+ 4qn−1pn

2qn−1

The result now follows by (4). �

Example 15. α1,2,3 =
{

0; 1, 2, 3
}

possesses the convergents

C2 =
p2

q2
=

2

3

and

C3 =
p3

q3
=

7

10
.

Therefore by Theorem 14,

α1,2,3 =
{

0; 1, 2, 3
}

=
p2 − q3 +

√

q2
3 + p2

2 + 2q2p3 + 2

2q2
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=

√
37 − 4

3
≈ .69

Note that for j1 = 1, by Theorem 14,

α1 =

√
5 − 1

2
= {0; 1, 1, 1, . . .} .

That is, the fixed point of the first part is the Golden Section, τ .

Corollary 16. For any k > 0, if p1

q1
, p2

q2
, . . . are the convergents of αj1,j2,...,jn

then

αj1,j2,...,jn
=

pkn−1 − qkn +
√

q2
kn + p2

kn−1 + 2qkn−1pkn + 2 (−1)kn−1

2qkn−1
.

Proof. By Corollary 11, for x = {0; a1, a2, . . .} ,

{0; akn+1, akn+2, . . .} =
qknx − pkn

pkn−1 − qkn−1x

where pkn−1

qkn−1
= {0; a1, a2, . . . , akn−1} and pkn

qkn
= {0; a1, a2, . . . , akn}. In particular,

for x = αj1,j2,...,jn
=

{

0; j1, j2, . . . , jn

}

,

{0; jkn+1, jkn+2, . . .} =
{

0; j1, j2, . . . , jn

}

= x =
qknx − pkn

pkn−1 − qkn−1x

where
pkn−1

qkn−1
= {0; j1, j2, . . . , jkn−1} and pkn

qkn
= {0; j1, j2, . . . , jkn}. Solving for x,

the result follows. �

5. Gradient of Parts

Theorem 17. For n odd, Gn (x) consists of negatively sloped parts. For n even,
Gn (x) consists of positively sloped parts.

Proof. By Theorems 10 and 12, for x ∈ Ij1 ,j2,...,jn
,

Gn (x) =
qnx − pn

pn−1 − qn−1x
.

Hence

(13)
dGn

j1,j2,...,jn
(x)

dx
=

pn−1qn − pnqn−1

(pn−1 − qn−1x)2
=

(−1)
n

(pn−1 − qn−1x)2

by (4). The denominator is never zero, so by (13) the slope of Gn
j1,j2,...,jn

is negative
for n odd and positive for n even, and so our theorem is proved. �

Note that this means that the sign of the slope of a particular part of Gn (x) is
not dependent on x but only on n.

Example 18. Figure 1a shows the negatively sloped parts within G whilst Figure
1b shows the positively sloped parts of G2.

Theorem 19. The magnitude of the slope of any part of Gn is greater than 1.
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Proof. We showed in (13) that within the domain of any particular part of Gn,
where we have pn−1, qn−1, pn and qn constant, that

(14)
dGn (x)

dx
=

(−1)n

(pn−1 − qn−1x)
2 .

If n is even we have, for x in Ij1 ,j2,...,jn
, x > pn

qn
, and so

pn−1 − qn−1x <
pn−1qn − qn−1pn

qn

= ± 1

qn

by (4). So (pn−1 − qn−1x)
2

< 1
q2

n
< 1.

If n is odd we have, for x in Ij1,j2,...,jn
, x >

pn+pn−1

qn+qn−1
, and so

pn−1 − qn−1x <
pn−1qn + pn−1qn−1 − pnqn−1 − pn−1qn−1

qn + qn−1

= ± 1

qn + qn−1

by (4). So (pn−1 − qn−1x)
2

< 1
(qn+qn−1)

2 < 1. Hence for all n,
∣

∣

∣

dGn(x)
dx

∣

∣

∣
> 1 for all

x in Ij1,j2,...,jn
. �

6. Symmetry Partners

We now wish to identify parts from Gn (x) that represent symmetry partners.

Definition 20. The parts Gn
i1,...,in

and Gt
m1,...,mt

are said to represent symmetry
partners if there is a h ∈ [0, 1] such that for all x ∈ Ii1,...,in

and (2h − x) ∈ Im1,...,mt

where Ii1,...,in
and Im1,...,mt

are the same length,

Gn
i1,...,in

(x) = Gt
m1,...,mt

(2h− x) .

Moreover h is said to be the centre of symmetry.

Our aim is to show that h = 1
2 is the only case for which symmetry occurs. Thus,

if a part from Gn has a symmetry partner in Gn+1 with centre of symmetry h = 1
2 ,

then Gn
i1,...,in

(x) = Gn+1
m1,...,mn+1

(1 − x) for some positive integer values i1, . . . , in

and m1, . . . , mn+1. Additionally we will show that for h = 1
2 we have m1 = 1,

m2 = i1 − 1, mr+1 = ir, r > 1. Note that Definition 20 implies that symmetry
partners are the mirror image of each other around some centre of symmetry.

The previous section identified a necessary condition for symmetry partners to
exist - they must first be width partners. We will demonstrate that the converse
is not necessarily true. So what other necessary conditions must exist for width
partners to also be symmetry partners? This we now explore.

Theorem 21. Let Gn
i1,...,in

(x) and Gk
m1,...,mk

(2h − x) be symmetry partners with

centre of symmetry h and k > n. Let also pt

qt
(for t ≤ n) be the tth convergent of all

values within Ii1,...,in
, and

p
′

t

q
′

t

(for t ≤ k) be the tth convergent of all values within

Im1,...,mk
. Then the following are true:

i) qn−1 = q
′

k−1

ii) p
′

k−1 = 2hqn−1 − pn−1, and
iii) k = n + 2m + 1 for some m = 0, 1, 2, . . .
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Proof. Since Gn
i1,...,in

(x) and Gk
m1,...,mk

(2h− x) are symmetry partners, they must
have slopes with opposite signs. Therefore by Theorem 17, k and n cannot both be
even or odd. It follows that k = n + 2m + 1 for some m = 0, 1, 2, . . . establishing
iii).

From (14) within the domain of Gn
i1,...,in

,

dGn
i1,...,in

(x)

dx
=

(−1)n

(pn−1 − qn−1x)
2 .

Similarly, within the domain of Gk
m1,...,mk

(y) where y = (2h− x)

dGk
m1,...,mk

(y)

dy
=

(−1)
n+1

(

p
′

k−1 − q
′

k−1y
)2

=
(−1)

n+1

(

p
′

k−1 − q
′

k−1 (2h − x)
)2 .

But this means that, for symmetry to be in existence,

(pn−1 − qn−1x)
2

=
(

p
′

k−1 − q
′

k−1(2h − x)
)2

.

That is,

(15) pn−1 − qn−1x = ±
(

p
′

k−1 − q
′

k−1(2h − x)
)

.

Consider the two cases of (15):
Case 1:

(16) pn−1 − qn−1x = p
′

k−1 − q
′

k−1(2h − x).

Since within Ii1 ,...,in
, pn−1 and qn−1 are fixed, and within Im1,...,mk

, p
′

k−1 and

q
′

k−1 are fixed, we can equate coefficients of powers of x in (16). That is,

pn−1 = p
′

k−1 − 2hq
′

k−1

and

qn−1 = −q
′

k−1.

These are impossible equalities since qn−1 and q
′

k−1 are both positive.
Case 2:

(17) qn−1x − pn−1 = p
′

k−1 − q
′

k−1(2h − x).

Since within Ii1,...,in
, pn−1 and qn−1 are fixed, and within Im1,...,mk

, p
′

k−1 and q
′

k−1

are fixed, we can equate coefficients of powers of x in (17). That is,

pn−1 = 2hq
′

k−1 − p
′

k−1

and

qn−1 = q
′

k−1.

thereby establishing i) and ii). �
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Corollary 22. Let Gn
i1,...,in

(x) and Gk
m1,...,mk

(2h − x) be symmetry partners with

centre of symmetry h, and k > n. Let also pt

qt
be the tth convergent of all values

within Ii1,...,in
and

p
′

t

q
′

t

be the tth convergent of all values within Im1,...,mk
. Then

qn = q
′

k where k = n + 2m + 1 for some m = 0, 1, 2, . . .

Proof. From Theorem 21, k = n + 2m + 1 for some positive integer m. Also
since Gn

i1,...,in
(x) and Gk

m1,...,mk
(2h − x) are symmetry partners the widths of their

domains are identical. Hence

Wi1,...,in
= Wm1,...,mk

.

That is,

1

qn (qn + qn−1)
=

1

q
′

k

(

q
′

k + q
′

k−1

) by (11)

=
1

q
′

k

(

q
′

k + qn−1

) by Theorem 21.

Therefore

(18)
(

q
′

k

)2

+ qn−1q
′

k −
(

q2
n + qnqn−1

)

= 0.

Solving for q
′

k in (18), we have,

q
′

k =
−qn−1 ± (qn−1 + 2qn)

2
.

Since q
′

k must be positive, we have q
′

k = qn. �

Theorem 23. Let Gn
i1,...,in

(x) and Gk
m1,...,mk

(2h − x) be symmetry partners with

centre of symmetry h, and k > n. Let also pt

qt
be the tth convergent of all values

within Ii1 ,...,in
and

p
′

t

q
′

t

be the tth convergent of all values within Im1,...,mk
. Then the

following must be true
i) p

′

k = 2hqn − pn

ii) h = 1
2 .

Proof. Since Gn
i1,...,in

and Gk
m1,...,mk

are symmetry partners, h lies equidistant be-

tween pn

qn
and

p
′

k

q
′

k

on the x-axis. Accordingly h is rational, and

p
′

k

q
′

k

= 2h − pn

qn

=
2hqn − pn

qn

.

(19)

By Theorem 22, q
′

k = qn. Substituting in (19) gives

(20) p
′

k = 2hqn − pn.

which establishes part i). Accordingly, since p
′

k is an integer, 2hqn must also be an
integer. It follows that h in its reduced form has a denominator that is a factor of
2qn and by i) of 2qn−1. Since qn = qn−2 + anqn−1, the denominator of h must also
be a factor of 2qn−2, 2qn−3, . . . , 2q0 = 2. Thus the denominator of h is 1 or 2, and
2h is an integer. Since by Definition 20, h ∈ [0, 1], the only possible solutions are
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h = 0, 1 or 1
2 . But Gk has domain [0, 1] therefore the only non-trivial case is h = 1

2 .
The only domain that can be mirrored at x = 0 is itself. Similarly for x = 1. �

We are now able to demonstrate our main result:

Main Theorem. The graph of Gn over
[

0, 1
2

]

is symmetric to the graph of Gn+1

over
[

1
2 , 1

]

.

This requires that for the graph of Gn, each part to the left of x = 1
2 possesses

a symmetry partner. This symmetry partner is found equidistant from but to the
right of x = 1

2 in Gn+1. It follows that the only part that does not possess a
symmetry partner is the first part found in G, that is, G1.

Lemma 24. If x = {0; a1, a2, . . .} , then 1− x = {0; 1, a1 − 1, a2, a3, . . .} .

Proof. Let β = {0; a2, a3, . . .}. Now

x = {0; a1, a2, . . .} =
1

a1 + β
.

Therefore

1 − x =
a1 + β − 1

a1 + β
.

Now

{0; 1, a1 − 1, a2, a3, . . .} =
1

1 +
1

(a1 − 1) + β

=
a1 + β − 1

a1 + β

= 1 − x.

�

Theorem 25. Gn
i1,...,in

(x) and Gk
m1,...,mk

(2h − x) with k > n, are symmetry part-
ners if and only if

i) h = 1
2

ii) k = n + 1
iii) m1 = 1, m2 = i1 − 1 > 0, mt+2 = it+1 for 0 < t < n.

Proof. a) “If”. Let h = 1
2 , k = n + 1 and m1 = 1, m2 = i1 − 1 > 0, mt+2 = it+1

for 0 < t < n. By Lemma 24, if x = {0; i1, . . . , in, an+1, an+2, . . .} then

1 − x = {0; 1, i1 − 1, i2, i3, . . . , in, an+1, an+2, . . .} .

It follows by Theorem 3 that

Gn+1
1,i1−1,i2,...,in

(1 − x) = {0; an+1, an+2, an+3, . . .}
= Gn

i1,...,in
(x) .

b) “Only if”. For x = {0; i1, . . . , in, an+1, an+2, . . .} , let

Gn
i1,...,in

(x) and Gk
m1,...,mk

(2h− x)

be symmetry partners. Then by Theorem 23, h = 1
2 establishing i).

Now by Theorem 21, for some l ≥ 0,

Gn
i1,...,in

(x) = Gn+2l+1
1,i1−1,i2,...,in,an+1,an+2,...,an+2l

(1 − x) .
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Since by Theorem 3

Gn
i1,...,in

(x) = {0; an+1, an+2, . . .} and

Gn+2l+1
1,i1−1,i2,...,in,an+1,an+2,...,an+2l

(1 − x) = {0; an+2l+1, an+2l+2, . . .}

we have Gn
i1,...,in

(x) = Gn+2l+1
1,i1−1,i2,...,in,an+1,an+2,...,an+2l

(1 − x) only when l = 0,

establishing ii).
But this means that 1 − x ∈ I1,i1−1,i2,...,in

establishing iii). �

We summarise some useful findings through the following theorem.

Theorem 26. For n > 0 and j1 > 1, let Gn
j1,j2,...jn

(x) and Gn+1
1,j1−1,j2,...jn

(1 − x)
represent symmetry partners in the Gauss Map and its iterates. Let pn and qn be
associated with x and p

′

n and q
′

n be associated with 1 − x. Then

i) q
′

i+1 = qi for i ≥ −1

ii) p
′

i+1 = qi − pi for i ≥ 0

iii) pi = q
′

i+1 − p
′

i+1 for i ≥ 0.

Proof. We note by Lemma 24 that if

x = {a0; a1, a2, . . .} = {0; j1, . . . , jn, an+1, an+2, . . .} ,

then

1− x =
{

a
′

0; a
′

1, a
′

2, . . .
}

= {0; 1, j1 − 1, j2, j3, . . . , jn, an+1, an+2, . . .} .

We proceed by induction on i.
i) We have

q
′

0 = 1 = q−1.

q
′

1 = 1 = q0.

q
′

2 = (j1 − 1) q
′

1 + q
′

0 = j1 = q1.

Suppose i) holds for i = −1, 0, 1, . . . , m. By Theorem 25, (2) and the induction
hypothesis

q
′

m+2 = a
′

m+2q
′

m+1 + q
′

m = am+1qm + qm−1 = qm+1,

establishing i).
ii) We have

p
′

1 = 1 = q0 − p0.

p
′

2 = (j1 − 1) p
′

1 + p
′

0 = j1 − 1 = q1 − p1.

Suppose ii) holds for all i = 0, 1, . . . , m. By Theorem 25, (3) and the induction
hypothesis

p
′

m+2 = a
′

m+2p
′

m+1 + p
′

m

= am+1 (qm − pm) + (qm−1 − pm−1)

= (am+1qm + qm−1) − (am+1pm + pm−1)

= qm+1 − pm+1,

establishing ii).
iii) This follows by i) and ii). �
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Two examples of this symmetry are shown at Figure 1. A and B represent the
second and third parts of G. A

′

and B
′

are their respective symmetry partners,
namely G2

1,1 and G2
1,2, found in G2. Note that the centre of symmetry is x = 1

2
which agrees with our earlier results.

Remark 27. We have shown that merely finding two parts that possess domains
with the same width is not a sufficient condition for symmetry. In Example 9 we
showed that G2

59,1 and G84 are width partners. However by Theorem 25 they are
not symmetry partners.

We conclude with a result that links the fixed points of symmetry partners.

Theorem 28. Let αj1,j2,...,jn
be the fixed point of Gn

j1 ,j2,...,jn
, where j1 > 1. Then

the fixed point of Gn+1
1, j1−1, j2,...,jn

, designated as α1, j1−1, j2,...,jn
, is

α1, j1−1, j2,...,jn
=

qn−1 − pn−1 − qn +

√

(qn−1 − pn−1 − qn)
2

+ 4qn−1 (qn − pn)

2qn−1

=
{

0; 1, j1 − 1, j2, . . . , jn

}

where pn−1

qn−1
= {0; j1, j2, . . . , jn−1} and pn

qn
= {0; j1, j2, . . . , jn}.

Proof. By Theorem 14 the fixed point of Gn+1
1, j1−1, j2,...,jn

is

α1, j1−1, j2,...,jn
=

p′n − q′n+1 +

√

(

p′n − q′n+1

)2
+ 4q′np′n+1

2q′n

where
p′n−1

q′n−1

= {0; 1, j1 − 1, j2, . . . , jn−1}

and
p′n
q′n

= {0; 1, j1 − 1, j2, . . . , jn} .

As Gn
j1 ,j2,...,jn

and Gn+1
1, j1−1, j2,...,jn

are symmetry partners, the result follows from
Theorem 26. �
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