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PARTIAL SUMS OF CERTAIN ANALYTIC AND UNIVALENT
FUNCTIONS

B.A. FRASIN

Abstract. In this paper, we study the ratio of a function of the form

f(z) = z +
∞X

k=2

akzk

to its sequence of partial sums of the form fn(z) = z +
nP

k=2
akzk. Also,

we will determine sharp lower bounds for Re {f(z)/fn(z)}, Re {fn(z)/f(z)} ,

Re {f ′(z)/f ′n(z)} and Re
n

f ′n(z)/f
′
(z)

o
.

1. Introduction and definitions

Let A denote the class of functions of the form:

(1.1) f(z) = z +
∞∑

k=2

akzk,

which are analytic in the open unit disk U = {z : |z| < 1}. Further, by S we shall
denote the class of all functions in A which are univalent in U . Then a function
f(z) belonging to A is said to be starlike of order α if it satisfies

(1.2) Re
{

zf ′(z)
f(z)

}
> α (z ∈ U)

for some α(0 ≤ α < 1). We denote by S∗
α

the subclass of A consisting of functions
which are starlike of order α in U . Also, a function f(z) belonging to A is said to
be convex of order α if it satisfies

(1.3) Re
{

1 +
zf ′′(z)
f ′(z)

}
> α (z ∈ U)

for some α(0 ≤ α < 1). We denote by Kα the subclass of A consisting of functions
which are convex of order α in U . A function f ∈ A is said to be in the class Pα iff

(1.4) Re (f ′(z)) > α, (z ∈ U).
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It is well known that Kα ⊂ S∗
α
⊂ S. Given two functions f, g ∈ A, where f(z) = z+

∞∑
k=2

akzk and g(z) = z+
∞∑

k=2

bkzk, their Hadamard product or convolution f(z)∗g(z)

is defined by

(1.5) f(z) ∗ g(z) = z +
∞∑

k=2

akbkzk, (z ∈ U).

Ruschewehy [2] using the convolution techniques, introduced and studied the
class of prestarlike functions of order α, which is denoted by Rα. Thus f ∈ A is
said to be prestarlike functions of order α(0 ≤ α < 1) if f ∗ s

α
(z) ∈ S∗

α
where

s
α
(z) = z/(1− z)2(1−α). It may be noted that R0≡ K0 and R1/2≡ S∗1/2.
In our present paper we shall make use of the following definition due to Juneja

et al. [2].

Definition. Given the analytic functions

(1.6) Φ(z) = z +
∞∑

k=2

λkzk and Ψ(z) = z +
∞∑

k=2

µkzk, (0 ≤ α < 1; z ∈ U ),

where λk ≥ 0, µk ≥ 0 and λk ≥ µk for k ≥ 2, we say that f ∈ A is in E(Φ, Ψ;α) if
f(z) ∗Ψ(z) 6= 0 and

(1.7) Re
{

f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

}
> α (z ∈ U).

It is easy to check that various subclasses of S referred to above can be repre-
sented as E(Φ, Ψ;α) for suitable choices of Φ, Ψ. For example

(i) E
(

z
(1−z)2 , z

1−z ; α
)

= S∗
α
;

(ii) E
(

z+z2

(1−z)3 , z
(1−z)2 ; α

)
= Kα ;

(iii) E
(

z
(1−z)2 , z;α

)
= Pα ;

(iv) E
(

z+(1−2α)z2

(1−z)3−2α , z
(1−z)2−2α ; α

)
= Rα .

In fact many new subclasses of S can be defined and studied by suitably choosing
Φ(z) and Ψ(z). Thus

(v) E
(

z+z2

(1−z)3 , z; α
)

= {f ∈ S: Re ((zf ′(z))′) > α}
(vi) E

(
(1− δ) z

(1−z)2 + δ z+z2

(1−z)3 , z; α
)

= {f ∈ S: Re ((1− δ)f ′(z) + δ(zf ′(z))′) > α} and so on.
A sufficient condition for a function of the form (1.1) to be in E(Φ, Ψ;α) is that

(1.8)
∞∑

k=2

(λk − αµk) |ak| ≤ 1− α.

For the functions of the form

(1.9) f(z) = z −
∞∑

k=2

akzk, ak ≥ 0

the sufficient condition (1.8) is also necessary (see [1]).
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In the present paper and by following the earlier works by Silverman [3] on
partial sums of analytic functions, we study the ratio of a function of the form (1.1)
to its sequence of partial sums of the form

(1.10) fn(z) = z +
n∑

k=2

akzk.

when the coefficients of f(z) are satisfy the condition (1.8). We will determine
sharp lower bounds for Re {f(z)/fn(z)}, Re {fn(z)/f(z)} , Re {f ′(z)/f ′n(z)} and
Re

{
f ′n(z)/f

′
(z)

}
. It is seen that this study not only gives as a particular case, the

results of Silverman [3] but also give rise to several new results.

2. Main results

Theorem 1. If f(z) of the form (1.1) satisfies the condition (1.8), and

λk+1 − αµk+1 ≥
{

1− α, k = 2, 3, . . . , n
λn+1 + αµn+1, k = n + 1, n + 2, . . . .

then

(2.1) Re
{

f(z)
fn(z)

}
≥ λn+1 − αµn+1 − 1 + α

λn+1 − αµn+1
(z ∈ U)

and

(2.2) Re
{

fn(z)
f(z)

}
≥ λn+1 − αµn+1

1− α + λn+1 − αµn+1
(z ∈ U).

The results (2.1) and (2.2) are sharp with the function given by

(2.3) f(z) = z +
1− α

λn+1 − αµn+1
zn+1.

Proof. Define the function w(z) by

1 + w(z)
1− w(z)

=
λn+1 − αµn+1

1− α

[
f(z)
fn(z)

−
(

λn+1 − αµn+1 − 1 + α

λn+1 − αµn+1

)]

=
1 +

n∑
k=2

akzk−1 +
(

λn+1−αµn+1
1−α

) ∞∑
k=n+1

akzk−1

1 +
n∑

k=2

akzk−1

.

(2.4)

It suffices to show that |w(z)| ≤ 1. Now, from (2.4) we can write

w(z) =

(
λn+1−αµn+1

1−α

) ∞∑
k=n+1

akzk−1

2 + 2
n∑

k=2

akzk−1 +
(

λn+1−αµn+1
1−α

) ∞∑
k=n+1

akzk−1

to find that

|w(z)| ≤

(
λn+1−αµn+1

1−α

) ∞∑
k=n+1

|ak|

2− 2
n∑

k=2

|ak| −
(

λn+1−αµn+1
1−α

) ∞∑
k=n+1

|ak|
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Now |w(z)| ≤ 1 if

2
(

λn+1 − αµn+1

1− α

) ∞∑

k=n+1

|ak| ≤ 2− 2
n∑

k=2

|ak|

or, equivalently
n∑

k=2

|ak|+
∞∑

k=n+1

λn+1 − αµn+1

1− α
|ak| ≤ 1.

From the condition (1.8), it is sufficient to show that
n∑

k=2

|ak|+
∞∑

k=n+1

λn+1 − αµn+1

1− α
|ak| ≤

∞∑

k=2

λk − αµk

1− α
|ak|

which is equivalent to

(2.5)
n∑

k=2

(
λk − αµk − 1 + α

1− α

)
|ak|

+
∞∑

k=n+1

(
λk − αµk − λn+1 + αµn+1

1− α

)
|ak| ≥ 0.

To see that the function given by (2.3) gives the sharp result, we observe that

f(z)
fn(z)

= 1 +
1− α

λn+1 − αµn+1
zn → 1− 1− α

λn+1 − αµn+1

=
λn+1 − αµn+1 − 1 + α

λn+1 − αµn+1
when r → 1−.

To prove the second part of this theorem, we write

1 + w(z)
1− w(z)

=
1− α + λn+1 − αµn+1

1− α

[
fn(z)
f(z)

−
(

λn+1 − αµn+1

1− α + λn+1 − αµn+1

)]

=
1 +

n∑
k=2

akzk−1 −
(

λn+1−αµn+1
1−α

) ∞∑
k=n+1

akzk−1

1 +
n∑

k=2

akzk−1

where

|w(z)| ≤

(
1−α+λn+1−αµn+1

1−α

) ∞∑
k=n+1

|ak|

2− 2
n∑

k=2

|ak| −
(

1−α−λn+1+αµn+1
1−α

) ∞∑
k=n+1

|ak|
≤ 1.

This last inequality is equivalent to
n∑

k=2

|ak|+
∞∑

k=n+1

λn+1 − αµn+1

1− α
|ak| ≤ 1.

Making use of (1.8) to get (2.5). Finally, equality holds in (2.2) for the extremal
function f(z) given by (2.3). ¤

Taking Φ(z) = z/(1− z)2 and Ψ(z) = z/(1− z) in Theorem 1, we obtain
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Corollary 1 ([3]). Let the function f(z) be defined by (1.1). If

(2.6)
∞∑

k=2

(k − α) |ak| ≤ 1− α

then

(2.7) Re
{

f(z)
fn(z)

}
≥ n

n + 1− α
(z ∈ U)

and

(2.8) Re
{

fn(z)
f(z)

}
≥ n + 1− α

n + 2− 2α
(z ∈ U).

The results are sharp with the function given by

(2.9) f(z) = z +
1− α

n + 1− α
zn+1.

Taking Φ(z) = (z + z2)/(1− z)3 and Ψ(z) = z/(1− z)2 in Theorem 1, we obtain

Corollary 2 ([5]). Let the function f(z) be defined by (1.1). If

(2.10)
∞∑

k=2

k(k − α) |ak| ≤ 1− α

then

(2.11) Re
{

f(z)
fn(z)

}
≥ n(n + 2− α)

(n + 1)(n + 1− α)
(z ∈ U)

and

(2.12) Re
{

fn(z)
f(z)

}
≥ (n + 1)(n + 1− α)

(n + 1)[(n + 1)− α] + 1− α
(z ∈ U).

The results are sharp with the function given by

(2.13) f(z) = z +
1− α

(n + 1)2 − α(n + 1)
zn+1.

Taking Φ(z) = z/(1− z) and Ψ(z) = z in Theorem 1, we obtain

Corollary 3. Let the function f(z) be defined by (1.1).If

(2.14)
∞∑

k=2

|ak| ≤ 1− α

then

(2.15) Re
{

f(z)
fn(z)

}
≥ α (z ∈ U)

and

(2.16) Re
{

fn(z)
f(z)

}
≥ 1

2− α
(z ∈ U).

The results are sharp with the function given by

(2.17) f(z) = z + (1− α)zn+1.

Taking Φ(z) = z/(1− z)2 and Ψ(z) = z in Theorem 1, we obtain
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Corollary 4. Let the function f(z) be defined by (1.1). If

(2.18)
∞∑

k=2

k |ak| ≤ 1− α

then

(2.19) Re
{

f(z)
fn(z)

}
≥ n + α

n + 1
(z ∈ U)

and

(2.20) Re
{

fn(z)
f(z)

}
≥ n + 1

n + 2− α
(z ∈ U).

The results are sharp with the function given by

(2.21) f(z) = z +
1− α

n + 1
zn+1.

Taking Φ(z) = (z+(1−2α)z2)/(1−z)3−2α and Ψ(z) = z/(1−z)2−2α in Theorem
1, we obtain

Corollary 5. Let the function f(z) be defined by (1.1). If

(2.22)
∞∑

k=2

C(α, k)(k − α) |ak| ≤ 1− α

then

(2.23) Re
{

f(z)
fn(z)

}
≥ C(α, n + 1)(n + 1− α)− 1 + α

C(α, n + 1)(n + 1− α)
(z ∈ U)

and

(2.24) Re
{

fn(z)
f(z)

}
≥ C(α, n + 1)(n + 1− α)

1− α + C(α, n + 1)(n + 1− α)
(z ∈ U).

where C(α, k) =
k∏

i=2

(i− 2α)/(i− 1)!.

The results are sharp with the function given by

(2.25) f(z) = z +
1− α

C(α, n + 1)(n + 1− α)
zn+1.

Taking Φ(z) = (z + z2)/(1− z)3 and Ψ(z) = z in Theorem 1, we obtain

Corollary 6. Let the function f(z) be defined by (1.1). If

(2.26)
∞∑

k=2

k2 |ak| ≤ 1− α

then

(2.27) Re
{

f(z)
fn(z)

}
≥ n2 + 2n + α

(n + 1)2
(z ∈ U)

and

(2.28) Re
{

fn(z)
f(z)

}
≥ (n + 1)2

n2 + 2n + 2− α
(z ∈ U).
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The results are sharp with the function given by

(2.29) f(z) = z +
1− α

(n + 1)2
zn+1.

Taking Φ(z) = (1− δ)z/(1− z)2 + δ(z + z2)/(1− z)3 and Ψ(z) = z in Theorem
1, we obtain

Corollary 7. Let the function f(z) be defined by (1.1). If

(2.30)
∞∑

k=2

[(1− δ)k + δk2] |ak| ≤ 1− α

then

(2.31) Re
{

f(z)
fn(z)

}
≥ (n + 1)(1 + nδ)− 1 + α

(n + 1)(1 + nδ)
(z ∈ U)

and

(2.32) Re
{

fn(z)
f(z)

}
≥ (n + 1)(1 + nδ)

1− α + (n + 1)(1 + nδ)
(z ∈ U).

The results are sharp with the function given by

(2.33) f(z) = z +
1− α

(n + 1)(1 + nδ)
zn+1.

We next turns to ratios involving derivatives.

Theorem 2. If f(z) of the form (1.1) satisfies the condition (1.8), and

λk+1 − αµk+1 ≥
{

k(1− α), k = 2, 3, . . . , n

k(1− α) + (λn+1−αµn+1)k
(n+1) , k = n + 1, n + 2, . . . .

then

(2.34) Re
{

f ′(z)
f ′n(z)

}
≥ λn+1 − αµn+1 − (n + 1)(1− α)

λn+1 − αµn+1
(z ∈ U)

and

(2.35) Re
{

f ′n(z)
f ′(z)

}
≥ λn+1 − αµn+1

(n + 1)(1− α) + λn+1 − αµn+1
(z ∈ U).

The results are sharp with the function given by (2.3).

Proof. We write

1 + w(z)
1− w(z)

=
λn+1 − αµn+1

(n + 1)(1− α)

[
f ′(z)
f ′n(z)

−
(

λn+1 − αµn+1 − (n + 1)(1− α)
λn+1 − αµn+1

)]

where

w(z) =

(
λn+1−αµn+1
(n+1)(1−α)

) ∞∑
k=n+1

kakzk−1

2 + 2
n∑

k=2

kakzk−1 +
(

λn+1−αµn+1
(n+1)(1−α)

) ∞∑
k=n+1

kakzk−1

Now |w(z)| ≤ 1 if
n∑

k=2

k |ak|+ λn+1 − αµn+1

(n + 1)(1− α)

∞∑

k=n+1

k |ak| ≤ 1.
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From the condition (1.8), it is sufficient to show that
n∑

k=2

k |ak|+ λn+1 − αµn+1

(n + 1)(1− α)

∞∑

k=n+1

k |ak| ≤
∞∑

k=2

λk − αµk

1− α
|ak|

which is equivalent to
n∑

k=2

(
λk − αµk − (1− α)k

1− α

)
|ak|

+
∞∑

k=n+1

(n + 1) (λk − αµk)− (λn+1 − αµn+1)k
(1− α)(n + 1)

|ak| ≥ 0.

To prove the result (2.32), define the function w(z) by

1 + w(z)
1− w(z)

=
(n + 1)(1− α) + λn+1 − αµn+1

1− α

×
[
f ′n(z)
f ′(z)

−
(

λn+1 − αµn+1

(n + 1)(1− α) + λn+1 − αµn+1

)]

where

w(z) =

(
1 + λn+1−αµn+1

(n+1)(1−α)

) ∞∑
k=n+1

kakzk−1

2 + 2
n∑

k=2

kakzk−1 +
(
1 + λn+1−αµn+1

(n+1)(1−α)

) ∞∑
k=n+1

kakzk−1

.

Now |w(z)| ≤ 1 if

(2.36)
n∑

k=2

k |ak|+
(

1 +
λn+1 − αµn+1

(n + 1)(1− α)

) ∞∑

k=n+1

k |ak| ≤ 1.

It suffices to show that the left hand side of (2.36) is bounded above by the

condition
∞∑

k=2

((λk − αµk)/(1− α)) |ak|, which is equivalent to

n∑

k=2

(
λk − αµk

1− α
− k

)
|ak|+

∞∑

k=n+1

(
λk − αµk

1− α
−

(
1 +

λn+1 − αµn+1

(n + 1)(1− α)

)
k

)
|ak| ≥ 0.

¤

Taking Φ(z) = z/(1− z)2 and Ψ(z) = z/(1− z) in Theorem 2, we obtain

Corollary 8 ([3]). Let the function f(z) be defined by (1.1). If

(2.37)
∞∑

k=2

(k − α) |ak| ≤ 1− α

then

(2.38) Re
{

f ′(z)
f ′n(z)

}
≥ nα

n + 1− α
(z ∈ U)

and

(2.39) Re
{

f ′n(z)
f ′(z)

}
≥ n + 1− α

(n + 1)(2− α)− α
(z ∈ U).



PARTIAL SUMS OF CERTAIN ANALYTIC AND UNIVALENT FUNCTIONS 143

The results are sharp with the function given by

(2.40) f(z) = z +
1− α

n + 1− α
zn+1.

Taking Φ(z) = (z + z2)/(1− z)3 and Ψ(z) = z/(1− z)2 in Theorem 2, we obtain

Corollary 9 ([3]). Let the function f(z) be defined by (1.1). If

(2.41)
∞∑

k=2

k(k − α) |ak| ≤ 1− α

then

(2.42) Re
{

f ′(z)
f ′n(z)

}
≥ n

n + 1− α
(z ∈ U)

and

(2.43) Re
{

f ′n(z)
f ′(z)

}
≥ n + 1− α

n + 2− 2α
(z ∈ U).

The results are sharp with the function given by

(2.44) f(z) = z +
1− α

(n + 1)2 − α(n + 1)
zn+1.

Taking Φ(z) = z/(1− z) and Ψ(z) = z in Theorem 2, we obtain

Corollary 10. Let the function f(z) be defined by (1.1). If

(2.45)
∞∑

k=2

|ak| ≤ 1− α

then

(2.46) Re
{

f ′(z)
f ′n(z)

}
≥ 1− (n + 1)(1− α) (z ∈ U)

and

(2.47) Re
{

f ′n(z)
f ′(z)

}
≥ 1

(n + 1)(1− α) + 1
(z ∈ U).

The results are sharp with the function given by

(2.48) f(z) = z + (1− α)zn+1.

Taking Φ(z) = z/(1− z)2 and Ψ(z) = z in Theorem 2, we obtain

Corollary 11. Let the function f(z) be defined by (1.1). If

(2.49)
∞∑

k=2

k |ak| ≤ 1− α

then

(2.50) Re
{

f ′(z)
f ′n(z)

}
≥ (n + 1)α

n + 1
(z ∈ U)

and

(2.51) Re
{

f ′n(z)
f ′(z)

}
≥ n + 1

(n + 1)(2− α)
(z ∈ U).
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The results are sharp with the function given by

(2.52) f(z) = z +
1− α

n + 1
zn+1

Taking Φ(z) = (z+(1−2α)z2)/(1−z)3−2α and Ψ(z) = z/(1−z)2−2α in Theorem
2, we obtain

Corollary 12. Let the function f(z) be defined by (1.1). If

(2.53)
∞∑

k=2

C(α, k)(k − α) |ak| ≤ 1− α

then

(2.54) Re
{

f ′(z)
f ′n(z)

}
≥ C(α, n + 1)(n + 1− α)− (n + 1)(1− α)

C(α, n + 1)(n + 1− α)
(z ∈ U)

and

(2.55) Re
{

f ′n(z)
f ′(z)

}
≥ C(α, n + 1)(n + 1− α)

(n + 1)(1− α) + C(α, n + 1)(n + 1− α)
(z ∈ U).

The results are sharp with the function given by

(2.56) f(z) = z +
1− α

C(α, n + 1)(n + 1− α)
zn+1.

Taking Φ(z) = (z + z2)/(1− z)3 and Ψ(z) = z in Theorem 2, we obtain

Corollary 13. Let the function f(z) be defined by (1.1). If

(2.57)
∞∑

k=2

k2 |ak| ≤ 1− α

then

(2.58) Re
{

f ′(z)
f ′n(z)

}
≥ n + α

n + 1
(z ∈ U)

and

(2.59) Re
{

f ′n(z)
f ′(z)

}
≥ n + 1

n + 2− α
(z ∈ U).

The results are sharp with the function given by

(2.60) f(z) = z +
1− α

(n + 1)2
zn+1.

Taking Φ(z) = (1− δ)z/(1− z)2 + δ(z + z2)/(1− z)3 and Ψ(z) = z in Theorem
2, we obtain

Corollary 14. Let the function f(z) be defined by (1.1). If

(2.61)
∞∑

k=2

[(1− δ)k + δk2] |ak| ≤ 1− α

then

(2.62) Re
{

f ′(z)
f ′n(z)

}
≥ nδ + α

1 + nδ
(z ∈ U)
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and

(2.63) Re
{

f ′n(z)
f ′(z)

}
≥ 1 + nδ

2 + nδ − α
(z ∈ U).

The results are sharp with the function given by

(2.64) f(z) = z +
1− α

(n + 1)(1 + nδ)
zn+1.
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