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ALMOST EVERYWHERE CONVERGENCE OF SUBSEQUENCE
OF LOGARITHMIC MEANS OF WALSH-FOURIER SERIES

USHANGI GOGINAVA

Abstract. In this paper we prove that the maximal operator of the subse-
quence of logarithmic means of Walsh-Fourier series is weak type (1,1). More-
over, the logarithmic means tmn (f) of the function f ∈ L converge a.e. to f
as n →∞.

In the literature, it is known the notion of the Riesz’s logarithmic means of a
Fourier series. The n-th mean of the Fourier series of the integrable function f is
defined by

1
ln

n−1∑

k=1

Sk(f)
k

.

This Riesz’s logarithmic means with respect to the trigonometric system has been
studied by a lot of authors. We mention for instance the papers of Szász, and Yabuta
([Sz], [Ya]). This mean with respect to the Walsh, Vilenkin system is discussed by
Simon, and Gát ([14], [2]).

Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The Nörlund means for
the Fourier series of f are defined by

1
Qn

n−1∑

k=1

qn−kSk(f),

where Qn :=
∑n−1

k=1 qk. If qk = 1
k , then we get the (Nörlund) logarithmic means:

1
ln

n−1∑

k=1

Sk(f)
n− k

.

Móricz and Siddiqi [11] investigates the approximation properties of some special
Nörlund means of Walsh-Fourier series of Lp functions in norm. The case, when
qk = 1

k is excluded, since the methods of Móricz are not applicable for logarithmic
means. In [7] we proved some convergence and divergence properties of the loga-
rithmic means of functions in the class of continuous functions, and in the Lebesgue
space L. Among others, we proved that the maximal norm convergence function
space of this logarithmic means is L log+ L. On the other hand, with respect to
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approximation properties of logarithmic means of multiple Walsh-Fourier series see
for instance the papers ([6, 4, 5]).

In this paper we discuss a.e. convergence of subsequence of logarithmic means of
Walsh-Fourier series of functions from the space f ∈ L. In particular, we prove that
the maximal operator of the subsequence of logarithmic means of Walsh-Fourier
series is weak type (1,1). Moreover, the logarithmic means tmn

(f) of the function
f ∈ L converge a.e. to f as n →∞. For this we apply some Gát idea from [1], [3].

Let r0 (x) be a function defined by

r0 (x) =

{
1, if x ∈ [0, 1/2)

−1, if x ∈ [1/2, 1)
, r0 (x + 1) = r0 (x) .

The Rademacher system is defined by

rn (x) = r0 (2nx) , n ≥ 1 and x ∈ [0, 1).

Let w0, w1, . . . represent the Walsh functions, i.e. w0 (x) = 1 and if

k = 2n1 + · · ·+ 2ns

is a positive integer with n1 > n2 > · · · > ns ≥ 0, then

wk (x) = rn1 (x) · · · rns (x) .

The idea of using products of Rademacher’s functions to define the Walsh system
originated from Paley [12].

The Walsh-Dirichlet kernel is defined by

Dn (x) =
n−1∑

k=0

wk (x) .

Recall that

(1) D2n (x) =

{
2n, if x ∈ [0, 1/2n) ,

0, if x ∈ [1/2n, 1) .

As usual, denote by L (I) (I := [0, 1)) the set of all measurable functions defined
on I, for which

‖f‖1 =

1∫

0

|f (x)| dx < ∞.

The rectangular partial sums of Fourier series with respect to the Walsh system
are defined by

Sn (f, x, y) =
n−1∑
m=0

f̂ (m) wm(x),

where

f̂ (m) =

1∫

0

f (t)wm (t) dt

is called the m-th Walsh-Fourier coefficient of function f .
The logarithmic means of Walsh-Fourier series is defined as follows

tn (f, x) =
1
ln

n−1∑

i=1

Si (f, x)
n− i

,
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where

ln =
n−1∑

k=1

1
k

.

It is evident that

tn (f, x, y) =

1∫

0

f (x⊕ t) Fn (t) dt,

where

Fn (t) =
1
ln

n−1∑

k=1

Dk (t)
n− k

and ⊕ denotes the dyadic addition ([13, 9]).
For the maximal operator t∗ (f) we prove

Theorem 1. Let {mn : n ≥ 1} be sequence of positive integers for which
∞∑

n=1

log2
(
mn − 2[log mn] + 1

)

log mn
< ∞.

Then the operator t∗ (f) := sup
n≥1

|tmn (f)| is weak type (1,1), i.e.

‖t∗ (f)‖weak−L := sup
λ

λ mes ({x : t∗ (f, x) > λ}) ≤ c ‖f‖1 .

Corollary 1. Let {mn : n ≥ 1} be from Theorem 1. and f ∈ L (I). Then

tmn (f, x) → f (x) a.e. as n →∞.

Corollary 2. Let f ∈ L (I). Then

t2n (f, x) → f (x) a.e. as n →∞.

Following the works of Gát [1, 3] the base of the proof of Theorem 1. is the
following lemma.

Lemma 1. Let {mn : n ≥ 1} be from Theorem 1. Then
1∫

2−k

sup
n≥n(k)

|Fmn (x)| dx < ∞,

where n (k) = min {n : [log mn] ≥ k}.
In order to prove Lemma 1., we shall need the following Lemmas.

Lemma 2 ([8]). Let 1 ≤ j < 2n. Then

D2n−j (u) = D2n (u)− w2n−1 (u)Dj (u) .

Let us denote by Kj the jth Fejér kernel function, that is, Kj = 1
j

j∑
i=1

Di.

Lemma 3. We have
1∫

2−k

sup
n≥2k

|Kn (x)| dx < ∞.

The proof can be found in work of Gát [1].
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Lemma 4. Let 2n ≤ m < 2m+1. Then

lmFm (x) = lmD2n (x)

− w2n−1 (x)
2n−2∑

j=1

(
1

m− 2n + j
− 1

m− 2n + j + 1

)
jKj (x)

− 2n − 1
m− 1

w2n−1 (x)K2n−1 (x) + w2n (x) lm−2nFm−2n (x) .

Proof of Lemma 4. It is evident that

(2) lmFm (x) =
2n∑

j=1

Dj (x)
m− j

+
m−1∑

j=2n+1

Dj (x)
m− j

= I + II.

Using Abel transformation and Lemma 1. we have

I =
2n−1∑

j=0

D2n−j (x)
m− 2n + j

=
D2n (x)
m− 2n

+
2n−1∑

j=1

D2n−j (x)
m− 2n + j

=
D2n (x)
m− 2n

+ D2n (x)




2n−1∑

j=1

1
m− 2n + j




− w2n−1 (x)
2n−1∑

j=1

Dj (x)
m− 2n + j

= (lm − lm−2n)D2n (x)

− w2n−1 (x)
2n−2∑

j=1

(
1

m− 2n + j
− 1

m− 2n + j + 1

)
jKj (x)

− 2n − 1
m− 1

w2n−1 (x) K2n−1 (x) .

(3)

Since

Dj+2n (x) = D2n (x) + w2n (x) Dj (x) , j = 1, 2, . . . , 2n − 1,

for II we write

(4) II =
m−2n−1∑

j=1

Dj+2n (x)
m− 2n − j

= lm−2nD2n (x) + w2n (x) lm−2nFm−2n (x) .

Combining (2)–(4) we complete the proof of Lemma 4. ¤

Lemma 5. Let lim
n→∞

log2(mn−2[log mn]+1)
log mn

< ∞. Then

‖Fmn‖1 ≤ c < ∞, n = 1, 2, . . .

Proof of Lemma 5. Since

‖Fn‖1 ≤
1
ln

n−1∑

j=1

‖Dj‖1
n− j

≤ 1
ln

n−1∑

j=1

ln (j + 1)
n− j

= O (ln)

and

(5) ‖Kn‖1 ≤ c < ∞, n = 1, 2, . . .
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from Lemma 4. we have

‖Fmn‖1 ≤ 1 +
1

lmn

2[log mn]−2∑

j=1

‖Kj‖1
j

+
∥∥K2[log mn]−1

∥∥
1

+
lmn−2[log mn]

lmn

∥∥Fmn−2[log mn]

∥∥
1

= O

(
log2

(
mn − 2[log mn] + 1

)

log mn

)
= O (1) .

Lemma 5. is proved. ¤

Proof of Lemma 1. From Lemma 3. and by (1), (5) we have
1∫

2−k

sup
n≥n(k)

|Fmn
(x)| dx ≤ c1

1∫

2−k

sup
n≥n(k)

1
log mn

2[log mn]−2∑

j=1

|Kj (x)|
j

dx

+ c2

1∫

2−k

sup
n≥n(k)

∣∣K2[log mn]−1 (x)
∣∣ dx

+

1∫

2−k

sup
n≥n(k)

log
(
mn − 2[log mn] + 1

)

log mn

∣∣Fmn−2[log mn] (x)
∣∣ dx

≤ c3 + c1

1∫

2−k

sup
n≥n(k)

1
log mn

2k−1∑

j=1

|Kj (x)|
j

dx

+ c1

1∫

2−k

sup
n≥n(k)

1
log mn

2[log mn]−2∑

j=2k

1
j

sup
i≥2k

|Ki (x)| dx

+
∞∑

n=1

log
(
mn − 2[log mn] + 1

)

log mn

1∫

0

∣∣Fmn−2[log mn] (x)
∣∣ dx

≤ c4 + c5

1∫

2−k

sup
i≥2k

|Ki (x)| dx +
∞∑

n=1

log2
(
mn − 2[log mn] + 1

)

log mn
≤ c6 < ∞.

Lemma 1. is proved. ¤

Given u ∈ I, let Ik (u) denote a dyadic interval of length 2−k which contains the
point u.

In the sequel we prove that the maximal operator t∗ (f) is quasi-local. This reads
as follows

Lemma 6. Let f ∈ L (I), supp f ⊂ Ik (u) and
∫

Ik(u)

f (x) dx = 0 for some u ∈ I.

Then
1∫

2−k

t∗ (f, x) dx ≤ c ‖f‖1 .
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Proof of Lemma 6. By the shift invariency of the Haar measure it can be supposed
that u = 0. If n ≤ n (k) then

tmn
(f, x) =

∫

I

f (u)Fmn
(x⊕ u) du

= Fmn (x)

2−k∫

0

f (u) du = 0.

Consequently, n > n (k) can be supposed.
Then from Lemma 1 we have

1∫

2−k

t∗ (f, x) dx ≤
2−k∫

0

|f (u)|



1∫

2−k

sup
n≥n(k)

|Fmn
(x⊕ u)| dx


 du

≤ c ‖f‖1 .

¤

Proof of Theorem 1. As a consequence of Lemma 5. we have that the maximal
operator t∗ (f) is of type (∞,∞). Since the sublinear operator is quasi-local, then
by standard argument [13] it follows that it is of weak type (1, 1). ¤

By making use of the well-known density argument due to Marcinkiewicz and
Zygmund [10] we can show that Corollary 1. follows from Theorem 1.
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